JPH0834099B2 - Manufacturing method of hydrogen storage alloy electrode - Google Patents

Manufacturing method of hydrogen storage alloy electrode

Info

Publication number
JPH0834099B2
JPH0834099B2 JP2125972A JP12597290A JPH0834099B2 JP H0834099 B2 JPH0834099 B2 JP H0834099B2 JP 2125972 A JP2125972 A JP 2125972A JP 12597290 A JP12597290 A JP 12597290A JP H0834099 B2 JPH0834099 B2 JP H0834099B2
Authority
JP
Japan
Prior art keywords
hydrogen
electrode
hydrogen storage
storage alloy
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2125972A
Other languages
Japanese (ja)
Other versions
JPH0422063A (en
Inventor
哲正 梅本
伸浩 柳沢
裕久 内田
義人 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Tokai University
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC, Tokai University filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to JP2125972A priority Critical patent/JPH0834099B2/en
Publication of JPH0422063A publication Critical patent/JPH0422063A/en
Publication of JPH0834099B2 publication Critical patent/JPH0834099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、水素吸蔵合金電極の製造方法に関する。こ
とに、アルカリ二次電池の製造に用いられる。
The present invention relates to a method for producing a hydrogen storage alloy electrode. In particular, it is used in the production of alkaline secondary batteries.

(ロ)従来の技術 水素吸蔵合金は、電気化学的に水素を可逆的に吸蔵一
放出する性質を利用してアルカリ二次電池負極材料への
応用が研究されてきた。水素吸蔵合金粉末を電極に形成
する技術としては、従来、結着剤にポリテトラフルオロ
エチレン、ポリエチレン等の熱可塑性樹脂粉末を用いて
水素吸蔵性合金粉末と混合し、溶剤を用いてペースト化
し加熱形成していた。この電極は、セルに組み込んで電
解液で電気化学的に活性化して用いるのが一般的であ
る。
(B) Conventional technology Hydrogen storage alloys have been studied for application to the negative electrode material of alkaline secondary batteries by utilizing the property of electrochemically reversibly storing and releasing hydrogen. Conventionally, the technology for forming hydrogen-absorbing alloy powder on electrodes is to use a thermoplastic resin powder such as polytetrafluoroethylene or polyethylene as a binder, mix it with hydrogen-absorbing alloy powder, and paste it with a solvent to heat it. Had formed. This electrode is generally used by incorporating it into a cell and electrochemically activating it with an electrolytic solution.

また、電極活性物質である水素吸蔵合金の容量を最大
限に引き出し、二次電池としての機能を最初から充分に
発揮するためには、水素吸蔵性合金を活性化することと
電解液を電極中へ充分浸み込ませることが必要である。
このため電極の表面積を大きくして電解液を浸み込ませ
易くしたり、電極作製後電極を初期活性化したりする工
程が必要であった。上記結着剤と混練した電極活物質の
利用率を上げるために、電極表面積増加という観点から
特開昭61−153947号や特開昭61−190858号に示される様
に電極表面に機械的に細孔をあけたり、ローラーの刃で
溝をつけたりする方法が提案されてきた。
Also, in order to maximize the capacity of the hydrogen storage alloy that is an electrode active material and to fully exhibit the function as a secondary battery from the beginning, activate the hydrogen storage alloy and put the electrolyte in the electrode. It is necessary to fully soak into.
For this reason, it is necessary to increase the surface area of the electrode to make it easier for the electrolytic solution to permeate, and to perform the initial activation of the electrode after the electrode is manufactured. In order to increase the utilization rate of the electrode active material kneaded with the above-mentioned binder, the electrode surface is mechanically attached as shown in JP-A-61-193947 and JP-A-61-190858 from the viewpoint of increasing the electrode surface area. Methods have been proposed for making pores and making grooves with roller blades.

(ハ)発明が解決しようとする課題 上述の水素吸蔵合金電極の製造方法は、電極の表面積
が十分大きくなく電解液が浸み込み難く電池に構成した
とき電池の放電容量が不十分であり、また電池作製時に
電極の初期活性化工程が必要であり電池製造工程が複雑
になるという問題があった。
(C) The problem to be solved by the invention In the method for manufacturing a hydrogen storage alloy electrode described above, the discharge capacity of the battery is insufficient when the battery is configured so that the surface area of the electrode is not sufficiently large and the electrolyte does not easily penetrate, Further, there is a problem that an initial activation process of the electrodes is required at the time of manufacturing the battery and the battery manufacturing process becomes complicated.

この発明は、上記問題を解決するためになされたもの
であって、電極の表面積が十分に大きく電解液が浸み込
み易くかつ電池作製時に電極の初期活性化工程を省略す
ることのできる水素吸蔵合金電極の製造方法を提供しよ
うとするものである。
The present invention has been made in order to solve the above-mentioned problems, and the surface area of the electrode is sufficiently large so that the electrolytic solution can easily permeate the hydrogen storage layer, and the initial activation step of the electrode can be omitted when manufacturing the battery. It is intended to provide a method for manufacturing an alloy electrode.

(ニ)課題を解決するための手段 この発明によれば、水素吸蔵性合金粉末とシリコーン
系樹脂とを該シリコーン系樹脂が流動しうる条件で混合
し、この混合物を所定の形状になるように流動させ固化
して成形物とし、この後にこの成形物を40〜60気圧の加
圧水素ガス雰囲気中に配置することによってこの成形物
に水素を貯蔵させると共に多数の微細なクラックを発生
させて水素吸蔵合金電極を作製することを特徴とする水
素吸蔵合金電極の製造方法が提供される。
(D) Means for Solving the Problems According to the present invention, the hydrogen-storing alloy powder and the silicone-based resin are mixed under the condition that the silicone-based resin can flow, and the mixture is formed into a predetermined shape. It is made to flow and solidifies into a molded product, and then this molded product is placed in a pressurized hydrogen gas atmosphere of 40 to 60 atm to store hydrogen in this molded product and generate many fine cracks to absorb hydrogen. There is provided a method for producing a hydrogen storage alloy electrode, which comprises producing an alloy electrode.

この発明においては、水素吸蔵性合金粉末とシリコー
ン系樹脂とを該シリコーン系樹脂が流動しうる条件で混
合する。上記水素吸蔵性合金は、電池の負極を構成する
ためのものであって、負極活性物質として用いることの
できるものが適しており、電池の動作温度域で適当な水
素の平衡解離圧を有する合金、例えばLaNi5,MmNi5或は
その合金に他の元素(Al,Co,Mn等)を添加した希土類系
合金、TiNi,Ti2Ni,TiNi2,TiMn等のチタン系合金、ZrNi2
等のジリコニウム系合金等を用いることができる。
In the present invention, the hydrogen-absorbing alloy powder and the silicone resin are mixed under the condition that the silicone resin can flow. The above-mentioned hydrogen storage alloy is for forming a negative electrode of a battery, and it is suitable that it can be used as a negative electrode active material, and an alloy having an appropriate equilibrium dissociation pressure of hydrogen in the operating temperature range of the battery. , For example, LaNi 5 , MmNi 5 or alloys thereof with other elements (Al, Co, Mn, etc.) added, rare earth alloys, TiNi, Ti 2 Ni, TiNi 2 , TiMn, etc. titanium alloys, ZrNi 2
A zirconium-based alloy or the like can be used.

上記高分子結着剤であるシリコーン系樹脂は、電池の
負極を構成するためのものであって、水素吸蔵性合金粉
末を結着して所定の形状に成形できかつ成形物に微細な
クラックの発生しやすいものであり、耐アルカリ性を有
し、ペースト状であることが好ましい。上記混合は、用
いるシリコーン系樹脂が室温でペースト状の場合は、通
常希釈剤なしに室温にて行うことができ、用いるシリコ
ーン系樹脂が室温で高粘稠性又は固体の場合は、希釈剤
によって適当な粘度を有するペーストとするか又は適当
な粘度になるまで加熱して行うことができる。この混合
割合は、水素吸蔵性合金/シリコーン系樹脂を重量比
で、通常100/5〜100/30とするのが好ましい。
The above-mentioned polymer binder, which is a silicone-based resin, is for constituting a negative electrode of a battery, and is capable of forming a predetermined shape by binding hydrogen-absorbing alloy powder and forming fine cracks in the formed product. It is likely to occur, has alkali resistance, and is preferably in paste form. The above-mentioned mixing can be usually carried out at room temperature without a diluent when the silicone resin used is a paste at room temperature, and when the silicone resin used is highly viscous or solid at room temperature, it may be mixed with a diluent. It can be carried out by forming a paste having an appropriate viscosity or by heating until the paste has an appropriate viscosity. The mixing ratio of hydrogen storage alloy / silicone resin is preferably 100/5 to 100/30 in weight ratio.

この発明においては、この混合物を所定の形状になる
ように流動させ固化して成形物とする。上記混合物は、
製造を意図する電池の種類によって異なるが、通常金属
ネット、金属箔等の集電体上に流動させて塗布するか電
極の形状又はシート状の形状になるように金型に流動さ
せて用いることができる。
In the present invention, this mixture is fluidized so as to have a predetermined shape and solidified to form a molded product. The above mixture is
Depending on the type of battery intended to be manufactured, it is usually applied by flowing it onto a current collector such as a metal net or metal foil, or by flowing it into a mold so as to form the shape of an electrode or sheet. You can

この発明においては、この後にこの成形物を加圧水素
ガス雰囲気中に配置することによってこの成形物に水素
を吸蔵させると共に多数の微細なクラックを発生させ
る。上記加圧水素ガス雰囲気は、この成形物に水素を吸
蔵させると共に多数の微細なクラックを発生させるため
のものであって、真空にすることにできる脱気装置と水
素を加圧状態に供給することのできる水素供給装置とを
有する反応チャンバーを用い、この反応チャンバー内に
上記成形物を配置し、通常10-3Torr以下になるまで脱気
した後、温度によって変化するが、通常25℃では40〜60
気圧となるように水素ガスを供給して形成することがで
きる。上記加圧水素ガス雰囲気中への成形物の配置は、
反応チャンバー内に導入した水素ガスの圧力が成形物の
水素吸蔵によって減少しその後平衡に到達するまで行
う。この加圧水素ガス雰囲気中での処理によって、上記
成形物は、水素を吸蔵し、これに伴って成形物を構成す
る水素吸蔵性合金に体積膨張が起こりそのストレスによ
って多数の微細なクラック(マイクロクラック)が発生
する。得られた成形物は、例えばアルカリ二次電池の負
極を構成することができる。
In the present invention, thereafter, the molded product is placed in a pressurized hydrogen gas atmosphere so that the molded product absorbs hydrogen and many fine cracks are generated. The above-mentioned pressurized hydrogen gas atmosphere is for causing hydrogen to be absorbed in this molded product and for generating many fine cracks, and a deaerator capable of making a vacuum and supplying hydrogen to a pressurized state. Using a reaction chamber having a hydrogen supply device capable of performing the above, the above-mentioned molded product is placed in this reaction chamber, and it is usually degassed to 10 -3 Torr or less, and then it changes depending on the temperature, but usually at 25 ° C, it is 40 ~ 60
It can be formed by supplying hydrogen gas at atmospheric pressure. Placement of the molded article in the pressurized hydrogen gas atmosphere,
The process is repeated until the pressure of the hydrogen gas introduced into the reaction chamber decreases due to the absorption of hydrogen in the molded product and then equilibrium is reached. By the treatment in this pressurized hydrogen gas atmosphere, the above-mentioned molded product occludes hydrogen, and accompanying this, volume expansion occurs in the hydrogen-absorbing alloy constituting the molded product, and the stress causes a large number of fine cracks (microcracks). ) Occurs. The obtained molded product can form the negative electrode of an alkaline secondary battery, for example.

(ホ)作用 成形物の加圧水素ガス雰囲気中への配置が、成形物
に、水素ガスを吸蔵せさこれに伴って成形物を構成する
水素吸蔵性合金に体積膨張を起こしそのストレスによっ
て多数の微細なクラックを発生させる。また、クラック
の発生により生じた電極の未被毒部分にはシリコーン系
樹脂により被膜が形成され、電極の被毒化が抑制される
こととなる。
(E) Action The arrangement of the molded product in the pressurized hydrogen gas atmosphere causes the molded product to occlude hydrogen gas, which causes a volume expansion of the hydrogen-storing alloy constituting the molded product, which causes a large number of stresses. Generates fine cracks. In addition, a coating film made of silicone resin is formed on the non-poisoned portion of the electrode caused by the generation of cracks, and the poisoning of the electrode is suppressed.

(ヘ)実施例 実施例1 本発明の実施例を第1図を用いて説明する。水素吸蔵
合金としてLaNi4.5Al0.5粉末(粒径44μ以下)10重量
部、高分子結着剤として1液型RTVシリコンポリマー
(信越シリコーン社製KE−45)2.8重量部を混合混練し
電極合剤ペーストとする。アルミ箔(厚さ15μm)1上
に集電体のニッケル金網(50メッシュ)2を載置し、電
極合剤ペースト3を10cm2あたり2.9g塗布する。塗布さ
れた電極合剤ペーストの硬化後0.1M KOH水溶液に浸漬し
てアルミ箔を除去し、水洗し、厚さ1080μmの水素吸蔵
合金電極シートを得た。この電極シートを直径15mmで打
ち抜いて成形する。次にこの成形物を内容積20cm3のジ
ーベルツ装置の反応管に入れ、10-3Torrまで真空脱気し
た後反応管内に水素ガスを導入する。導入直後水素ガス
圧力は、60気圧であるが、3時間平衡に達した時には56
気圧となる。再び10-3Torrまで真空脱気した後、水素を
導入する。導入直後圧力は60気圧で、2時間後の平衡到
達時圧力は56気圧である。10-3Torrまで最終脱気し、大
気リークして反応管から取り出して水素吸蔵合金電極を
製造した。この水素吸蔵合金電極のSEM写真を第2図に
示す。電極表面にマイクロクラック(微細亀裂)が入っ
ているのが観察される。また、ジーベルツ装置中上記成
形物に水素を吸蔵させる時に平衡に到達するまでの時間
と系内圧力の関係を第4図に示す。第4図Aは1回目の
水素吸蔵時、第4図Bは2回目の水素吸蔵時、第4図C
は水素吸蔵性合金LaNi4.5Al0.5粉末(粒径44μ以下)0.
4gの1回目と2回目の水素加圧時間と系内圧力の関係で
ある。水素吸蔵合金をシリコンポリマーで担持してなる
シート電極は、2回目の水素吸蔵時のほうが1回目の水
素吸蔵時よりも平衡に到達するのが早い。第4図Cの水
素吸蔵性合金粉末だけの水素加圧時の平衡到達時間が、
1回目、2回目共に等しい曲線をトレースすることから
考えると、シート電極の場合水素吸蔵時の平衡到達時間
が早くなったことは、単に水素吸蔵合金が活性化された
だけではなく第2図のSEM写真に示した様に、電極表面
に微細なクラックが入ったためである。この微細なクラ
ックが入った水素吸蔵合金電極の負極と、正極にニッケ
ル電極(直径15mm、厚さ1080μm)、セパレータにナイ
ロン不織布(厚さ200μm)、電解液に7.2M KOH水溶液
を用いてコイン型のニッケル−水素二次電池を作製し
た。負極容量は正極容量の2倍とした。この電池の1サ
イクル目の放電電極を第5図のDに示す。充電はi=15
mAで8時間行い、放電はi=2.5mA(1.0Vcut)で行っ
た。又、測定温度は25℃である。
(F) Example 1 An example of the present invention will be described with reference to FIG. 10 parts by weight of LaNi 4.5 Al 0.5 powder (particle size 44 μm or less) as a hydrogen storage alloy and 2.8 parts by weight of one-component RTV silicone polymer (KE-45 manufactured by Shin-Etsu Silicone Co., Ltd.) as a polymer binder were mixed and kneaded to prepare an electrode mixture. Use as a paste. A nickel wire mesh (50 mesh) 2 as a current collector is placed on an aluminum foil (thickness 15 μm) 1 and 2.9 g of an electrode mixture paste 3 is applied per 10 cm 2 . After the applied electrode mixture paste was cured, it was immersed in a 0.1 M KOH aqueous solution to remove the aluminum foil and washed with water to obtain a hydrogen storage alloy electrode sheet having a thickness of 1080 μm. This electrode sheet is punched and formed with a diameter of 15 mm. Next, this molded product is put into a reaction tube of a Sibelts apparatus having an internal volume of 20 cm 3 , vacuum degassed to 10 −3 Torr, and then hydrogen gas is introduced into the reaction tube. Immediately after the introduction, the hydrogen gas pressure is 60 atm.
It becomes atmospheric pressure. After degassing again to 10 -3 Torr in vacuum, hydrogen is introduced. The pressure immediately after the introduction is 60 atm, and the pressure when the equilibrium is reached after 2 hours is 56 atm. Final degassing was performed up to 10 -3 Torr, air was leaked, and the hydrogen storage alloy electrode was manufactured by taking out from the reaction tube. A SEM photograph of this hydrogen storage alloy electrode is shown in FIG. It is observed that the electrode surface has microcracks. FIG. 4 shows the relationship between the time required to reach equilibrium and the pressure in the system when hydrogen is stored in the molded product in the Sibelts apparatus. FIG. 4A shows the first hydrogen storage, FIG. 4B shows the second hydrogen storage, and FIG. 4C.
Is a hydrogen storage alloy LaNi 4.5 Al 0.5 powder (particle size 44μ or less) 0.
It is the relationship between the hydrogen pressurization time of the 1st time and the 2nd time of 4 g, and the system internal pressure. A sheet electrode formed by supporting a hydrogen storage alloy with a silicon polymer reaches equilibrium faster during the second hydrogen storage than during the first hydrogen storage. The equilibrium arrival time of the hydrogen-absorbing alloy powder of FIG.
Considering that the same curve is traced both at the first time and the second time, the fact that the equilibrium arrival time at the time of hydrogen storage is faster in the case of the sheet electrode is not only the activation of the hydrogen storage alloy but also that of FIG. This is because fine cracks were formed on the electrode surface as shown in the SEM photograph. Coin type using the negative electrode of this hydrogen storage alloy electrode with minute cracks, the nickel electrode (diameter 15 mm, thickness 1080 μm) as the positive electrode, nylon nonwoven fabric (thickness 200 μm) as the separator, and 7.2 M KOH aqueous solution as the electrolyte. The nickel-hydrogen secondary battery of was produced. The negative electrode capacity was twice the positive electrode capacity. The discharge electrode in the first cycle of this battery is shown in D of FIG. Charge is i = 15
The discharge was performed at mA for 8 hours, and the discharge was performed at i = 2.5 mA (1.0 Vcut). The measurement temperature is 25 ° C.

比較例1 実施例1において、ジーベルツ装置を用いて気相中で
水素の吸蔵を行う代わりに水素の吸蔵を行わず、この他
は実施例1と同様にして、水素吸蔵合金電極を製造し、
この水素吸蔵合金電極を用いて同様にしてコイン型電池
を作製した。負極のSEM写真を第3図に示す。気相中で
水素の吸蔵を行っていないので、微細なクラックは観察
されない。その電池の放電曲線の1サイクル目を第5図
のE1、2サイクル目を第5図のE2に示す。充放電条件、
測定温度は実施例と同じである。
Comparative Example 1 In Example 1, a hydrogen storage alloy electrode was produced in the same manner as in Example 1, except that hydrogen was not stored instead of storing hydrogen in the gas phase using a Sibelts apparatus.
A coin-type battery was manufactured in the same manner by using this hydrogen storage alloy electrode. A SEM photograph of the negative electrode is shown in FIG. Since hydrogen was not stored in the gas phase, fine cracks were not observed. The first cycle of the discharge curve of the battery is shown as E 1 in FIG. 5, and the second cycle is shown as E 2 in FIG. Charge and discharge conditions,
The measurement temperature is the same as in the example.

この様に、水素吸蔵性合金粉末を高分子結着剤で担持
してなる電極を、気相中で水素の吸蔵を行った電極は電
池組み立て後1サイクル目から充分に放電容量を引き出
す事ができ、電池特性の向上がみられた。尚、本実施例
では水素の吸蔵は2回行ったが、1回でも効果はある。
In this way, the electrode formed by carrying the hydrogen-absorbing alloy powder with the polymer binder, and the electrode that has absorbed hydrogen in the gas phase, can sufficiently bring out the discharge capacity from the first cycle after the battery is assembled. It was possible, and the battery characteristics were improved. In the present example, hydrogen was occluded twice, but even once it is effective.

(ト)発明の効果 以上の様に、本発明によれば、活物質である水素吸蔵
性合金の活性化ができ電池組立て後の充放電による初期
活性化工程を省略することができ、電極表面にできる微
細なクラックによって電極表面積を増加して電解液を浸
み込み易くでき、1サイクル目から充分に放電容量を引
き出す事ができる水素吸蔵合金電極の製造方法を提供す
ることができる。しかも、クラックの発生により生じた
電極の未被毒部分に、シリコーン系樹脂により被膜が形
成されるため、電極における被毒化を抑制することがで
き、初期活性な状態を長期にわたり維持することが可能
となる。従って、放電容量の高い二次電池を簡略化され
た工程で製造することができ、工業的価値が大きい。
(G) Effect of the Invention As described above, according to the present invention, the hydrogen storage alloy that is an active material can be activated, and the initial activation step by charging / discharging after battery assembly can be omitted. It is possible to provide a method for producing a hydrogen storage alloy electrode in which the electrode surface area can be increased by the fine cracks that can be formed, the electrolyte solution can be easily penetrated, and the discharge capacity can be sufficiently derived from the first cycle. Moreover, since a coating film is formed on the unpoisoned portion of the electrode caused by the crack by the silicone resin, poisoning of the electrode can be suppressed and the initial active state can be maintained for a long time. Becomes Therefore, a secondary battery having a high discharge capacity can be manufactured in a simplified process, which is of great industrial value.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の実施例で作製した水素吸蔵合金電
極の製造工程説明図、第2図は、この発明の実施例で作
製した水素吸蔵合金電極の図であって、微細なクラック
が多数存在する表面の拡大図、第3図は、従来の水素吸
蔵合金電極の図であって、微細なクラックがほとんど存
在しない表面の拡大図、第4図は、この発明の実施例で
作成した水素吸蔵合金シートをジーベルツ装置中で水素
加圧したときの水素加圧時間−系内圧力曲線図、第5図
はこの発明の実施例及び比較例で作製した電池の放電曲
線である。 1……アルミ箔、2……集電体、 3……電極合剤、 A……ジーベルツ装置中でのシート電極の水素加圧時間
−系内圧力曲線(1回目)、 B……ジーベルツ装置中でのシート電極の水素加圧時間
−系内圧力曲線(2回目)、 C……水素吸蔵合金LaNi4.5Al0.5粉末(粒径44μ以下)
0.4gの水素加圧時間−系内圧力曲線(1,2回目)、 D……実施例で作製した電池の放電曲線(1サイクル
目)、 E1……比較例で作製した電池の放電曲線(1サイクル
目)、 E2……比較例で作製した電池の放電曲線(2サイクル
目)。
FIG. 1 is an explanatory diagram of a manufacturing process of a hydrogen storage alloy electrode manufactured in an embodiment of the present invention, and FIG. 2 is a view of a hydrogen storage alloy electrode manufactured in an embodiment of the present invention, in which fine cracks are An enlarged view of a large number of surfaces, FIG. 3 is a view of a conventional hydrogen storage alloy electrode, and an enlarged view of a surface on which almost no fine cracks are present, and FIG. 4 are prepared in the embodiment of the present invention. FIG. 5 is a hydrogen pressure time-in-system pressure curve diagram when the hydrogen storage alloy sheet is hydrogen-pressurized in a Sibelts apparatus, and FIG. 5 is a discharge curve of the batteries produced in Examples and Comparative Examples of the present invention. 1 ... Aluminum foil, 2 ... Current collector, 3 ... Electrode mixture, A ... Hydrogen pressurization time of sheet electrode in the Sibelts device-system pressure curve (first time), B ... Sibelts device Pressurization time of the sheet electrode in the chamber-system pressure curve (second time), C ... Hydrogen storage alloy LaNi 4.5 Al 0.5 powder (particle size 44μ or less)
Between 0.4g hydrogen pressurization - system pressure curve (1, 2 th), D ...... discharge curve (first cycle) of the cell fabricated in Example, discharge curves of batteries fabricated in E 1 ...... Comparative Example (1st cycle), E 2 ... Discharge curve (2nd cycle) of the battery manufactured in the comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 裕久 東京都渋谷区富ケ谷2―28―4 学校法人 東海大学内 (72)発明者 松村 義人 東京都渋谷区富ケ谷2―28―4 学校法人 東海大学内 (56)参考文献 特開 昭63−264869(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Hirohisa Uchida 2-28-4 Tomigaya, Shibuya-ku, Tokyo Tokai University (72) Yoshito Matsumura 2-28-4 Tomigaya, Shibuya-ku, Tokyo Tokai University (56) Reference JP-A-63-264869 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵性合金粉末とシリコーン系樹脂と
を該シリコーン系樹脂が流動しうる条件で混合し、この
混合物を所定の形状になるように流動させ固化して成形
物とし、この後にこの成形物を40〜60気圧の加圧水素ガ
ス雰囲気中に配置することによってこの成形物に水素を
貯蔵させると共に多数の微細なクラックを発生させて水
素吸蔵合金電極を作製することを特徴とする水素吸蔵合
金電極の製造方法。
1. A hydrogen-absorbing alloy powder and a silicone-based resin are mixed under conditions that allow the silicone-based resin to flow, and the mixture is fluidized and solidified into a predetermined shape to form a molded product, after which By placing this molded product in a pressurized hydrogen gas atmosphere of 40 to 60 atm to store hydrogen in this molded product and generate a number of fine cracks to produce a hydrogen storage alloy electrode. Manufacturing method of storage alloy electrode.
JP2125972A 1990-05-15 1990-05-15 Manufacturing method of hydrogen storage alloy electrode Expired - Fee Related JPH0834099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2125972A JPH0834099B2 (en) 1990-05-15 1990-05-15 Manufacturing method of hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2125972A JPH0834099B2 (en) 1990-05-15 1990-05-15 Manufacturing method of hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH0422063A JPH0422063A (en) 1992-01-27
JPH0834099B2 true JPH0834099B2 (en) 1996-03-29

Family

ID=14923551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2125972A Expired - Fee Related JPH0834099B2 (en) 1990-05-15 1990-05-15 Manufacturing method of hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH0834099B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728523B (en) 2001-09-17 2013-04-10 川崎重工业株式会社 Active material for cell and its manufacturing method
TWI440664B (en) * 2007-02-05 2014-06-11 Asahi Kasei E Materials Corp Hydrogen storage alloy and resin composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763008B2 (en) * 1987-10-23 1995-07-05 松下電器産業株式会社 Manufacturing method of hydrogen storage electrode

Also Published As

Publication number Publication date
JPH0422063A (en) 1992-01-27

Similar Documents

Publication Publication Date Title
JPH0834099B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH05205746A (en) Collector for electrode, and manufacture thereof hydrogen occlusion electrode using this collector, and nickel-hydrogen storage battery
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JPS59181459A (en) Metal oxide hydrogen battery
JPH0447676A (en) Manufacture of sealed storage battery
JP3755841B2 (en) Magnesium-based hydrogen storage material and method for producing the same
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JPH06302319A (en) Manufacture of hydrogen storage electrode and metal oxide-hydrogen storage battery having electrode
JP3171401B2 (en) Hydride rechargeable battery
JP2875822B2 (en) Method for manufacturing nickel-hydrogen secondary battery
JP2548431B2 (en) Nickel-metal hydride battery conversion method
JPS60109174A (en) Manufacture of hydrogen absorption electrode
JP2003229134A (en) Fuel cell
JPH10251791A (en) Hydrogen storage alloy, cathode for battery and alkaline secondary battery
JP3369838B2 (en) Hydrogen storage alloy electrode
JP3272226B2 (en) Hydrogen storage alloy electrode
JP2673337B2 (en) Air-metal hydride secondary battery
JP3501382B2 (en) Hydrogen storage alloy negative electrode and method for producing the same
JP2002180229A (en) Hydrogen storage alloy compound material, its manufacturing method, and electrode using it
JPH02183964A (en) Manufacture of hydrogen storage electrode
JP3146063B2 (en) Metal oxide / hydrogen secondary batteries
JPH05258750A (en) Manufacture of hydrogen storage alloy electrode
JPS62154582A (en) Manufacture of sealed metal oxide-hydrogen storage battery
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery
JPH1012228A (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees