JPH0834172B2 - Epitaxial wafer - Google Patents

Epitaxial wafer

Info

Publication number
JPH0834172B2
JPH0834172B2 JP61027852A JP2785286A JPH0834172B2 JP H0834172 B2 JPH0834172 B2 JP H0834172B2 JP 61027852 A JP61027852 A JP 61027852A JP 2785286 A JP2785286 A JP 2785286A JP H0834172 B2 JPH0834172 B2 JP H0834172B2
Authority
JP
Japan
Prior art keywords
layer
inp
epitaxial
substrate
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61027852A
Other languages
Japanese (ja)
Other versions
JPS62186524A (en
Inventor
仁志 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61027852A priority Critical patent/JPH0834172B2/en
Publication of JPS62186524A publication Critical patent/JPS62186524A/en
Publication of JPH0834172B2 publication Critical patent/JPH0834172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、燐化インジウム基板上へ燐化インジウムを
含む単層もしくは多層のエピタキシャル成長を行なった
エピタキシャルウェハに関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to an epitaxial wafer in which a single-layer or multi-layer epitaxial growth containing indium phosphide is performed on an indium phosphide substrate.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

III−V族化合物半導体は、半導体レーザー、フォト
ダイオード、電界効果トランジスタなどの光デパイス、
電子デバイスの材料として使用されている。化合物半導
体を用いて素子を作製する場合一般には燐化インジウム
(以下InPと記す)砒化ガリウム等の単結晶基板上に化
合物半導体薄膜を一層又は多層エピタキシャル成長を行
なう。エピタキシャル成長を行なう方法としては、液相
成長法、気相成長法、有機金属熱分解気相成長法等が知
られている。
III-V group compound semiconductors are used for optical devices such as semiconductor lasers, photodiodes and field effect transistors.
Used as a material for electronic devices. In the case of producing an element using a compound semiconductor, generally, a single or multi-layer compound semiconductor thin film is epitaxially grown on a single crystal substrate such as indium phosphide (hereinafter referred to as InP) gallium arsenide. As a method for performing epitaxial growth, a liquid phase growth method, a vapor phase growth method, a metal organic pyrolysis vapor phase growth method and the like are known.

作製された素子の特性は、エピタキシャル層の品質に
大きく依存し、エピタキシャル層中に転位が存在する
と、特性や歩留り等が悪化する。
The characteristics of the manufactured device largely depend on the quality of the epitaxial layer, and the presence of dislocations in the epitaxial layer deteriorates the characteristics and the yield.

エピタキシャル層中の転位は、必らずしも基板の転位
と1対1に対応してはいないが、基板の転位が少なけれ
ばエピタキシャル層中の転位も少ない傾向が一般に認め
られる。
The dislocations in the epitaxial layer do not necessarily have a one-to-one correspondence with the dislocations in the substrate, but it is generally recognized that the less dislocations in the substrate, the less dislocations in the epitaxial layer.

このためエピタキシャル層の転位を減らし、素子性
能、歩留まりを向上するために転位の少ない基板を使用
する事が通常行なわれている。
Therefore, in order to reduce dislocations in the epitaxial layer and improve device performance and yield, it is usual to use a substrate with few dislocations.

転位の少ない基板はInPの場合、硫黄や亜鉛を高濃度
にドーピングしたものでしか得られていない。しかし高
濃度にドープされた基板上にエピタキシャル成長を行な
った場合、基板からの不純物拡散や、オートドーピング
などの好ましくない現象が起こる事がある。一方、電界
効果トランジスタなどの作製に用いる半絶縁性基板で
は、転位密度の指標であるエッチピット密度が数万/cm2
であり、素子特性、歩留まり等の向上を計る上で、エピ
タキシャル層において、転位を減少する事が望まれる。
In the case of InP, a substrate with few dislocations can be obtained only by heavily doping with sulfur or zinc. However, when epitaxial growth is carried out on a highly doped substrate, undesired phenomena such as impurity diffusion from the substrate and autodoping may occur. On the other hand, the semi-insulating substrate used for manufacturing field effect transistors has an etch pit density of tens of thousands / cm 2
Therefore, it is desirable to reduce dislocations in the epitaxial layer in order to improve device characteristics, yield, and the like.

〔発明の目的〕[Object of the Invention]

本発明は以上の事に鑑みてなされたもので、欠陥の多
い基板上にエピタキシャル成長を行なった場合において
も、欠陥の少ないエピタキシャル成長層を有するエピタ
キシャルウェハを提供する事を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an epitaxial wafer having an epitaxial growth layer with few defects even when epitaxial growth is performed on a substrate with many defects.

〔発明の概要〕[Outline of Invention]

本発明は、錫ドープn型燐化インジウム基板の上に少
なくとも一層の燐化インジウム層を含む一層以上のエピ
タキシヤル層を成長したエピタキシヤルウエハにおい
て、一層又はそれ以上の燐化インジウム層に微量のガリ
ウムが添加されている事を特徴とするエピタキシヤルウ
エハを提供するものである。
The present invention relates to an epitaxial wafer in which one or more epitaxial layers including at least one indium phosphide layer are grown on a tin-doped n-type indium phosphide substrate, and a trace amount of one or more indium phosphide layers is provided. (EN) An epitaxial wafer having gallium added thereto.

本発明に於いて、添加するGaの量を増してゆくと、In
Pエピタキシャル層とInP基板の格子定数がずれてきて、
歪が大きくなり、ついには不整合転位が発生する事が予
想される。実験では、固相中のIII族のうちGaの量が3
%を越えるとGaを加えない場合と同程度のエッチピット
密度となった事からGaの添加量としては固相中のIII族
のうち、3%を越えない範囲とすべきである。又、Gaを
加える量が0.08%より少ない時、エッチピット密度の平
均が基板と同程度となった時から、確実な効果を得るた
めには、添加するGaの量を固相中のIII族のうち、0.08
%より多くする事が望ましい。
In the present invention, when the amount of Ga added is increased, In
The lattice constants of the P epitaxial layer and the InP substrate have shifted,
It is expected that the strain will increase and eventually the mismatched dislocation will occur. In the experiment, the amount of Ga in group III in the solid phase was 3
%, The etch pit density is about the same as when Ga is not added. Therefore, the Ga addition amount should be within the range of 3% of the group III in the solid phase. In addition, when the amount of Ga added is less than 0.08%, the average etch pit density is about the same as that of the substrate. Of which 0.08
It is desirable to make it more than%.

〔発明の効果〕〔The invention's effect〕

本発明を適用したInPエピタキシャル層と、往来法のI
nPエピタキシャル層について、結晶の転位と対応するエ
ッチピットの密度を比較したところ、基板のエッチピッ
ト密度が約40000個/cm2の時本発明を適用したInPエピタ
キシャル層のエッチピット密度は従来法によるInPエピ
タキシャル層のエッチピット密度の1/2〜1/4であった。
The InP epitaxial layer to which the present invention is applied and the conventional method I
For nP epitaxial layers, the density of the crystal dislocations and the corresponding etch pits was compared, and when the substrate etch pit density was about 40,000 / cm 2 , the InP epitaxial layer to which the present invention was applied showed It was 1/2 to 1/4 of the etch pit density of the InP epitaxial layer.

又、本発明を適用したInPエピタキシャル層の上に従
来法のInPエピタキシャル層、GaInAsP層などをエピタキ
シャル成長して、最上層のエッチピット密度を、従来法
のみで同じ構造としたものと比較したところ、やはり、
本発明によるInP層を含むウェハは1/2以下のエッチピッ
ト密度だった。さらに、半絶縁性基板を用いた場合に比
べて、ガリウムの添加量に対する欠陥発生のバラツキを
低く抑えることに有利なエピタキシヤルウエハを提供す
る事ができる。
In addition, a conventional method InP epitaxial layer, GaInAsP layer and the like are epitaxially grown on the InP epitaxial layer to which the present invention is applied, and the etch pit density of the uppermost layer is compared with that of the same structure only by the conventional method. also,
The wafer containing the InP layer according to the present invention had an etch pit density of 1/2 or less. Furthermore, it is possible to provide an epitaxial wafer which is advantageous in suppressing the variation in defect generation with respect to the amount of gallium added, as compared with the case where a semi-insulating substrate is used.

[発明の実施例] 本発明の実施例を説明する前に、第1図〜第5図に沿
って本発明の参考例を説明する。本発明の参考例及び実
施例の効果を直接観察するために燐酸2:臭化水素酸1の
割合で混合したエッチング液により、Ga添加量の異なる
試料をエッチングしてエッチピット密度の比較を行なっ
た。エッチピットは一般に転位に対応して現れるので、
その密度は転位の量的指標となる。第1図は、エッチピ
ット密度が約40000/cm2のInP鉄ドープ半絶縁性基板上に
添加するGaの量を変えてInP単層を数ミクロンエピタキ
シャル成長し、エッチピット密度を比較したものであ
る。ごく少量のGaの添加により、エッチピット密度は大
きく減少し、Gaの添加量が2%程度まで、あまり変化は
なかった。しかし3%付近でエッチピット密度は急増し
Gaを添加しない場合と同程度となった。
[Examples of the Invention] Before describing the examples of the present invention, reference examples of the present invention will be described with reference to FIGS. 1 to 5. In order to directly observe the effects of the reference example and the example of the present invention, the etch pit density was compared by etching samples having different Ga addition amounts with an etching solution mixed in the ratio of phosphoric acid 2: hydrobromic acid 1. It was Since etch pits generally appear corresponding to dislocations,
The density is a quantitative index of dislocation. Figure 1 compares etch pit densities by epitaxially growing InP monolayers of several microns on the InP iron-doped semi-insulating substrate with an etch pit density of about 40,000 / cm 2 by changing the amount of Ga added. . By adding a very small amount of Ga, the etch pit density was greatly reduced, and there was not much change until the amount of Ga added was about 2%. However, the etch pit density increased rapidly near 3%
It was almost the same as when Ga was not added.

第2図,第3図は、それぞれGaの添加量が0%と0.7
%,膜厚が3.5μmと4μmの試料に室温で40秒のエッ
チング処理を行なった写真である。第4図,第5図は、
それぞれ第2図,第3図の試料の成長層を、エッチング
除去し基板のエッチピット密度を比較したものである
が、第2図と第3図で認められたエッチピット密度の差
は、第4図と第5図では見られなかった。
Figures 2 and 3 show that the added amount of Ga is 0% and 0.7, respectively.
%, Film thicknesses of 3.5 μm and 4 μm are photographs taken after 40 seconds of etching treatment at room temperature. 4 and 5 are
The growth layers of the samples in FIGS. 2 and 3 are removed by etching, and the etch pit densities of the substrates are compared. The difference between the etch pit densities observed in FIGS. Not seen in Figures 4 and 5.

つぎに、本発明の実施例を説明する。エッチピットの
作成及び評価等は参考例と同様に行った。
Next, examples of the present invention will be described. The etching pits were created and evaluated in the same manner as in the reference example.

第6図は、エッチピット密度が約30000/cm2のLnP錫ド
ープn型基板上に、本発明によるGa添加InP層を数ミク
ロン成長し、更に、通常のInP層を数ミクロン成長した
時の下層のInP中のGa添加量に対し、上層のInP層のエッ
チピット密度をプロットしたものである。多層ウェハに
おいても下層へGa添加InP層を入れる事により上層のエ
ッチピットも減少する事がわかる。
FIG. 6 shows the case where a Ga-doped InP layer according to the present invention is grown for several microns on a LnP tin-doped n-type substrate having an etch pit density of about 30,000 / cm 2 , and further a normal InP layer is grown for several microns. It is a plot of the etch pit density of the upper InP layer against the amount of Ga added to the lower InP. It can be seen that the etch pits in the upper layer are also reduced by including the Ga-doped InP layer in the lower layer in the multilayer wafer.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の参考例のGaの添加量と、エッチピッ
ト密度の関係を示す図、第2図はGaが添加されていない
InPエピタキシャル層の結晶構造(エッチピット)を顕
微鏡写真により表わした図、第3図はGaが0.7%添加さ
れたInPエピタキシャル層の結晶構造(エッチピット)
を顕微鏡写真により表わした図、第4図は第2図のエピ
タキシャル層をはがした基板の結晶構造(エッチピッ
ト)を顕微鏡写真で表わした図、第5図は第3図のエピ
タキシャル層をはがした基板の結晶構造(エッチピッ
ト)を顕微鏡写真で表わした図、第6図は、下層に本発
明によるGaを含むInPを成長し、上層に通常のInPを成長
した時の下層に添加されたGaの量と、上層のエッチピッ
ト密度の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the amount of Ga added and the etch pit density in the reference example of the present invention, and FIG. 2 shows that Ga is not added.
The crystal structure (etch pits) of the InP epitaxial layer is shown in a micrograph. Figure 3 shows the crystal structure (etch pits) of the InP epitaxial layer containing 0.7% Ga.
Is a micrograph showing the crystal structure (etch pits) of the substrate from which the epitaxial layer of FIG. 2 has been peeled off. FIG. 5 shows the epitaxial layer of FIG. 6 is a micrograph showing the crystal structure (etch pits) of the substrate, and FIG. 6 shows the InP containing Ga according to the present invention grown in the lower layer and the normal InP grown in the upper layer added to the lower layer. FIG. 6 is a diagram showing the relationship between the amount of Ga and the etch pit density of the upper layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】錫ドープn型燐化インジウム基板の上に少
なくとも一層の燐化インジウム層を含む一層以上のエピ
タキシヤル層を成長したエピタキシヤルウエハにおい
て、一層又はそれ以上の燐化インジウム層に微量のガリ
ウムが添加されている事を特徴とするエピタキシヤルウ
エハ。
1. An epitaxial wafer in which at least one epitaxial layer including at least one indium phosphide layer is grown on a tin-doped n-type indium phosphide substrate, and a trace amount is present in one or more indium phosphide layers. Gallium is added to the epitaxial wafer.
【請求項2】添加される前記ガリウムの量が固相比で前
記インジウムに対して0.08%乃至3%であることを特徴
とする特許請求の範囲第1項記載のエピタキシヤルウエ
ハ。
2. The epitaxial wafer according to claim 1, wherein the amount of said gallium added is 0.08% to 3% with respect to said indium in a solid phase ratio.
JP61027852A 1986-02-13 1986-02-13 Epitaxial wafer Expired - Fee Related JPH0834172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61027852A JPH0834172B2 (en) 1986-02-13 1986-02-13 Epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61027852A JPH0834172B2 (en) 1986-02-13 1986-02-13 Epitaxial wafer

Publications (2)

Publication Number Publication Date
JPS62186524A JPS62186524A (en) 1987-08-14
JPH0834172B2 true JPH0834172B2 (en) 1996-03-29

Family

ID=12232447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61027852A Expired - Fee Related JPH0834172B2 (en) 1986-02-13 1986-02-13 Epitaxial wafer

Country Status (1)

Country Link
JP (1) JPH0834172B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3118950B1 (en) * 2014-03-11 2020-09-09 Furukawa Electric Co., Ltd. Semiconductor laser element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105218A (en) * 1983-11-11 1985-06-10 Nippon Telegr & Teleph Corp <Ntt> 3-5 group compound single crystal semiconductor substrate
JPH0670974B2 (en) * 1985-09-18 1994-09-07 住友電気工業株式会社 Method for manufacturing compound semiconductor epitaxial wafer

Also Published As

Publication number Publication date
JPS62186524A (en) 1987-08-14

Similar Documents

Publication Publication Date Title
JP2691721B2 (en) Semiconductor thin film manufacturing method
US7579263B2 (en) Threading-dislocation-free nanoheteroepitaxy of Ge on Si using self-directed touch-down of Ge through a thin SiO2 layer
JP3114809B2 (en) Semiconductor device
JPH01289108A (en) Heteroepitaxy
JPH0484418A (en) Method of heteroepitaxial development of iii-v group compound semiconductor for different types of substrates
JPS63169717A (en) Semiconductor device
JPH03236218A (en) Compound semiconductor substrate and manufacture thereof
JPH06140346A (en) Manufacture of heteroepitaxial thin layer and of electronic device
JPH0834172B2 (en) Epitaxial wafer
US5183776A (en) Heteroepitaxy by growth of thermally strained homojunction superlattice buffer layers
US4597825A (en) Intermediate passivation and cleaning of compound semiconductor surfaces
JPH0247437B2 (en)
KR100359739B1 (en) Method of fusion for heteroepitaxial layers and overgrowth thereon
US8906158B2 (en) Method for producing compound semiconductor epitaxial substrate having PN junction
CN109802006A (en) A kind of crystalline epitaxial structure and growing method
EP0108910B1 (en) Method of forming a passivated compound semiconductor substrate
EP0416128B1 (en) Wafer of compound semiconductor
JPH0434920A (en) Hetero epitaxial growth method for group iii-v compound semiconductor on different type board
JPH01179797A (en) Method for growing semiconductor crystal
JPH0372680A (en) Semiconductor material, photoelectric integrated circuit element, and crystal growth method of material
JP2503255B2 (en) Method for manufacturing compound semiconductor substrate
JP2527227B2 (en) Semiconductor device and manufacturing method thereof
KR100407955B1 (en) method for forming GaAs on fusion substrate
CN114300556A (en) Epitaxial structure, epitaxial growth method and photoelectric device
JP2005116567A (en) Semiconductor photo detector and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees