JPH0834601A - Production of hydrogen-containing gas for fuel cell - Google Patents
Production of hydrogen-containing gas for fuel cellInfo
- Publication number
- JPH0834601A JPH0834601A JP7110769A JP11076995A JPH0834601A JP H0834601 A JPH0834601 A JP H0834601A JP 7110769 A JP7110769 A JP 7110769A JP 11076995 A JP11076995 A JP 11076995A JP H0834601 A JPH0834601 A JP H0834601A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- catalyst
- reaction
- gas
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、燃料電池用水素含有ガ
スの製造方法に関し、より詳しく言うと、各種の水素製
造用燃料[例えば、メタン若しくは天然ガス(LN
G)、プロパン、ブタン若しくは石油ガス(LPG)、
ナフサ、灯油、軽油、合成石油等の炭化水素系燃料、メ
タノール、混合アルコール等のアルコール系燃料、ある
いは都市ガス等]の水蒸気改質等によって得られた改質
ガスからCOを選択性よく接触酸化除去し、燃料電池用
の燃料として有利に利用できる水素含有ガスを効率よく
製造する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen-containing gas for a fuel cell, and more specifically, various hydrogen producing fuels such as methane or natural gas (LN).
G), propane, butane or petroleum gas (LPG),
CO is selectively catalytically oxidized from reformed gas obtained by steam reforming of hydrocarbon fuels such as naphtha, kerosene, light oil, synthetic petroleum, alcohol fuels such as methanol and mixed alcohols, or city gas. The present invention relates to a method for efficiently producing a hydrogen-containing gas which can be removed and advantageously used as a fuel for a fuel cell.
【0002】なお、本発明の方法による水素含有ガスの
製造工程は、前記改質工程と共に燃料電池発電システム
に組み込む形式で好適に利用することができる。The hydrogen-containing gas production process according to the method of the present invention can be suitably used in the form of being incorporated into a fuel cell power generation system together with the reforming process.
【0003】[0003]
【従来の技術】燃料電池による発電は、低公害でエネル
ギーロスが少なく、設置場所の選択、増設、操作性等の
点でも有利であるなど種々の利点を有することから、近
年特に注目を集めている。燃料電池には、燃料や電解質
の種類あるいは作動温度等によって種々のタイプのもの
が知られているが、中でも水素を還元剤(活物質)と
し、酸素(空気等)を酸化剤とする、いわゆる水素−酸
素燃料電池(低温作動型の燃料電池)の開発・実用化が
最も進んでおり、今後ますます普及が見込まれている。2. Description of the Related Art Power generation by a fuel cell has various advantages such as low pollution, low energy loss, selection of installation place, expansion, operability, etc. There is. Various types of fuel cells are known depending on the type of fuel or electrolyte, operating temperature, etc. Among them, hydrogen is used as a reducing agent (active material) and oxygen (air, etc.) is used as an oxidizing agent. Hydrogen-oxygen fuel cells (low-temperature operation fuel cells) have been most developed and put into practical use, and are expected to become even more popular in the future.
【0004】このような水素−酸素燃料電池にも電解質
の種類や電極等の構成によって種々のタイプのものがあ
り、その代表的なものとして、例えば、リン酸燃料電
池、KOH型燃料電池、固体高分子電解質型燃料電池な
どがある。このような燃料電池、特に低温作動型燃料電
池の場合には、電極に白金(白金触媒)が使用されてい
る。ところが、電極に用いている白金(白金触媒)はC
Oによって被毒されやすいので、燃料中にCOがあるレ
ベル以上含まれていると発電性能が低下したり、濃度に
よっては全く発電ができなくなってしまうという重大な
問題点がある。このCO被毒による触媒活性の劣化は、
特に低温ほど著しいので、この問題は、低温作動型の燃
料電池の場合に特に深刻となる。There are various types of such hydrogen-oxygen fuel cells depending on the type of electrolyte and the structure of the electrodes. Typical examples thereof include phosphoric acid fuel cells, KOH type fuel cells, and solid state fuel cells. There are polymer electrolyte fuel cells and the like. In such a fuel cell, especially in the case of a low temperature operation type fuel cell, platinum (platinum catalyst) is used for the electrode. However, the platinum (platinum catalyst) used for the electrodes is C
Since CO is liable to be poisoned by O, if CO is contained in the fuel at a certain level or more, the power generation performance is lowered, or depending on the concentration, power generation cannot be performed at all, which is a serious problem. The deterioration of catalytic activity due to this CO poisoning is
This problem is particularly serious in the case of a fuel cell that operates at a low temperature, since the problem is remarkable at a low temperature.
【0005】したがって、こうした白金系電極触媒を用
いる燃料電池の燃料としては純粋な水素が好ましいが、
実用的な点からは安価で貯蔵性等に優れたあるいはすで
に公共的な供給システムが完備されている各種の燃料
[例えば、メタン若しくは天然ガス(LNG)、プロパ
ン、ブタン等の石油ガス(LPG)、ナフサ、灯油、軽
油等の各種の炭化水素系燃料あるいはメタノール等のア
ルコール系燃料、あるいは都市ガス、その他の水素製造
用燃料]の水蒸気改質等によって得られる水素含有ガス
を用いることが一般的になっており、このような改質設
備を組み込んだ燃料電池発電システムの普及が進められ
ている。しかしながら、こうした改質ガス中には、一般
に、水素の他にかなりの濃度のCOが含まれているの
で、このCOを白金系電極触媒に無害なCO2等に転化
し、燃料中のCO濃度を低減させる技術の開発が強く望
まれている。その際、COの濃度を、通常100ppm
以下という低濃度にまで低減することが望ましいとされ
ている。Therefore, pure hydrogen is preferable as a fuel for a fuel cell using such a platinum-based electrode catalyst.
From a practical point of view, various fuels that are cheap and have excellent storage properties, or have already been equipped with a public supply system [eg, methane or natural gas (LNG), petroleum gas (LPG) such as propane, butane, etc.] , Hydrocarbons such as naphtha, kerosene, and light oil, alcohol-based fuels such as methanol, city gas, and other fuels for hydrogen production] The fuel cell power generation system incorporating such a reforming facility is being widely spread. However, since such reformed gas generally contains a considerable concentration of CO in addition to hydrogen, this CO is converted into CO 2 which is harmless to the platinum-based electrode catalyst, and the CO concentration in the fuel is reduced. There is a strong demand for the development of a technology for reducing this. At that time, the concentration of CO is usually 100 ppm
It is said that it is desirable to reduce the concentration to the low level below.
【0006】上記の問題を解決するために、燃料ガス
(改質ガス等の水素含有ガス)中のCOの濃度を低減さ
せる手段の一つとして、下記の式(1)で表されるシフ
ト反応(水性ガスシフト反応)を利用する技術が提案さ
れている。In order to solve the above problems, as one of means for reducing the concentration of CO in fuel gas (hydrogen-containing gas such as reformed gas), a shift reaction represented by the following formula (1) A technique utilizing (water gas shift reaction) has been proposed.
【0007】 CO + H2O = CO2 + H2 (1) しかしながら、このシフト反応のみによる方法では、化
学平衡上の制約からCO濃度の低減には限界があり、一
般に、CO濃度を1%以下にするのは困難である。CO + H 2 O = CO 2 + H 2 (1) However, in the method based only on this shift reaction, there is a limit to the reduction of the CO concentration due to restrictions on chemical equilibrium, and the CO concentration is generally 1%. It is difficult to
【0008】そこで、CO濃度をより低濃度まで低減す
る手段として、改質ガス中に酸素又は酸素を含むガス
(空気等)を導入(添加)し、触媒を用いて選択的にC
OをCO2に変換する方法(COの選択的酸化除去法)
が提案されているが、この場合改質ガス中には水素が多
量に存在しているため、COを酸化しようとすると水素
も酸化されてしまい、CO濃度が十分に低減できないこ
とがある。Therefore, as a means for reducing the CO concentration to a lower concentration, oxygen or a gas containing oxygen (such as air) is introduced (added) into the reformed gas, and a C is selectively used by using a catalyst.
Method for converting O to CO 2 (CO selective oxidation removal method)
However, in this case, since a large amount of hydrogen is present in the reformed gas, when attempting to oxidize CO, hydrogen is also oxidized, and the CO concentration may not be sufficiently reduced.
【0009】COの選択酸化を行う場合、下記の主、副
の両反応が起こる。 (主反応) CO+1/2O2→CO2+H2 (副反応) H2 +1/2O2→H2O COを選択的に反応させるためには、上記副反応を抑制
しつつ主反応が効率的に進むような反応条件で行う必要
がある。つまり、副反応の反応速度に較べて主反応の反
応速度が著しく速いような温度に制限する必要がある。
しかし、両反応とも著しい発熱反応であるため、断熱反
応器で行うと条件によっては、数百℃もの温度上昇とな
る。したがって、触媒層を選択酸化反応に適した温度に
維持するためには、効果的な冷却が必要である。反応器
の冷却には、冷却管を触媒層内に設置し、冷却媒体(例
えば水)を循環させる方式を用いることもできる。When the selective oxidation of CO is carried out, the following both primary and secondary reactions occur. (Main reaction) CO + 1 / 2O 2 → CO 2 + H 2 (Sub reaction) In order to selectively react H 2 + 1 / 2O 2 → H 2 O CO, the main reaction is efficient while suppressing the above-mentioned side reaction. It is necessary to carry out the reaction under the reaction conditions that proceed to. That is, it is necessary to limit the temperature so that the reaction rate of the main reaction is significantly higher than the reaction rate of the side reaction.
However, since both reactions are extremely exothermic reactions, if the reaction is carried out in an adiabatic reactor, the temperature may increase by several hundreds of degrees Celsius depending on the conditions. Therefore, effective cooling is required to maintain the catalyst layer at a temperature suitable for the selective oxidation reaction. For cooling the reactor, a system in which a cooling pipe is installed in the catalyst layer and a cooling medium (for example, water) is circulated can also be used.
【0010】また、COの選択酸化に関する先行技術と
して、例えば特開平3−276577号公報には、改質
装置と燃料電池の間に酸素導入装置とCO酸化装置を設
置するということが記載されている。しかし、該公報に
は、COの選択的酸化方法、すなわち酸化を実際にどの
ような条件(触媒、反応条件等)で行えばよいのかなど
についての明確な説明はない。As a prior art relating to the selective oxidation of CO, for example, Japanese Patent Laid-Open No. 376577/1990 describes that an oxygen introduction device and a CO oxidation device are installed between a reformer and a fuel cell. There is. However, in this publication, there is no clear explanation about the selective oxidation method of CO, that is, what kind of conditions (catalyst, reaction conditions, etc.) should actually be used for the oxidation.
【0011】また、特開平2−153801号公報に
は、COの酸化除去反応を、Au触媒を用いて、反応温
度200℃以下の条件で行うという技術が記載されてい
る。しかしながら、この従来技術の場合には、触媒活性
が不十分で、また、反応圧等の条件も不適切であるの
で、高いCO転化率を得るには空間速度(SV)を低く
する必要があり、また、CO酸化の選択性も十分でない
ので、水素の酸化を抑制しようとするとCO濃度を十分
に低減することができない。Further, Japanese Patent Application Laid-Open No. 2-153801 discloses a technique in which the oxidation removal reaction of CO is carried out using an Au catalyst at a reaction temperature of 200 ° C. or lower. However, in the case of this conventional technique, the catalyst activity is insufficient and the conditions such as the reaction pressure are also inadequate, so it is necessary to lower the space velocity (SV) in order to obtain a high CO conversion rate. Moreover, since the selectivity of CO oxidation is not sufficient, the CO concentration cannot be sufficiently reduced if hydrogen oxidation is suppressed.
【0012】また、特開平5−201702号公報に
は、COの酸化除去反応をRh、Ruからなる触媒を用
いて、反応温度120℃以下、フィードガスの酸素/C
Oモル比を1より小さくして行うことが記載されている
が、そこには反応温度、反応圧力、酸素/CO比につい
ての記載はあるが、温度制御方法に関する記載はない。Further, in Japanese Unexamined Patent Publication (Kokai) No. 5-201102, a reaction of oxidizing and removing CO is carried out using a catalyst composed of Rh and Ru at a reaction temperature of 120.degree.
It is described that the O molar ratio is smaller than 1, but there is a description about the reaction temperature, the reaction pressure, and the oxygen / CO ratio, but there is no description about the temperature control method.
【0013】[0013]
【発明が解決しようとする課題】本発明の目的は燃料極
(負極)の電極に白金(白金触媒)を用いるタイプのH
2燃焼型燃料電池(リン酸型燃料電池、KOH型燃料電
池、固体高分子電解質型燃料電池をはじめとする低温作
動型燃料電池など)の燃料として用いたときに該白金電
極触媒の被毒及び劣化を抑制して燃料電池の電圧低下を
防止することができ、燃料電池の燃料として有利に利用
することができる水素含有ガスを触媒層の温度分布を最
適条件に制御して効率よく製造する方法を提供すること
にある。The object of the present invention is to provide a fuel electrode.
H type that uses platinum (platinum catalyst) for the (negative electrode) electrode
2Combustion fuel cell (phosphoric acid fuel cell, KOH fuel cell
Low temperature operation including ponds and solid polymer electrolyte fuel cells
When used as fuel for a dynamic fuel cell, etc.
Control the poisoning and deterioration of the electrode catalyst to reduce the voltage of the fuel cell.
Can be prevented and can be used as fuel for fuel cells.
The hydrogen-containing gas can be used to maximize the temperature distribution in the catalyst layer.
To provide a method for efficiently manufacturing by controlling to appropriate conditions.
It is in.
【0014】[0014]
【課題を解決するための手段】本発明者は、前記目的を
達成すべく鋭意研究を重ねた結果、改質ガスと反応させ
る酸素含有ガスの一部を前記触媒層の途中で数回に分割
して混合することにより高いGHSVにおいても効果的
にCOの選択酸化を行うことができることを見出し、こ
れらの知見に基づいて、本発明を完成するに至った。As a result of intensive studies to achieve the above object, the present inventor divided a part of the oxygen-containing gas to be reacted with the reformed gas into several times in the middle of the catalyst layer. It was found that the selective oxidation of CO can be effectively carried out even in high GHSV by mixing them, and the present invention has been completed based on these findings.
【0015】すなわち、本発明は、改質反応によって少
なくとも水素を含有する燃料ガスに転化可能な水素製造
用燃料を改質することによって得られた改質ガスであっ
て、水素を主成分としかつCO2及びCOを含有する改
質ガスと酸素含有ガスとを混合して触媒層を通過させC
Oを選択的に酸化してCO2に転化して燃料電池用の水
素含有ガスを製造する方法において、前記酸素含有ガス
の一部を前記触媒層の途中で数回に分割して改質ガスに
混合することを特徴とする燃料電池用水素含有ガスの製
造方法を提供するものである。That is, the present invention is a reformed gas obtained by reforming a hydrogen-producing fuel that can be converted into a fuel gas containing at least hydrogen by a reforming reaction, the reformed gas containing hydrogen as a main component and A reformed gas containing CO 2 and CO and an oxygen-containing gas are mixed and passed through a catalyst layer to form C
In a method for producing a hydrogen-containing gas for a fuel cell by selectively oxidizing O and converting it to CO 2 , a part of the oxygen-containing gas is divided into several times in the middle of the catalyst layer to obtain a reformed gas. The present invention provides a method for producing a hydrogen-containing gas for a fuel cell, characterized in that
【0016】1.燃料の改質工程 本発明の方法においては、各種の水素製造用燃料の改質
によって得られる改質ガス(水素を主成分としかつCO
を含有する燃料ガス)に含まれるCOを触媒を用いて選
択的に酸化し、CO濃度が十分に低減された所望の水素
含有ガスを製造するが、該改質ガスを得るための改質工
程(改質反応)は、以下に示すように、従来の燃料電池
システムにおいて実施あるいは提案されている方法など
任意の方法によって行うことができる。したがって、予
め改質装置を備えた燃料電池システムにおいては、それ
をそのまま利用して同様にして改質ガスを調製してもよ
い。1. Reforming Step of Fuel In the method of the present invention, a reformed gas (containing hydrogen as a main component and CO
CO contained in the fuel gas containing hydrogen) is selectively oxidized using a catalyst to produce a desired hydrogen-containing gas in which the CO concentration is sufficiently reduced. A reforming step for obtaining the reformed gas The (reforming reaction) can be performed by an arbitrary method such as a method implemented or proposed in a conventional fuel cell system, as shown below. Therefore, in a fuel cell system equipped with a reforming device in advance, the reformed gas may be prepared in the same manner by using it as it is.
【0017】この改質反応の原料として用いる燃料とし
ては、適当な改質反応によって水素を主成分としかつC
Oを含有する燃料ガスに転化可能な各種の種類及び組成
の水素製造用燃料が使用可能であり、具体的には例え
ば、メタン、エタン、プロパン、ブタン等の炭化水素
(単独でも混合物でもよい)、あるいは、天然ガス(L
NG)、石油ガス(LPG)、ナフサ、灯油、軽油、合
成石油等の炭化水素系燃料、メタノール、エタノール、
プロパノール、ブタノール等のアルコール類(単独でも
混合物でよい)、更には、各種の都市ガス、合成ガス、
石炭などを適宜使用することができる。これらのうち、
どのような水素製造用燃料を用いるかは、燃料電池シス
テムの規模や燃料の供給事情などの諸条件を考慮して定
めればよいのであるが、通常は、メタノール、メタン若
しくはLNG、プロパン若しくはLPG、ナフサ若しく
は低級飽和炭化水素、メタンを含有する都市ガスなどが
好適に使用される。The fuel used as a raw material for this reforming reaction contains hydrogen as a main component and C
Various types and compositions of hydrogen-producing fuels that can be converted to a fuel gas containing O can be used, and specifically, for example, hydrocarbons such as methane, ethane, propane, butane (either alone or as a mixture). , Or natural gas (L
NG), petroleum gas (LPG), naphtha, kerosene, light oil, hydrocarbon fuels such as synthetic petroleum, methanol, ethanol,
Alcohols such as propanol and butanol (may be used alone or as a mixture), as well as various city gases, syngas,
Coal or the like can be used as appropriate. Of these,
What kind of fuel for hydrogen production should be used may be determined in consideration of various conditions such as the scale of the fuel cell system and the circumstances of fuel supply, but normally, methanol, methane or LNG, propane or LPG is used. , Naphtha or lower saturated hydrocarbon, city gas containing methane, etc. are preferably used.
【0018】前記改質反応としては、水蒸気改質反応
(スチームリホーミング)が最も一般的であるが、原料
によってはより一般の改質反応(例えば、熱分解等の熱
改質反応、接触分解やシフト反応等の各種接触改質反
応、部分酸化改質など)も適宜適用することができる。
その際、異なる種類の改質反応を適宜組み合わせて利用
してもよい。例えば、水蒸気改質反応は一般に吸熱反応
であるので、この吸熱分を補うべく水蒸気改質反応と部
分酸化を組み合わせもよいし、水蒸気改質反応等によっ
て生成(副生)するCOをシフト反応を利用してH2O
と反応させその一部を予めCO2とH2に転化するなど各
種の組み合わせが可能である。The steam reforming reaction (steam reforming) is the most common reforming reaction, but depending on the raw material, a more general reforming reaction (for example, thermal reforming reaction such as thermal decomposition or catalytic cracking). And various catalytic reforming reactions such as shift reaction, partial oxidation reforming, etc.) can be appropriately applied.
At that time, different types of reforming reactions may be appropriately combined and used. For example, since the steam reforming reaction is generally an endothermic reaction, the steam reforming reaction and partial oxidation may be combined to supplement this endothermic amount, or the CO generated by the steam reforming reaction (by-product) may be subjected to a shift reaction. Use H 2 O
Various combinations are possible, such as reacting with and partially converting it into CO 2 and H 2 in advance.
【0019】こうした改質反応は、一般に、水素の収率
ができるだけ大きくなるように、触媒あるいは反応条件
等を選定するが、COの副生を完全に抑制することは困
難であり、たとえシフト反応を利用しても改質ガス中の
CO濃度の低減には限界がある。In such a reforming reaction, the catalyst or reaction conditions are generally selected so that the yield of hydrogen is as large as possible, but it is difficult to completely suppress the by-product of CO, and even if the shift reaction However, there is a limit to the reduction of CO concentration in the reformed gas.
【0020】実際、メタン等の炭化水素の水蒸気改質反
応については、水素の得率及びCOの副生の抑制のため
に、次の(2)式あるいは(3)式: CH4 + 2H2O → 4H2+ CO2 (2) CnHm+2nH2O →(2n+m/2)H2+nCO2 (3) で表される反応ができるだけ選択性よく起こるように諸
条件を選定するのが好ましい。Actually, in the steam reforming reaction of hydrocarbons such as methane, the following formula (2) or (3): CH 4 + 2H 2 is used in order to obtain the yield of hydrogen and suppress the by-product of CO. O → 4H 2 + CO 2 (2) C n H m + 2nH 2 O → (2n + m / 2) H 2 + nCO 2 (3) The various conditions should be selected so that the reaction is as selective as possible. preferable.
【0021】また、同様に、メタノールの水蒸気改質反
応については、次の(4)式: CH3OH + H2O → 3H2+ CO2 (4) で表される反応ができるだけ選択性よく起こるように諸
条件を選定するのが好ましい。Similarly, for the steam reforming reaction of methanol, the reaction represented by the following formula (4): CH 3 OH + H 2 O → 3H 2 + CO 2 (4) is as selective as possible. It is preferred to choose the conditions to occur.
【0022】更に、COを前記(1)式で表されるシフ
ト反応を利用して変性改質しても、このシフト反応は平
衡反応であるのでかなりの濃度のCOが残存することに
なる。したがって、こうした反応による改質ガス中に
は、多量の水素の他にCO2や未反応の水蒸気等と若干
のCOが含まれることになる。Furthermore, even if CO is modified and reformed by utilizing the shift reaction represented by the above formula (1), since this shift reaction is an equilibrium reaction, a considerable amount of CO remains. Therefore, the reformed gas produced by such a reaction contains CO 2 and unreacted water vapor and a small amount of CO in addition to a large amount of hydrogen.
【0023】前記改質反応に有効な触媒としては、原料
(燃料)の種類や反応の種類あるいは反応条件等に応じ
て多種多様なものが知られており、それらのうちのいく
つかを具体的に例示すると、炭化水素やメタノール等の
水蒸気改質に有効な触媒としては、例えば、Cu−Zn
O系触媒、Cu−Cr2O3系触媒、担持Ni系触媒、C
u−Ni−ZnO系触媒、Cu−Ni−MgO系触媒、
Pd−ZnO系触媒などを挙げることができ、また、炭
化水素類の接触改質反応や部分酸化に有効な触媒として
は、例えば、担持Pt系触媒、担持Ni系触媒などを挙
げることができる。もちろん、本発明の方法において前
記改質反応に使用可能な触媒は、上記例示のものに限定
されるものではなく、原料(燃料)の種類や反応の種類
あるいは反応条件等に応じて適当なものを適宜選定して
用いればよい。すなわち、本発明の方法においても、改
質反応用触媒としては前記例示のものを含めて公知の各
種の水蒸気改質触媒や接触改質触媒等の多種多様な触媒
が適用可能である。Various catalysts are known as effective catalysts for the reforming reaction, depending on the type of raw material (fuel), the type of reaction, the reaction conditions, etc. For example, as a catalyst effective for steam reforming of hydrocarbons and methanol, for example, Cu-Zn
O-based catalyst, Cu-Cr 2 O 3 -based catalyst, supported Ni-based catalyst, C
u-Ni-ZnO-based catalyst, Cu-Ni-MgO-based catalyst,
Examples thereof include Pd-ZnO-based catalysts, and examples of the catalyst effective for catalytic reforming reaction and partial oxidation of hydrocarbons include supported Pt-based catalysts and supported Ni-based catalysts. Of course, the catalyst that can be used in the reforming reaction in the method of the present invention is not limited to the above-exemplified catalysts, and may be any suitable catalyst depending on the type of raw material (fuel), the type of reaction, the reaction conditions, etc. May be appropriately selected and used. That is, also in the method of the present invention, as the reforming reaction catalyst, various known catalysts such as various known steam reforming catalysts and catalytic reforming catalysts including those exemplified above can be applied.
【0024】改質装置としても特に制限はなく、従来の
燃料電池システム等に常用されるものなど任意の形式の
ものが適用可能であるが、水蒸気改質反応や分解反応等
の多くの改質反応は吸熱反応であるので、一般に、熱供
給性のよい反応装置若しくは反応器(熱交換器型の反応
装置など)が好適に使用される。そのような反応装置と
しては、例えば、多管型反応器、プレートフィン型反応
器などがあり、熱供給の方式としては、例えば、バーナ
ー等による加熱、熱媒による方法、部分酸化を利用する
触媒燃焼による加熱などがあるが、これらに限定される
ものではない。The reforming device is not particularly limited, and any type such as a device commonly used in a conventional fuel cell system can be applied, but many reforming processes such as steam reforming reaction and decomposition reaction are possible. Since the reaction is an endothermic reaction, generally, a reaction device or a reactor (heat exchanger type reaction device or the like) having a good heat supply property is preferably used. Examples of such a reaction device include a multi-tube reactor and a plate fin reactor, and examples of the heat supply method include heating by a burner or the like, a method using a heating medium, and a catalyst utilizing partial oxidation. The heating includes, but is not limited to, heating by combustion.
【0025】改質反応の反応条件は、用いる原料、改質
反応、触媒、反応装置の種類あるいは反応方式等の他の
条件によって異なるので適宜定めればよい。いずれにし
ても、原料(燃料)の転化率を十分に(好ましくは10
0%あるいは100%近くまで)大きくし、かつ、水素
の得率ができるだけ大きくなるように諸条件を選定する
のが望ましい。また、必要に応じて、未反応の炭化水素
やアルコール等を分離しリサイクルする方式を採用して
もよい。また、必要に応じて、生成したあるいは未反応
分のCO2や水分等を適宜除去してもよい。The reaction conditions for the reforming reaction differ depending on other conditions such as the raw material used, the reforming reaction, the catalyst, the type of the reaction apparatus, the reaction system, etc., and may be appropriately determined. In any case, the conversion rate of the raw material (fuel) is sufficient (preferably 10%).
It is desirable to select various conditions such that the hydrogen yield rate is as high as possible and the hydrogen yield rate is as high as possible. Further, if necessary, a method of separating unreacted hydrocarbons and alcohols and recycling may be adopted. Further, if necessary, the generated or unreacted CO 2 or water may be appropriately removed.
【0026】このようにして、水素含有量が多く、か
つ、炭化水素やアルコール等の水素以外の燃料成分が十
分に低減された所望の改質ガスを得る。なお、得られる
改質ガス中のCO濃度を、水素1モル対して、通常、
0.02モル以下、好ましくは、0.01モル以下にし
ておくのが好適であり、この改質工程の段階でCO濃度
をこのような比較的低濃度に調整しておくことによって
その後の酸化反応の負担がそれだけ軽くなる。In this way, a desired reformed gas having a high hydrogen content and sufficiently reduced fuel components other than hydrogen, such as hydrocarbons and alcohol, is obtained. The CO concentration in the obtained reformed gas is usually
It is suitable to keep it at 0.02 mol or less, preferably 0.01 mol or less, and the CO concentration is adjusted to such a relatively low concentration at the stage of this reforming process to thereby prevent the subsequent oxidation. The burden of reaction becomes lighter.
【0027】2.COの選択的酸化除去工程 本発明の方法においては、上記のようにして得た改質ガ
スに酸素含有ガスを混合し、その混合ガスを触媒層を通
過させ、改質ガス中のCOを選択的に酸化するが、その
際、酸素含有ガスの一部を触媒層の途中で数回に分割し
て改質ガスに混合することが肝要である。したがって、
触媒層の途中にも酸素含有ガスを混合できるように酸素
含有ガスの流路を設置する。2. CO Selective Oxidation Removal Step In the method of the present invention, the reformed gas obtained as described above is mixed with an oxygen-containing gas, and the mixed gas is passed through a catalyst layer to select CO in the reformed gas. However, it is important to mix a part of the oxygen-containing gas with the reformed gas in the middle of the catalyst layer several times. Therefore,
A flow path for the oxygen-containing gas is installed in the middle of the catalyst layer so that the oxygen-containing gas can be mixed.
【0028】酸素含有ガスを触媒層の直前において全量
混合すると、触媒層の入口部から中間部にかけては、後
半部に比べ酸素濃度が高くなってしまう。酸素濃度が高
い部分では、酸化反応が急激に起こるため、触媒の温度
が上昇し、COばかりでなく水素の燃焼が多く起き、出
口CO濃度を十分低減できないことがある。酸素含有ガ
スを少量づつ、数ケ所に分けCO酸化反応器中の酸化触
媒層の途中に導入することにより、反応器中の酸素濃度
を偏らせることなく、触媒層の温度をCOの選択酸化に
最適な温度に均一に保つことが可能となり、高いGHS
Vを維持しながらCOを選択的に酸化除去することが可
能となる。When the oxygen-containing gas is completely mixed just before the catalyst layer, the oxygen concentration becomes higher from the inlet portion to the middle portion of the catalyst layer than in the latter half portion. In the portion where the oxygen concentration is high, the oxidation reaction rapidly occurs, the temperature of the catalyst rises, and not only CO but also hydrogen is often burned, so that the outlet CO concentration may not be sufficiently reduced. By introducing the oxygen-containing gas into several portions in small portions and introducing it into the oxidation catalyst layer in the CO oxidation reactor, the temperature of the catalyst layer can be selectively oxidized by CO without biasing the oxygen concentration in the reactor. High GHS because it is possible to maintain the optimum temperature evenly.
It becomes possible to selectively oxidize and remove CO while maintaining V.
【0029】前記改質ガスに混合する酸素含有ガスとし
ては、通常、純酸素(O2)、空気あるいは酸素富化空
気が好適に使用される。該酸素含有ガスの混合量は、酸
素/CO(モル比)が好ましくは、0.5〜5、更に好
ましくは1〜3となるように調整するのが適当である。
この比が小さいとCOの除去率が低くなり、大きいと水
素の消費量が多くなり過ぎて好ましくない。As the oxygen-containing gas mixed with the reformed gas, pure oxygen (O 2 ), air or oxygen-enriched air is usually preferably used. The mixing amount of the oxygen-containing gas is preferably adjusted so that oxygen / CO (molar ratio) is preferably 0.5 to 5, more preferably 1 to 3.
If this ratio is small, the CO removal rate will be low, and if it is large, the hydrogen consumption will be too large, which is not preferable.
【0030】選択酸化反応に用いる反応装置としては、
特に制限はなく、触媒層の途中から酸素含有ガスを供給
できるものであれば各種の形式のものが適用可能である
が、この酸化反応は発熱反応であるので温度制御を容易
にするために反応熱の除去性のよい反応装置若しくは反
応器を用いることが望ましい。具体的には例えば、多管
型、あるいは、プレートフィン型等の熱交換型の反応器
が好適に使用される。途中から供給される、酸素含有ガ
スは、例えば管状の反応器の内部に充填された触媒層に
管中央部から、あるいは、管の途中の数ケ所から供給す
ることが好ましい。途中から供給される酸素含有ガスの
量は酸素含有ガスの全量に対して20〜80%とするこ
とが好ましい。As a reactor used for the selective oxidation reaction,
There is no particular limitation, and various types can be applied as long as the oxygen-containing gas can be supplied from the middle of the catalyst layer.However, since this oxidation reaction is an exothermic reaction, the reaction is performed to facilitate temperature control. It is desirable to use a reaction device or a reactor having a good heat removal property. Specifically, for example, a multi-tube type or a plate fin type heat exchange type reactor is preferably used. The oxygen-containing gas, which is supplied from the middle, is preferably supplied to the catalyst layer filled in the tubular reactor, for example, from the center of the tube or from several points in the middle of the tube. The amount of the oxygen-containing gas supplied from the middle is preferably 20 to 80% with respect to the total amount of the oxygen-containing gas.
【0031】次に、本発明の方法において用いる触媒と
しては、特に限定はなく、好ましくはPt、Au、Rh
及びRuから選ばれる少なくとも1種の金属を含有する
触媒が好適に用いられる。これらの中で特に金含有触媒
が好適に用いられる。この金含有触媒としては、金と適
当な金属酸化物からなるものが好適に使用され、このも
のは、金と金属酸化物の混合物、あるいは、適当な金属
酸化物に金を固定化若しくは担持したもの(以下、この
形態のものを金固定化金属酸化物と呼び、この金の固定
化若しくは担持に用いる金属酸化物を金固定化用金属酸
化物と呼ぶ。)、更には、金と金属酸化物の混合物及び
/又は前記金固定化金属酸化物を更に別の担体に担持し
たものなど各種の形態の触媒として使用することができ
る。The catalyst used in the method of the present invention is not particularly limited and is preferably Pt, Au or Rh.
A catalyst containing at least one metal selected from Ru and Ru is preferably used. Among these, a gold-containing catalyst is preferably used. As this gold-containing catalyst, a catalyst composed of gold and a suitable metal oxide is preferably used, and this catalyst is a mixture of gold and a metal oxide, or gold is immobilized or supported on a suitable metal oxide. (Hereinafter, this form is referred to as a gold-immobilized metal oxide, the metal oxide used for immobilizing or supporting the gold is referred to as a gold-immobilizing metal oxide), and further, gold and a metal oxide. It can be used as a catalyst in various forms such as a mixture of products and / or the gold-immobilized metal oxide supported on another carrier.
【0032】こうした金含有触媒における金は、超微粒
子状(高分散状態)であることが好ましく、特に、その
粒径が10nm以下の状態、更には、粒径が1〜5nm
の状態で担持(固定化)あるいは含有されていることが
好ましい。ここで、粒径が10nmを超えるような大き
な金粒子は一般に所定の酸化反応に対して十分な触媒活
性を示さないので、そのような大きな金粒子のみを含有
するものは触媒活性が不十分となるし、そのような大き
な金粒子を多く含有する触媒は例え触媒活性を満足した
としても高価な金が無駄になり触媒コストが大きくな
る。The gold in such a gold-containing catalyst is preferably in the form of ultrafine particles (highly dispersed state), and particularly, the particle size is 10 nm or less, and further, the particle size is 1 to 5 nm.
It is preferable that they are carried (immobilized) or contained in the above state. Here, since large gold particles having a particle size of more than 10 nm generally do not show sufficient catalytic activity for a predetermined oxidation reaction, those containing only such large gold particles have insufficient catalytic activity. However, even if the catalyst containing a large amount of such large gold particles satisfies the catalytic activity, expensive gold is wasted and the catalyst cost increases.
【0033】前記金固定化用金属酸化物あるいは金(超
微粒子等)との混合物若しくは組成物として用いる前記
金属酸化物としては、前記所定の反応条件においてそれ
自体では水素の酸化に不活性であるかあるいは活性をも
っていてもあまり極端な活性を示さないものが好適に使
用され、具体的には例えば、酸化鉄、酸化マンガン、酸
化コバルト、酸化亜鉛、酸化ニッケル、酸化マグネシウ
ム、水酸化マグネシウム、酸化スズ、酸化チタン、酸化
アルミニウム、酸化ベリリウム、酸化ジルコニウム、酸
化ケイ素、酸化ランタン等の単一金属の酸化物、あるい
は、鉄、マンガン、コバルト、亜鉛、ニッケル、マグネ
シウム、スズ、チタン、アルミニウム、ベリリウム、ジ
ルコニウム、ケイ素、ランタン等の金属元素2種以上か
らなる複合酸化物などを挙げることができる。また、こ
れら単一金属の酸化物及び複合酸化物は、必要に応じ
て、混合したり複合物として用いてもよい。The metal oxide for immobilizing gold or the metal oxide used as a mixture or composition with gold (ultrafine particles or the like) is itself inert to hydrogen oxidation under the above-mentioned predetermined reaction conditions. Or, those having an activity but exhibiting no extreme activity are preferably used, and specific examples thereof include iron oxide, manganese oxide, cobalt oxide, zinc oxide, nickel oxide, magnesium oxide, magnesium hydroxide, and tin oxide. , Oxides of single metals such as titanium oxide, aluminum oxide, beryllium oxide, zirconium oxide, silicon oxide, lanthanum oxide, or iron, manganese, cobalt, zinc, nickel, magnesium, tin, titanium, aluminum, beryllium, zirconium Oxides consisting of two or more metal elements such as nickel, silicon and lanthanum Etc. can be mentioned. Further, these single metal oxides and complex oxides may be mixed or used as a complex, if necessary.
【0034】本発明においては、前記各種の形態の金含
有触媒の中でも、前記したような金固定化金属酸化物か
らなる触媒(すなわち、金固定化金属酸化物触媒あるい
はこれを更に後述する他の適当な担体若しくは支持体に
担持した触媒)が好適に使用される。なぜなら、金を金
属酸化物上に固定化(担持)したものは、金と金属酸化
物を混合して調製したものと比較して、金を金属酸化物
表面に超微粒子状に分散性よく担持しやすく、金の有効
表面積が大きくなるし、また、金粒子と金属酸化物との
接触面積も大きくなるので、優れた触媒性能を発揮する
からである。In the present invention, among the various types of gold-containing catalysts described above, a catalyst comprising a gold-immobilized metal oxide as described above (that is, a gold-immobilized metal oxide catalyst or other catalysts which will be described later). A catalyst supported on a suitable carrier or support is preferably used. This is because gold immobilized on metal oxide (supported) is supported on the metal oxide surface in ultrafine particle form with good dispersibility as compared to that prepared by mixing gold and metal oxide. This is because it is easy to carry out, the effective surface area of gold becomes large, and the contact area between the gold particles and the metal oxide also becomes large, so that excellent catalytic performance is exhibited.
【0035】このような金固定化金属酸化物触媒の調製
法若しくは金を金属酸化物上に超微粒子状に固定化する
手法としては、各種の方法が知られており、具体的には
例えば、(1)共沈法(特公平3−12934号公報に
記載の方法等)、(2)均一析出沈殿法(特開昭62−
155937号公報に記載の方法等)、(3)滴下中和
沈殿法(特開昭63−252908号公報に記載の方法
等)、(4)pH制御中和性沈殿法(特開昭63−25
2908号公報に記載の方法等)、(5)カルボン酸金
属塩添加法(特開平2−252610号公報に記載の方
法等)、(6)還元剤添加法(特開昭63−25290
8号公報に記載の方法等)、(7)析出沈殿法(特開平
3−97623号公報に記載の方法等)、(8)含浸法
などがある。Various methods are known as a method for preparing such a gold-immobilized metal oxide catalyst or a method for immobilizing gold in the form of ultrafine particles on a metal oxide. Specifically, for example, (1) Coprecipitation method (method described in Japanese Patent Publication No. 12934/1993), (2) Uniform precipitation method (JP-A-62-1
No. 155937), (3) drop neutralization precipitation method (method described in JP-A-63-252908), (4) pH control neutralization precipitation method (JP-A-63- 25
2908), (5) carboxylic acid metal salt addition method (such as the method described in JP-A-2-252610), and (6) reducing agent addition method (JP-A-63-25290).
8), (7) precipitation-precipitation method (method described in JP-A-3-97623, etc.), and (8) impregnation method.
【0036】本発明の方法において前記酸化反応に用い
る前記各種の金固定化金属酸化物からなる触媒は、これ
らの公知の方法を含め多種多様な方法によって好適に調
製することができる。すなわち、前記各種の金固定化金
属酸化物は、予め、金固定化用金属酸化物を調製若しく
は用意し、この金属酸化物(触媒担体)に、所定の金化
合物(例えば、塩化金酸等)を金原料として用いて、金
超微粒子を固定化(担持)する方式、あるいは、所定の
金化合物と所定の金固定化用金属酸化物の原料となる適
当な金属化合物を調製原料として用いて共沈法等によっ
て金超微粒子が固定化(担持含有)された金属酸化物を
得る方式、あるいはこれらの組み合わせによる方式の様
々な方法によって調製することができる。The catalyst composed of the various kinds of gold-immobilized metal oxides used in the oxidation reaction in the method of the present invention can be suitably prepared by various methods including these known methods. That is, for the various types of gold-immobilized metal oxides, a metal oxide for gold immobilization is prepared or prepared in advance, and a predetermined gold compound (eg, chloroauric acid) is added to the metal oxide (catalyst carrier). Is used as a gold raw material to immobilize (carry) ultrafine gold particles, or a predetermined gold compound and an appropriate metal compound that is a raw material of a predetermined metal oxide for immobilizing gold are used as preparation raw materials. It can be prepared by various methods such as a method of obtaining a metal oxide in which ultrafine gold particles are immobilized (supported) by a precipitation method, or a method of a combination thereof.
【0037】なお、触媒調製原料として用いる金原料
は、通常、塩化金酸が最も広く用いらるが、これに限定
されるものではなく、場合に応じて、塩化金等のハロゲ
ン化金、酸化金、水酸化金、シアン化金錯体等の各種の
金化合物や金コロイド等が適宜使用される。また、前記
金固定化用金属酸化物の原料としては、例えば、硝酸
塩、硫酸塩、塩化物、酢酸塩等の所定の金属の各種化合
物を使用することができる。これらの調製原料は、調製
方式等に応じて適宜選定される。Chloroauric acid is usually most widely used as the gold raw material used as the catalyst preparation raw material, but the gold raw material is not limited to this, and depending on the case, gold halide such as gold chloride or oxidation may be used. Various gold compounds such as gold, gold hydroxide and gold cyanide complex, gold colloid and the like are appropriately used. As a raw material of the metal oxide for immobilizing gold, for example, various compounds of a predetermined metal such as nitrate, sulfate, chloride and acetate can be used. These preparation raw materials are appropriately selected according to the preparation method and the like.
【0038】前記触媒調製の際に使用する金固定化用金
属酸化物(触媒担体)の形状としては、特に制限はな
く、例えば、粉末状、ゲル状、ゾル状等の特定の形状に
成形していないものやあるいはビーズ状、ペレット状、
顆粒状など予め所望の形状に成形したものなど各種の形
状若しくは形態のものとして使用することができる。The shape of the metal oxide for fixing gold (catalyst carrier) used in the preparation of the catalyst is not particularly limited, and for example, it can be formed into a specific shape such as powder, gel or sol. Or not, or beads, pellets,
It can be used in various shapes or forms such as granules or the like which are molded in a desired shape in advance.
【0039】なお、上記の触媒調製においては、上記共
沈法等によって析出させた金固定化金属酸化物(沈殿物
等)や金固定化用金属酸化物担体に担持固定化して得た
金固定化金属酸化物(担持物等)に対して、通常、洗
浄、乾燥、焼成等の後処理を施し、また、必要に応じて
適宜成形し、所望の形状の触媒を得るが、こうした、洗
浄、乾燥、焼成等の後処理は、公知の方法等の常法に従
って行うことができる。その際の焼成温度は、通常、2
00〜600℃程度、好ましくは、300〜400℃の
範囲に選定するのが適当である。In the preparation of the above catalyst, the gold-immobilized metal oxide (precipitate or the like) deposited by the coprecipitation method or the gold-immobilized metal oxide carrier immobilized on the gold-immobilized metal oxide carrier is immobilized. The metal oxide (supported material, etc.) is usually subjected to post-treatments such as washing, drying, and calcination, and if necessary, appropriately shaped to obtain a catalyst in a desired shape. Post-treatments such as drying and calcination can be performed according to a conventional method such as a known method. The firing temperature at that time is usually 2
It is suitable to select in the range of about 00 to 600 ° C, preferably 300 to 400 ° C.
【0040】こうして得られた金固定化金属酸化物触媒
等の金含有触媒における金の含有量は、金と金属酸化物
(金固定化用金属酸化物)の合計量に対して、通常、
0.1〜30重量%、好ましくは、0.3〜1.0重量
%の範囲に選定するのが適当である。この金の含有量が
あまり少ないと、COの酸化活性が不十分となり、一
方、あまり高担持率にすると金の使用量が必要以上に過
剰になり触媒コストが大きくなるし、また、金が凝集し
やすくなって超微粒子状に安定に固定化しにくくなると
いったの支障を生じることがある。The content of gold in the gold-containing catalyst such as the gold-immobilized metal oxide catalyst thus obtained is usually, based on the total amount of gold and metal oxide (metal oxide for gold immobilization).
It is suitable to select in the range of 0.1 to 30% by weight, preferably 0.3 to 1.0% by weight. If the content of gold is too small, the oxidation activity of CO will be insufficient. On the other hand, if the supporting rate is too high, the amount of gold used will be unnecessarily excessive and the catalyst cost will increase. It may be difficult to stably fix it in the form of ultrafine particles, which may cause problems.
【0041】以上のようにして、所望の各種の金固定化
用金属酸化物を好適に得ることができる。こうして得た
触媒は、本発明における前記酸化反応用触媒として好適
に使用することができるが、前記したように、この金固
定化金属酸化物を必要に応じて更に別の適当な担体(若
しくは支持体)に担持して用いてもよい。より実用的な
点からは、このように金固定化金属酸化物を適当な形状
を有し、かつ構造安定化性に優れた担体や支持体に担持
して用いる方式が広く利用される。As described above, various desired metal oxides for immobilizing gold can be suitably obtained. The catalyst thus obtained can be preferably used as the catalyst for the oxidation reaction in the present invention, but as described above, this gold-immobilized metal oxide may be further used in another suitable carrier (or support), if necessary. It may be used by supporting it on the body. From a more practical point of view, a method in which the gold-immobilized metal oxide is supported on a carrier or support having an appropriate shape and excellent structural stability is widely used.
【0042】そのような担体(若しくは支持体)として
は、多種多様な金属酸化物系担体や金属系担体、あるい
はそれらの複合体が好適に利用される。該金属酸化物系
担体の材質としては、例えば、アルミナ、シリカ、チタ
ニア、シリカアルミナ、シリカマグネシア、アルミナチ
タニア、コーディエライト、ムライト、ゼオライト等の
単独酸化物系のものあるいは複合酸化物系のものを例示
することができる。また、金属系担体としては、例え
ば、ステンレススチール、鉄、鉛、銅、アルミニウム系
の単独金属系のものや合金系のものを例示することがで
きる。これらの担体(若しくは支持体)形状及びサイズ
としては、特に制限はなく、例えば、粉末状、球状、粒
状、ハニカム状、発泡体状、繊維状、布状、板状、リン
グ状など、一般に使用するされている各種の形状及び構
造のものが利用可能である。As such a carrier (or support), a wide variety of metal oxide carriers, metal carriers, or composites thereof are preferably used. Examples of the material of the metal oxide-based carrier include a single oxide-based material or a composite oxide-based material such as alumina, silica, titania, silica alumina, silica magnesia, alumina titania, cordierite, mullite, or zeolite. Can be illustrated. Examples of the metal-based carrier include stainless steel, iron, lead, copper, and aluminum-based single metal-based carriers and alloy-based carriers. The shape and size of these carriers (or supports) are not particularly limited, and for example, generally used such as powder, sphere, granule, honeycomb, foam, fiber, cloth, plate and ring. Various shapes and structures are available.
【0043】なお、こうした担体や支持体に担持された
金固定化金属酸化物触媒は、各種の方法によって得るこ
とができ、例えば、上記の触媒調製の際に、金固定化用
金属酸化物を予め別の適当な担体に担持したものを担体
として用いて得ることもできるし、あるいは、前もって
調製した金固定化金属酸化物あるいは調製段階にあるそ
の前駆体を前記所定の担体若しくは支持体に、例えば、
沈着法、ウオッシュコート法、スプレーコート法等の種
々の担持方式によって担持することによっても好適に得
ることができる。The gold-immobilized metal oxide catalyst supported on such a carrier or support can be obtained by various methods. For example, a gold-immobilized metal oxide is prepared in the above-mentioned catalyst preparation. It may be obtained by previously supporting it on another suitable carrier as a carrier, or alternatively, a gold-immobilized metal oxide prepared in advance or its precursor in the preparation stage may be used as the predetermined carrier or support. For example,
It can also be suitably obtained by carrying it by various carrying methods such as a deposition method, a wash coat method and a spray coat method.
【0044】反応圧力は、通常、常圧〜10kg/cm
2Gの圧力範囲で行う。反応圧をあまり高く設定しよう
とすると、昇圧のための動力をその分大きくする必要が
あるので経済的に不利になるし、特に、10kg/cm
2Gを超えると高圧ガス取締法の規制を受けるし、ま
た、爆発限界が広がるので安全性が低下するという問題
も生じる。The reaction pressure is usually atmospheric pressure to 10 kg / cm.
Perform within 2 G pressure range. If the reaction pressure is set too high, it is economically disadvantageous because the power for increasing the pressure needs to be increased by that amount, and especially 10 kg / cm
If it exceeds 2 G, it will be subject to the regulations of the High Pressure Gas Control Law, and the explosion limit will be widened, which will cause a problem of reduced safety.
【0045】前記酸化反応は、通常、GHSV(供給ガ
スの標準状態における供給体積速度及び使用する酸化触
媒層の見かけの体積基準の空間速度)を1000〜50
000h-1の範囲に選定して行うのが好適である。ここ
で、GHSVを小さくすると装置が大きくなり、一方、
GHSVをあまり大きくするとCOの除去率が低下する
ことがある。In the oxidation reaction, GHSV (supply volume velocity in standard state of supply gas and apparent volume-based space velocity of oxidation catalyst layer to be used) is usually 1000 to 50.
It is preferable to select it in the range of 000 h -1 . Here, decreasing GHSV increases the size of the device, while
If GHSV is too large, the CO removal rate may decrease.
【0046】また、前記酸化反応は、通常、0〜200
℃、好ましくは、50〜90℃の温度で好適に行うこと
ができる。この反応温度が0℃未満では反応速度が遅く
なるので実用的なSV(空間速度)の範囲ではCOの除
去率(転化率)が不十分となりやすい。一方、反応温度
が200℃を超えるとCO酸化の選択性が不十分とな
り、水素が優先的に酸化されやすくなりCOの除去率が
低下するなどの支障を生じやすい。The oxidation reaction is usually 0 to 200.
It can be suitably carried out at a temperature of 50 ° C, preferably 50 to 90 ° C. If the reaction temperature is lower than 0 ° C., the reaction rate becomes slow, so that the CO removal rate (conversion rate) tends to be insufficient in a practical SV (space velocity) range. On the other hand, if the reaction temperature exceeds 200 ° C., the selectivity of CO oxidation becomes insufficient, hydrogen is apt to be preferentially oxidized, and the CO removal rate is lowered, which is likely to cause problems.
【0047】前記酸化反応は、通常、GHSV(供給ガ
スの標準状態における供給体積速度及び使用する酸化触
媒層の見かけの体積基準の空間速度)を1000〜50
000h-1の範囲に選定して行うのが好適である。ここ
で、GHSVを小さくすると装置が大きくなり、一方、
GHSVをあまり大きくするとCOの除去率が低下する
ことがある。In the oxidation reaction, GHSV (the supply volume velocity in the standard state of the supply gas and the apparent space-based space velocity of the oxidation catalyst layer used) is usually 1000 to 50.
It is preferable to select it in the range of 000 h -1 . Here, decreasing GHSV increases the size of the device, while
If GHSV is too large, the CO removal rate may decrease.
【0048】こうして本発明の方法によって製造された
水素含有ガスは、上記したようにCO濃度が十分に低
く、燃料電池の白金電極触媒の被毒及び劣化を十分に低
減することができ、その寿命及び発電効率・発電性能を
大幅に向上することができる。As described above, the hydrogen-containing gas produced by the method of the present invention has a sufficiently low CO concentration, and can sufficiently reduce the poisoning and deterioration of the platinum electrode catalyst of the fuel cell, and its life. Also, the power generation efficiency and power generation performance can be significantly improved.
【0049】本発明により得られた水素含有ガスは、各
種のH2燃焼型燃料電池の燃料として好適に使用するこ
とができ、特に、少なくとも燃料極(負極)の電極に白
金(白金触媒)を用いるタイプの各種のH2燃焼型燃料
電池(リン酸型燃料電池、KOH型燃料電池、固体高分
子電解質型燃料電池をはじめとする低温作動型燃料電池
など)への供給燃料として有利に利用することができ
る。The hydrogen-containing gas obtained by the present invention can be suitably used as a fuel for various H 2 combustion type fuel cells, and in particular, platinum (platinum catalyst) is used at least for the electrode of the fuel electrode (negative electrode). It is advantageously used as a fuel supply to various types of H 2 combustion fuel cells of the type used (phosphoric acid fuel cells, KOH fuel cells, low-temperature fuel cells such as solid polymer electrolyte fuel cells). be able to.
【0050】なお、従来の燃料電池システムの改質装置
(改質装置の後に変性装置がある場合、その変性装置も
改質装置の一部とみなしている)と燃料電池の間に、本
発明の方法に従った装置を組み込むことによって、従来
よりもずっと優れた燃料電池システムを構成することが
可能となる。It should be noted that the present invention is provided between the reformer of the conventional fuel cell system (when the reformer is followed by the modifier, the modifier is also regarded as a part of the reformer) and the fuel cell. By incorporating the device according to the method of 1), it becomes possible to construct a fuel cell system far superior to the conventional one.
【0051】[0051]
【実施例】以下に、本発明の実施例を示し、本発明をよ
り具体的に説明するが、本発明はこの実施例に限定され
るものではない。EXAMPLES The present invention will now be described more specifically by showing examples of the present invention, but the present invention is not limited to these examples.
【0052】実施例1 粒径3mmのアルミナペレット100gを硝酸第二鉄
0.5M水溶液で含浸したものを400℃で5時間焼成
して得たFe2O3担持アルミナを塩化金酸を1.1gと
かしたpH10の炭酸カリウム水溶液300mlに浸漬
した。この水溶液にホルマリン3.7%水溶液20ml
を50分間で徐々に滴下した。得られたペレットを水
洗、真空乾燥後、空気中で400℃で焼成して金含有触
媒(Au/Fe2O3触媒)を得た。焼成後の触媒中の金
含有量は0.5重量%であり、これは触媒1リットル当
たり4gに相当した。Example 1 Fe 2 O 3 -supported alumina obtained by impregnating 100 g of alumina pellets having a particle diameter of 3 mm with a 0.5 M ferric nitrate aqueous solution at 400 ° C. for 5 hours was treated with chloroauric acid. It was immersed in 300 ml of an aqueous potassium carbonate solution having a pH of 10 such as 1 g. 20 ml of 3.7% formalin aqueous solution
Was gradually added dropwise over 50 minutes. The obtained pellets were washed with water, dried under vacuum, and calcined in air at 400 ° C. to obtain a gold-containing catalyst (Au / Fe 2 O 3 catalyst). The gold content in the catalyst after calcination was 0.5% by weight, which corresponded to 4 g per liter of catalyst.
【0053】上記で得た金含有触媒(触媒A)16〜3
2メッシュに粉砕したもの1ccを管型反応器に充填
し、長さ約3.5cmの触媒層を形成した。この触媒層
を水素含有ガス(水素:74体積%、CO:1体積%、
CO2:25体積%)と空気を通過させた。空気は全供
給量がO2/COモル比=2となるように供給し、改質
ガスが触媒に接触する前にO2/COモル比=1となる
量の空気を改質ガスに混合し、さらに触媒層の中央部か
ら残りの空気を混合した。反応条件は、GHSV:16
000h-1、反応圧力:3.5kg/cm2G、反応温
度:55℃で行った。反応の結果、高いGHSVにおい
ても、反応器出口のCO濃度を2〜9ppmまで低減で
きた。図1に触媒層内の温度分布を示す。Gold-containing catalyst (catalyst A) 16 to 3 obtained above
1 cc of pulverized to 2 mesh was filled in a tubular reactor to form a catalyst layer having a length of about 3.5 cm. This catalyst layer was filled with hydrogen-containing gas (hydrogen: 74% by volume, CO: 1% by volume,
CO 2 : 25% by volume) and air were passed through. Air is supplied so that the total supply amount becomes O 2 / CO molar ratio = 2, and the reformed gas is mixed with an amount of air so that O 2 / CO molar ratio = 1 before the reformed gas contacts the catalyst. Then, the remaining air was mixed from the central portion of the catalyst layer. The reaction conditions are GHSV: 16
The reaction was carried out at 000 h -1 , reaction pressure: 3.5 kg / cm 2 G, reaction temperature: 55 ° C. As a result of the reaction, the CO concentration at the reactor outlet could be reduced to 2 to 9 ppm even at high GHSV. FIG. 1 shows the temperature distribution in the catalyst layer.
【0054】比較例1 空気の供給量は実施例1と同様で、反応器入口部で改質
ガスに全量を混合した他は実施例と同一の条件でCO酸
化反応を行った。その結果、反応器出口部のCO濃度は
100ppmまでしか低減できなかった。図1に触媒層
内の温度分布を示す。Comparative Example 1 The same amount of air was supplied as in Example 1, and the CO oxidation reaction was carried out under the same conditions as in Example except that the reforming gas was mixed at the inlet of the reactor. As a result, the CO concentration at the outlet of the reactor could only be reduced to 100 ppm. FIG. 1 shows the temperature distribution in the catalyst layer.
【0055】図1からわかるように、比較例1ではGH
SVが高いため、触媒層の温度が設定温度の55℃より
もかなり高くなっており、そのためにCO酸化の選択率
が低下したものと考えられる。実施例1では同じ条件で
も温度の上昇の程度が小さく、そのためCO酸化の選択
率が高く維持できるものと考えられる。As can be seen from FIG. 1, in Comparative Example 1, GH
Since the SV is high, the temperature of the catalyst layer is considerably higher than the set temperature of 55 ° C., and it is considered that the selectivity of CO oxidation is lowered accordingly. In Example 1, it is considered that the temperature rise is small even under the same conditions, and therefore the selectivity of CO oxidation can be kept high.
【0056】実施例2 反応管の直径が1インチ、外側の冷却チャンバーの直径
が4インチの二重管型反応管を製作した(図2参照)。
触媒A(3mm球状)を粉砕せずにそのまま150cc
充填し、長さ約25cmの触媒層を形成した。この反応
器を二機作製し、二機とも同様に触媒を充填した後、直
列に接続した。その後、水素含有ガス(水素:74体積
%、CO:1体積%、CO2:25体積%)と空気を通
過させた。空気は全供給量がO2/COモル比=2とな
るように供給し、水素含有ガスが触媒と接触する前にO
2/COモル比=1となる量を混合し、残りの空気は二
段目の反応器の直前に混合した。供給ガスの量は、反応
器二段分の触媒量に対してトータルのガスのGHSVが
2500h-1となるように供給した。反応圧力は常圧
で、供給ガスは一段目の触媒層の入り口でガス温度が7
0℃になるように電気ヒータで予熱した。反応管外側の
冷却チャンバーには冷却用の水道水(約15℃)を2リ
ットル/分で流通させた。Example 2 A double-tube type reaction tube having a reaction tube diameter of 1 inch and an outer cooling chamber diameter of 4 inches was produced (see FIG. 2).
150cc as it is without crushing catalyst A (3mm spherical)
It filled and formed the catalyst layer of about 25 cm in length. Two reactors were produced, both were similarly charged with a catalyst, and then connected in series. Then, a hydrogen-containing gas (hydrogen: 74% by volume, CO: 1% by volume, CO 2 : 25% by volume) and air were passed. Air is supplied so that the total supply amount becomes O 2 / CO molar ratio = 2, and O is supplied before the hydrogen-containing gas comes into contact with the catalyst.
The 2 / CO molar ratio = 1 was mixed, and the remaining air was mixed just before the second stage reactor. The amount of supply gas was such that the total gas GHSV was 2500 h −1 with respect to the catalyst amount for the two stages of the reactor. The reaction pressure is normal pressure, and the supply gas is at a gas temperature of 7 at the entrance of the first catalyst layer.
It was preheated with an electric heater so as to reach 0 ° C. Tap water (about 15 ° C.) for cooling was circulated at 2 liter / min in the cooling chamber outside the reaction tube.
【0057】反応の結果、一段目の触媒層の最高温度は
120℃、二段目の触媒層の最高温度は100℃に抑え
られ、一段目の出口でCO濃度は1500ppm、二段
目の出口でCO濃度は10ppmまで低減できた。As a result of the reaction, the maximum temperature of the first-stage catalyst layer was suppressed to 120 ° C., the maximum temperature of the second-stage catalyst layer was suppressed to 100 ° C., the CO concentration was 1500 ppm at the first-stage outlet, and the second-stage outlet was The CO concentration could be reduced to 10 ppm.
【0058】実施例3 反応器や触媒量は実施例2と同様で、導入する空気の全
供給量をO2/COモル比=1.5とし、水素含有ガス
が触媒と接触する前にO2/COモル比=1となる量を
混合し、残りの空気を二段目の反応器の直前に混合し
た。Example 3 The reactor and the amount of catalyst were the same as in Example 2, the total supply amount of air to be introduced was O 2 / CO molar ratio = 1.5, and O was added before the hydrogen-containing gas contacted the catalyst. The 2 / CO molar ratio = 1 was mixed, and the remaining air was mixed just before the second reactor.
【0059】その結果一段目の最高温度と出口CO濃度
は実施例2と同様であったが、二段目の最高温度は50
℃に抑えられ、二段目出口のCO濃度は25ppmであ
った 比較例2 実施例2で使用した反応器1機に触媒Aを粉砕せずに3
00cc充填し、長さ50cmの触媒層を形成した。そ
の後、水素含有ガス(水素:74体積%、CO:1体積
%、CO2:25体積%)と空気を通過させた。空気は
供給量がO2/COモル比=2となるように、水素含有
ガスが触媒と接触する前に全量を混合した。供給ガスの
量は、実施例2と同様に、触媒量に対してトータルのガ
スのGHSVが2500h-1となるように供給した。そ
の他の条件も実施例2と同様である。As a result, the maximum temperature of the first stage and the CO concentration at the outlet were the same as in Example 2, but the maximum temperature of the second stage was 50.
The temperature was suppressed to 0 ° C., and the CO concentration at the outlet of the second stage was 25 ppm. Comparative Example 2 The catalyst A was crushed in one reactor used in Example 2 in 3 units.
The catalyst layer was filled with 00 cc to form a catalyst layer having a length of 50 cm. Then, a hydrogen-containing gas (hydrogen: 74% by volume, CO: 1% by volume, CO 2 : 25% by volume) and air were passed. All of the air was mixed before the hydrogen-containing gas came into contact with the catalyst so that the supply amount was O 2 / CO molar ratio = 2. The amount of supply gas was the same as in Example 2 such that the total gas GHSV was 2500 h −1 with respect to the catalyst amount. Other conditions are the same as those in the second embodiment.
【0060】その結果、触媒層の入り口付近で触媒温度
の急上昇が起こり、最高温度は230℃に達した。触媒
温度の上昇によりCOに対する選択性が低下したため、
出口CO濃度は2000ppmとなった。As a result, the catalyst temperature rapidly increased near the entrance of the catalyst layer, and the maximum temperature reached 230 ° C. As the catalyst temperature increased, the selectivity for CO decreased,
The CO concentration at the outlet was 2000 ppm.
【0061】実施例2と比較例2の比較からわかるよう
に、供給空気を2回に分割して導入することにより、触
媒層の局部的発熱を抑えることができる。その結果同じ
触媒量で、比較例2では出口CO濃度は2000ppm
と高いのに対し、実施例2では出口CO濃度は10pp
mと効果的に低減できることがわかる。As can be seen from the comparison between Example 2 and Comparative Example 2, by introducing the feed air by dividing it into two portions, it is possible to suppress the local heat generation of the catalyst layer. As a result, with the same catalyst amount, the CO concentration at the outlet was 2000 ppm in Comparative Example 2.
In contrast, in Example 2, the outlet CO concentration is 10 pp.
It can be seen that m can be effectively reduced.
【0062】また実施例3より、二段目以降の段では、
空気の導入量を低減させてもCOはかなり低減できるこ
とがわかる。このように数回に分割して空気を導入する
ことにより、トータルの空気供給量を低減させ、燃料電
池の燃料となる水素の無駄な消費を抑え、システムの効
率を向上させることができる。From the third embodiment, in the second and subsequent stages,
It can be seen that CO can be considerably reduced even if the amount of air introduced is reduced. By thus introducing the air by dividing it into several times, it is possible to reduce the total air supply amount, suppress wasteful consumption of hydrogen serving as the fuel of the fuel cell, and improve the efficiency of the system.
【0063】[0063]
【発明の効果】本発明によれば燃料極(負極)の電極に
白金(白金触媒)を用いるタイプのH 2燃焼型燃料電池
(リン酸型燃料電池、KOH型燃料電池、固体高分子電
解質型燃料電池をはじめとする低温作動型燃料電池な
ど)の燃料として用いたときに該白金電極触媒の被毒及
び劣化を抑制して燃料電池の電圧低下を防止することが
でき、燃料電池の燃料として有利に利用することができ
る水素含有ガスを触媒層の温度分布を最適条件に制御し
て効率よく製造することができる。According to the present invention, the fuel electrode (negative electrode) is used as an electrode.
Type H using platinum (platinum catalyst) 2Combustion fuel cell
(Phosphoric acid fuel cell, KOH fuel cell, polymer electrolyte
Low temperature operating fuel cells such as degradable fuel cells
Poisoning of the platinum electrocatalyst when used as fuel
And deterioration can be prevented to prevent a fuel cell voltage drop.
Can be advantageously used as fuel for fuel cells
The hydrogen-containing gas is controlled to optimize the temperature distribution in the catalyst layer.
Can be manufactured efficiently.
【0064】すなわち、本発明の方法によれば、触媒層
の温度分布をCOの選択酸化に最適な条件に制御できる
ため、高いGHSVにおいても効果的にCOの選択酸化
を行うことができ、CO酸化反応器を小さくすることが
でき、燃料電池システムの小型化を図ることができる。That is, according to the method of the present invention, the temperature distribution of the catalyst layer can be controlled to the optimum conditions for the selective oxidation of CO, so that the selective oxidation of CO can be performed effectively even at high GHSV. The oxidation reactor can be downsized, and the fuel cell system can be downsized.
【図1】触媒層内の温度変化を示すグラフ。FIG. 1 is a graph showing a temperature change in a catalyst layer.
【図2】実施例2で用いた反応器の説明図。2 is an explanatory view of the reactor used in Example 2. FIG.
Claims (1)
する燃料ガスに転化可能な水素製造用燃料を改質するこ
とによって得られた改質ガスであって、水素を主成分と
しかつCO2及びCOを含有する改質ガスと酸素含有ガ
スとを混合して触媒層を通過させCOを選択的に酸化し
てCO2に転化して燃料電池用の水素含有ガスを製造す
る方法において、前記酸素含有ガスの一部を前記触媒層
の途中で数回に分割して改質ガスに混合することを特徴
とする燃料電池用水素含有ガスの製造方法。1. A reformed gas obtained by reforming a hydrogen-producing fuel that can be converted into a fuel gas containing at least hydrogen by a reforming reaction, the reformed gas containing hydrogen as a main component and CO 2 and CO 2. In the method for producing a hydrogen-containing gas for a fuel cell by mixing a reformed gas containing oxygen with an oxygen-containing gas, selectively passing CO through a catalyst layer to convert CO into CO 2. A method for producing a hydrogen-containing gas for a fuel cell, wherein a part of the gas is divided into several times in the middle of the catalyst layer and mixed with the reformed gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11076995A JP3773967B2 (en) | 1994-05-17 | 1995-05-09 | Method for producing hydrogen-containing gas for fuel cell |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-103074 | 1994-05-17 | ||
JP10307494 | 1994-05-17 | ||
JP11076995A JP3773967B2 (en) | 1994-05-17 | 1995-05-09 | Method for producing hydrogen-containing gas for fuel cell |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005186267A Division JP4209868B2 (en) | 1994-05-17 | 2005-06-27 | Method for producing hydrogen-containing gas for fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0834601A true JPH0834601A (en) | 1996-02-06 |
JP3773967B2 JP3773967B2 (en) | 2006-05-10 |
Family
ID=26443736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11076995A Expired - Fee Related JP3773967B2 (en) | 1994-05-17 | 1995-05-09 | Method for producing hydrogen-containing gas for fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3773967B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000061491A1 (en) * | 1999-04-14 | 2000-10-19 | Toyota Jidosha Kabushiki Kaisha | Apparatus for selective oxidation of carbon monoxide |
-
1995
- 1995-05-09 JP JP11076995A patent/JP3773967B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000061491A1 (en) * | 1999-04-14 | 2000-10-19 | Toyota Jidosha Kabushiki Kaisha | Apparatus for selective oxidation of carbon monoxide |
Also Published As
Publication number | Publication date |
---|---|
JP3773967B2 (en) | 2006-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7682724B2 (en) | Use of metal supported copper catalysts for reforming alcohols | |
US7150866B2 (en) | Catalyst for autothermal reforming of hydrocarbons with increased water gas shift activity | |
JP2002543032A (en) | Method for converting carbon monoxide and water in a reformate stream and apparatus therefor | |
KR20040010571A (en) | Apparatus and method for heating catalyst for start-up of a compact fuel processor | |
JP2004522672A (en) | Suppression of methanation activity by water gas conversion catalyst | |
JP2001322803A (en) | Conversion method of carbon monoxide in a gaseous mixture containing hydrogen and catalyst therefor | |
WO2007029862A1 (en) | Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas | |
JP2002012408A (en) | Method of autothermal catalytic steam reforming for hydrocarbon | |
WO2000030745A1 (en) | Carbon monoxide oxidation catalyst, method for preparation of carbon monoxide oxidation catalyst and method for production of hydrogen-containing gas | |
CA2629078C (en) | Process conditions for pt-re bimetallic water gas shift catalysts | |
TWI294413B (en) | Method for converting co and hydrogen into methane and water | |
EP1314688A2 (en) | Process for catalytic autothermal steam reforming of higher alcohols, in particular ethanol | |
US20030012719A1 (en) | Catalyst and process for removing carbon monoxide from a reformate gas | |
JP3756565B2 (en) | Method for removing CO in hydrogen gas | |
JPH0748101A (en) | Production of hydrogen-containing gas for fuel cell | |
JP3574469B2 (en) | Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell | |
JP4328627B2 (en) | Co-oxidation catalyst containing ruthenium and zinc oxide | |
WO2003051493A2 (en) | Platinum group metal promoted copper oxidation catalysts and methods for carbon monoxide remediation | |
JPH07309603A (en) | Production of hydrogen-containing gas for fuel cell | |
JP3773967B2 (en) | Method for producing hydrogen-containing gas for fuel cell | |
JP4209868B2 (en) | Method for producing hydrogen-containing gas for fuel cell | |
KR100460433B1 (en) | Catalyst for Purifying Reformate Gas and Process for Selectively Removing Carbon Monoxide Contained in Hydrogen-enriched Reformate Gas Using the Same | |
JP3943606B2 (en) | Method for selective removal of carbon monoxide | |
JP4663095B2 (en) | Hydrogen purification equipment | |
KR100448683B1 (en) | POX reforming catalysts of gasoline for fuel-cell powered vehicles applications and methods for preparing catalysts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050426 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050823 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051021 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20051207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060216 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090224 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100224 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100224 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110224 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110224 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120224 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130224 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |