JPH0834171B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH0834171B2
JPH0834171B2 JP60261856A JP26185685A JPH0834171B2 JP H0834171 B2 JPH0834171 B2 JP H0834171B2 JP 60261856 A JP60261856 A JP 60261856A JP 26185685 A JP26185685 A JP 26185685A JP H0834171 B2 JPH0834171 B2 JP H0834171B2
Authority
JP
Japan
Prior art keywords
semiconductor device
manufacturing
mirror
semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60261856A
Other languages
Japanese (ja)
Other versions
JPS62122119A (en
Inventor
優 新保
和由 古川
潔 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60261856A priority Critical patent/JPH0834171B2/en
Publication of JPS62122119A publication Critical patent/JPS62122119A/en
Publication of JPH0834171B2 publication Critical patent/JPH0834171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、2枚の半導体基板を直接接着して得られる
半導体装置の製造方法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device obtained by directly adhering two semiconductor substrates.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

本発明者らは、2枚の半導体基板の直接接着により1
枚の半導体ウェーハを得る技術を先に提案している。鏡
面研磨した2枚の半導体基板の研磨面同士を、実質的に
異物の介在しない状態で清浄な雰囲気下で接触させると
強く接着し、これを200℃、好ましくは1000℃以上で熱
処理すると極めて強固に一体化された半導体ウェーハが
得られるものである。この直接接着技術を利用すると、
従来のエピタキシャル・ウェーハと同等の優れた接合部
をするウエーハやあるいはエピタキシャル法では得られ
ないようなウェーハが極めて簡便に得られる。実際に本
発明者等はこの技術を種々の半導体素子に適用して大き
い成果が得られることを確認している。
The present inventors have made it possible to directly bond two semiconductor substrates to one
We have previously proposed a technology for obtaining a single semiconductor wafer. When the polished surfaces of two mirror-polished semiconductor substrates are brought into contact with each other in a clean atmosphere with virtually no foreign matter present, they strongly adhere and are extremely strong when heat-treated at 200 ° C, preferably 1000 ° C or higher. The semiconductor wafer integrated with the above is obtained. With this direct bonding technology,
A wafer having an excellent bonded portion equivalent to that of a conventional epitaxial wafer or a wafer that cannot be obtained by the epitaxial method can be obtained very easily. In fact, the present inventors have confirmed that this technique can be applied to various semiconductor devices to obtain great results.

〔発明の目的〕[Object of the Invention]

本発明は上記した直接接着技術を発展させたもので、
新たな素子応用を可能とする半導体装置の製造方法を提
供することを目的とする。
The present invention is a development of the direct bonding technique described above,
It is an object of the present invention to provide a method for manufacturing a semiconductor device that enables new device applications.

〔発明の概要〕[Outline of Invention]

本発明にかかる半導体装置の製造方法は、上記した直
接接着技術によるものであって、接着させるべき鏡面研
磨面同士を意図的に結晶格子不整合の状態で接着させた
ことを特徴とする。
A method of manufacturing a semiconductor device according to the present invention is based on the above-described direct bonding technique, and is characterized in that mirror-polished surfaces to be bonded are intentionally bonded in a crystal lattice mismatched state.

本発明による半導体装置の製造方法では、接着界面に
極薄いアモルファス状態の層が形成される。これは本発
明者等が今回初めて見出したものであり、本発明はこの
ようにアモルファス状態の層が介在された状態のウェー
ハを積極的に素子に応用しようとするものである。
In the method of manufacturing a semiconductor device according to the present invention, a very thin amorphous layer is formed at the bonding interface. This is the first time that the present inventors have found this time, and the present invention intends to positively apply a wafer in which an amorphous layer is interposed as described above to a device.

〔発明の効果〕〔The invention's effect〕

本発明によれば、例えば一体化する半導体基板の一方
をp型,他方をn型とし、得られたウェーハの接着界面
のアモルファス層をトンネル絶縁膜として、ヘテロ接合
と同様のキャリア注入特性を実現することができる。即
ち絶縁膜は、その障壁の高さ、厚みによりトンネル確率
が決まるが、良く知られているように電子と正孔とでは
トンネル確率が異なる。従ってp型基板とn型基板を一
体化してその界面にトンネル絶縁膜を設けると、p型層
からn型層への正孔注入効率とn型層からp型層へ電子
注入効率とが異なる値になる。このpn接合を例えばエミ
ッタ・ベース接合としてバイポーラトランジスタを構成
すれば、ヘテロ接合トランジスタと同様の原理で高い電
流増幅率が得られる。ヘテロ接合は異種半導体の接合で
あるため、欠陥等のない状態で理想的なヘテロ接合を形
成することは、結晶成長技術の進んだ現在でも非常に難
しいが、本発明によれば極めて簡便にヘテロ接合と同様
の機能を持つ接合ウェーハを得ることができる。
According to the present invention, for example, one of the semiconductor substrates to be integrated is p-type, the other is n-type, and the amorphous layer at the bonding interface of the obtained wafer is used as a tunnel insulating film to realize carrier injection characteristics similar to those of a heterojunction. can do. That is, the tunnel probability of the insulating film is determined by the height and thickness of the barrier, but as is well known, the tunnel probability differs between electrons and holes. Therefore, when a p-type substrate and an n-type substrate are integrated and a tunnel insulating film is provided at the interface, the hole injection efficiency from the p-type layer to the n-type layer and the electron injection efficiency from the n-type layer to the p-type layer are different. It becomes a value. If a bipolar transistor is formed by using this pn junction as an emitter-base junction, for example, a high current amplification factor can be obtained by the same principle as that of the heterojunction transistor. Since the heterojunction is a junction of heterogeneous semiconductors, it is very difficult to form an ideal heterojunction without defects and the like even with the progress of crystal growth technology. A bonded wafer having the same function as bonding can be obtained.

また本発明による半導体装置の製造方法は、接着界面
に形成されるアモルファス層を不純物ゲッタリング用と
して利用して各種の素子に応用することができる。
Further, the method for manufacturing a semiconductor device according to the present invention can be applied to various elements by utilizing the amorphous layer formed at the bonding interface for impurity gettering.

〔発明の実施例〕Example of Invention

以下本発明の実施例を説明する。 Examples of the present invention will be described below.

第1図(a)〜(c)は本発明をトランジスタに適用
した実施例の製造工程断面図である。(a)に示すよう
に、面方位(100)の第1のSi基板1と、面方位(111)
の第2のSi基板2を用意する。第1のSi基板1はn+型層
11,n-型層12,p型層13の3層構造であり、第2のSi基板
2はn+型層である。これら2枚の基板の接着すべき面は
表面粗さ50オングストーム以下に鏡面研磨されている。
この研磨面を、トリクレンによる脱脂→過酸化水素水と
硫酸の混合液による表面処理→王水処理と水洗→希弗酸
浸漬による自然酸化膜除去→水洗,乾燥の処理工程で清
浄化し、この後クラス2以下のクリーンな雰囲気下で実
質的に異物を介在させることなく研磨面同士を接触さ
せ、 1100℃で1時間加熱処理して(b)に示すように一体化
する。2枚の基板の接着界面3には後述するように30Å
程度のアモルファス層が形成されている。こうして得ら
れたnpnウェーハを用い、例えば第2の基板2側をラッ
ピングなどにより厚さを調整し、所定のパターンに加工
して、(c)に示すようにエミッタ電極4,ベース電極5
およびコレクタ電極6を形成してトランジスタを完成す
る。
1 (a) to 1 (c) are sectional views of manufacturing steps of an embodiment in which the present invention is applied to a transistor. As shown in (a), the first Si substrate 1 having the plane orientation (100) and the plane orientation (111)
The second Si substrate 2 is prepared. The first Si substrate 1 is an n + type layer
1 1, n - a three-layer structure type layer 1 2, p-type layer 1 3, second Si substrate 2 is a n + -type layer. The surfaces to be bonded of these two substrates are mirror-polished to have a surface roughness of 50 Å or less.
The polished surface is cleaned by degreasing with trichlene → surface treatment with a mixed solution of hydrogen peroxide and sulfuric acid → aqua regia treatment and water washing → natural oxide film removal by dipping in dilute hydrofluoric acid → water washing and drying. The polishing surfaces are brought into contact with each other in a clean atmosphere of class 2 or less without substantially interposing foreign matter, and heat-treated at 1100 ° C. for 1 hour to be integrated as shown in (b). 30 Å on the bonding interface 3 between the two substrates, as will be described later.
An amorphous layer is formed to some extent. Using the npn wafer thus obtained, for example, the thickness of the second substrate 2 side is adjusted by lapping or the like and processed into a predetermined pattern, and then the emitter electrode 4 and the base electrode 5 are formed as shown in (c).
And the collector electrode 6 is formed to complete the transistor.

この実施例によるトランジスタは、エミッタ・ベース
接合部となる接着界面3に極薄いアモルファス層が形成
されている。このアモルファス層は半絶縁性であるが、
極めて薄いために抵抗成分としては殆ど無視することが
でき、トンネル絶縁膜として働く。即ちベースからエミ
ッタへの正孔注入効率に比べてエミッタからベースへの
電子注入効率の方が高い。このため、ヘテロ接合トラン
ジスタと同様の原理で高い電流増幅率が得られる。
In the transistor according to this embodiment, an extremely thin amorphous layer is formed on the bonding interface 3 which becomes the emitter-base junction. This amorphous layer is semi-insulating,
Since it is extremely thin, it can be almost ignored as a resistance component, and it works as a tunnel insulating film. That is, the efficiency of electron injection from the emitter to the base is higher than the efficiency of hole injection from the base to the emitter. Therefore, a high current amplification factor can be obtained by the same principle as that of the heterojunction transistor.

第2図は第1図(b)の一体化ウェーハの、接着界面
部の透過型電子顕微鏡写真である。この写真から明らか
なように接着界面部に30Å程度のアモルファス層が形成
されていることが分る。
FIG. 2 is a transmission electron micrograph of the bonding interface of the integrated wafer of FIG. 1 (b). As is clear from this photograph, it is clear that an amorphous layer of about 30Å is formed at the adhesive interface.

第3図(a)〜(c)は他の実施例のトランジスタ製
造工程を示す断面図である。基本的な方法は先の実施例
と同様であり、従って第1図と対応する部分には第1図
と同一符号を付して詳細な説明は省略する。この実施例
では、ベース電極の取出しを容易にするために予め、第
2の基板2の鏡面研磨面に凹部7を形成している。この
様な基板を用いて先の実施例と同様の工程で(b)に示
すように一体化ウェーハを形成し、これをラッピングし
て(c)に示すように基板2を選択的にエミッタ領域に
のみ残し、ベースとなるp型層13を露出させる。そして
所定の電極を形成してトランジスタを完成する。
FIGS. 3A to 3C are cross-sectional views showing a transistor manufacturing process of another embodiment. The basic method is the same as that of the previous embodiment. Therefore, the parts corresponding to those in FIG. 1 are designated by the same reference numerals as those in FIG. 1 and their detailed description is omitted. In this embodiment, the recess 7 is formed in advance on the mirror-polished surface of the second substrate 2 in order to facilitate the extraction of the base electrode. Using such a substrate, an integrated wafer is formed as shown in (b) in the same process as in the previous embodiment, and the integrated wafer is lapped to selectively form the substrate 2 in the emitter region as shown in (c). leaving only to expose the p-type layer 1 3 as a base. Then, predetermined electrodes are formed to complete the transistor.

この実施例によっても先の実施例と同様の効果が得ら
れる。
Also in this embodiment, the same effect as the previous embodiment can be obtained.

本発明は上記実施例に限られない。上記実施例では、
(100)面Si基板と(111)面Si基板と組合わせという、
面方位の異なる2枚の基板の接着により接着界面にアモ
ルファス層が形成されるようにしたが、要は結晶格子不
整合の状態で鏡面研磨面同士を接着させれば、同様の界
面状態が得られる。例えば2枚の基板の面方位が同じで
あっても、その面内で対応する結晶軸方位が互いにずれ
た状態で接着させれば、同様の界面状態が得られる。ま
た実施例では、2枚の基板として導電型の異なるものを
用いて、トンネル絶縁膜の電子と正孔のトンネル確率の
差を利用する素子に応用したが、同じ導電型の基板を用
いた場合にも本発明は有効である。その場合、接着界面
部に形成されるアモルファス層は例えば不純物ゲッタリ
ング等を行なうための層として有効に利用される。また
実施例ではSi基板を用いているが、GaAs,InPなど他の半
導体基板を用いた場合にも本発明を同様に適用すること
が可能である。
The present invention is not limited to the above embodiment. In the above embodiment,
A combination of a (100) plane Si substrate and a (111) plane Si substrate,
An amorphous layer was formed at the bonding interface by bonding two substrates with different plane orientations. The point is that if mirror-polished surfaces are bonded together in a crystal lattice mismatched state, a similar interface state can be obtained. To be For example, even if the two substrates have the same plane orientation, the same interface state can be obtained by adhering them in a state in which the corresponding crystal axis orientations are deviated from each other. In the embodiment, two substrates having different conductivity types are used and applied to an element that utilizes the difference in tunnel probability between electrons and holes in the tunnel insulating film. Also, the present invention is effective. In that case, the amorphous layer formed at the bonding interface is effectively used as a layer for performing impurity gettering, for example. Further, although the Si substrate is used in the embodiment, the present invention can be similarly applied to the case of using another semiconductor substrate such as GaAs and InP.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(c)は本発明の一実施例のトランジス
タ製造工程を示す図、第2図はそのウェーハ接着界面部
の結晶構造を示す透過型電子顕微鏡写真、第3図(a)
〜(c)は他の実施例のトランジスタ製造工程を示す図
である。 1……(100)Si基板、2……(111)Si基板、3……接
着界面。
1 (a) to 1 (c) are views showing a transistor manufacturing process of one embodiment of the present invention, FIG. 2 is a transmission electron micrograph showing a crystal structure of a wafer bonding interface portion, and FIG. 3 (a). )
8A to 8C are diagrams showing a transistor manufacturing process of another embodiment. 1 …… (100) Si substrate, 2 …… (111) Si substrate, 3 …… adhesive interface.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】2枚の半導体基板の鏡面研磨面同士を清浄
な雰囲気下で、意図的に結晶格子不整合の状態で接触さ
せ、熱処理して一体化し、前記鏡面研磨面間の接着界面
に極薄いアモルファス状態の層を形成することを特徴と
する半導体装置の製造方法。
1. A mirror-polished surface of two semiconductor substrates is intentionally brought into contact with each other in a state of crystal lattice mismatching under a clean atmosphere and heat-treated to be integrated to form an adhesive interface between the mirror-polished surfaces. A method of manufacturing a semiconductor device, which comprises forming an extremely thin layer in an amorphous state.
【請求項2】前記2枚の半導体基板の鏡面研磨面の面方
位を異ならせて結晶格子不整合の状態を得るようにした
特許請求の範囲第1項記載の半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the mirror-polished surfaces of the two semiconductor substrates are made different in plane orientation to obtain a crystal lattice mismatch state.
【請求項3】前記2枚の半導体基板の鏡面研磨面の面方
位を同じとし、面内での対応する結晶軸方位をずらして
重ねることにより結晶格子不整合の状態を得るようにし
た特許請求の範囲第1項記載の半導体装置の製造方法。
3. A crystal lattice mismatch state is obtained by making the mirror-polished surfaces of the two semiconductor substrates have the same plane orientation and shifting the corresponding crystal axis orientations in the planes so as to overlap each other. A method of manufacturing a semiconductor device according to claim 1.
【請求項4】前記2枚の半導体基板は少なくとも接着す
る部分の導電型が違いに異なるものである特許請求の範
囲第1項記載の半導体装置の製造方法。
4. The method for manufacturing a semiconductor device according to claim 1, wherein the two semiconductor substrates are different in at least the conductivity type of a bonding portion.
JP60261856A 1985-11-21 1985-11-21 Method for manufacturing semiconductor device Expired - Fee Related JPH0834171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60261856A JPH0834171B2 (en) 1985-11-21 1985-11-21 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60261856A JPH0834171B2 (en) 1985-11-21 1985-11-21 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS62122119A JPS62122119A (en) 1987-06-03
JPH0834171B2 true JPH0834171B2 (en) 1996-03-29

Family

ID=17367699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60261856A Expired - Fee Related JPH0834171B2 (en) 1985-11-21 1985-11-21 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0834171B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2703933B2 (en) * 1987-07-24 1998-01-26 株式会社東芝 Method for manufacturing bonded semiconductor substrate
US5451547A (en) * 1991-08-26 1995-09-19 Nippondenso Co., Ltd. Method of manufacturing semiconductor substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2926741C2 (en) * 1979-07-03 1982-09-09 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Field effect transistor and process for its manufacture
JPH0758780B2 (en) * 1985-11-20 1995-06-21 富士通株式会社 Semiconductor device

Also Published As

Publication number Publication date
JPS62122119A (en) 1987-06-03

Similar Documents

Publication Publication Date Title
JP2980497B2 (en) Method of manufacturing dielectric-isolated bipolar transistor
JP2685819B2 (en) Dielectric isolated semiconductor substrate and manufacturing method thereof
EP0190935B1 (en) Method of manufacturing semiconductor devices using a bonding process
JPS61183915A (en) Manufacture of compound semiconductor device
EP0213299A2 (en) Method for manufacturing a semiconductor device having an element isolation area
JPH023266A (en) Bipolar semiconductor device having conductive recombination layer
JPH0834171B2 (en) Method for manufacturing semiconductor device
JP2000208813A (en) GaN SEMICONDUCTOR ELEMENT AND ITS MANUFACTURE
JP2801704B2 (en) Semiconductor substrate manufacturing method
JPS60236243A (en) Manufacture of semiconductor device
JPH0719837B2 (en) Method for manufacturing semiconductor device
JPH01241168A (en) Bipolar transistor and manufacture thereof
JPH0770477B2 (en) Method for manufacturing semiconductor device
KR0137552B1 (en) Fabrication method of bipolar transistor
JP2621851B2 (en) Semiconductor substrate bonding method
JPH0518470B2 (en)
JP2592277B2 (en) Manufacturing method of bipolar semiconductor device
JPS61182241A (en) Manufacture of dielectric isolation-type semiconductor
JPS6174367A (en) Heterojunction bipolar transistor
JP2708829B2 (en) Method of forming electrode of silicon carbide
JPH03203333A (en) Semiconductor device and manufacture thereof
JPH0689902A (en) Manufacture of semiconductor device
JPH053200A (en) Manufacture of semiconductor device
JPH07107924B2 (en) Method for manufacturing semiconductor device
JPH02196432A (en) Si heterojunction bipolar transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees