JPH0833845A - Catalyst for purifying exhaust gas and purifying method of exhaust gas - Google Patents
Catalyst for purifying exhaust gas and purifying method of exhaust gasInfo
- Publication number
- JPH0833845A JPH0833845A JP6192797A JP19279794A JPH0833845A JP H0833845 A JPH0833845 A JP H0833845A JP 6192797 A JP6192797 A JP 6192797A JP 19279794 A JP19279794 A JP 19279794A JP H0833845 A JPH0833845 A JP H0833845A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- purifying
- containing layer
- nox
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、内燃機関、ボイラー、
ガスタービン等から排出される排気ガス、特に過剰酸素
が共存する窒素酸化物を含む排気ガスの浄化用触媒及び
該排気ガスの浄化方法に関する。BACKGROUND OF THE INVENTION The present invention relates to an internal combustion engine, a boiler,
The present invention relates to a catalyst for purifying exhaust gas discharged from a gas turbine or the like, particularly an exhaust gas containing nitrogen oxides in which excess oxygen coexists, and a method for purifying the exhaust gas.
【0002】[0002]
【従来の技術】内燃機関等から大気中に排出される窒素
酸化物(NOx)は、光化学スモッグや酸性雨の原因と
なる。従って、かかる窒素酸化物の排出を防止すること
が環境保全の点から緊急に求められている。近年、地球
温暖化防止へ向け、二酸化炭素(CO2 )の排出抑制が
求められている。そこで、化学量論量に相当する空燃比
(A/F=14.6)よりも大きな空燃比でガソリンの
燃焼反応を行わせることができる希薄燃焼エンジン(リ
ーンバーンガソリンエンジン)の実用化が要望されてい
る。しかし、このリーンバーンガソリンエンジンからの
排気ガスの処理には従来のガソリン車の排気ガス処理に
用いられてきた、空燃比を化学量論量(A/F=14.
6)付近に制御してPt−Rh/Al2 O3 系触媒を用
いてNOxを一酸化炭素(CO)及び炭化水素(HC)
と同時に除去する三元触媒(TWC)法は有効ではな
い。また、ディ−ゼルエンジンは本来希薄燃焼であり、
やはりNOxの除去が求められている。2. Description of the Related Art Nitrogen oxides (NOx) emitted from the atmosphere of internal combustion engines and the like cause photochemical smog and acid rain. Therefore, it is urgently required to prevent the discharge of such nitrogen oxides from the viewpoint of environmental protection. In recent years, suppression of carbon dioxide (CO 2 ) emission has been required to prevent global warming. Therefore, there is a demand for the practical application of a lean-burn engine (lean-burn gasoline engine) capable of causing a gasoline combustion reaction with an air-fuel ratio larger than the air-fuel ratio (A / F = 14.6) corresponding to the stoichiometric amount. Has been done. However, in treating the exhaust gas from this lean burn gasoline engine, the air-fuel ratio, which has been used for treating the exhaust gas of a conventional gasoline vehicle, is stoichiometric (A / F = 14.
6) NOx is converted to carbon monoxide (CO) and hydrocarbons (HC) using a Pt-Rh / Al 2 O 3 -based catalyst by controlling to near 6).
A three-way catalyst (TWC) method that removes at the same time is not effective. In addition, the diesel engine is a lean burn by nature,
After all, the removal of NOx is required.
【0003】このようなリーンバーンガソリンエンジン
やディーゼルエンジン等の希薄燃焼方式のエンジンを総
称してリーンバーンエンジンと呼ぶ。リーンバーンエン
ジンの排気ガス中のNOxを除去するための触媒とし
て、近年、銅イオン交換ゼオライト触媒(例えば特開昭
63−100919号公報)、貴金属イオン交換ゼオラ
イト触媒(例えば特開平1−135541号公報)等の
種々のゼオライト系触媒が提案されている。しかし、こ
れらの触媒は650〜700℃の高温では排気ガスに含
まれる水蒸気のために数時間で不可逆な失活が起こり実
用に耐えない。Lean-burn engines such as lean-burn gasoline engines and diesel engines are collectively called lean-burn engines. As a catalyst for removing NOx in the exhaust gas of a lean burn engine, in recent years, a copper ion exchange zeolite catalyst (for example, JP-A-63-100919) and a noble metal ion exchange zeolite catalyst (for example, JP-A-1-135541). ) And other various zeolite-based catalysts have been proposed. However, these catalysts cannot be put to practical use at high temperatures of 650 to 700 ° C., because of the water vapor contained in the exhaust gas, irreversible deactivation occurs within a few hours.
【0004】また、別のNOx除去のための触媒とし
て、Pt、Pd、Rh、Ir、Ru等の貴金属元素がア
ルミナ、シリカ、チタニア、ジルコニア等の多孔質金属
酸化物担体に担持された触媒(特開平3−221144
号公報、特開平3−293035号公報)も報告されて
いる。しかし、この担持貴金属触媒は、貴金属の強い酸
化触媒活性のためにNOxの還元剤となるベき炭化水素
(HC)〔本明細書において、「炭化水素」の語は、狭
義の炭化水素のみならず、その部分酸化物である酸素化
炭化水素、例えばアルコール類、ケトン類等を含むもの
を意味する〕が、過剰に存在する酸素と優先的に反応
し、NOx還元反応の選択性を高められないという問題
がある。As another catalyst for removing NOx, a catalyst in which a noble metal element such as Pt, Pd, Rh, Ir, Ru is supported on a porous metal oxide carrier such as alumina, silica, titania, zirconia ( JP-A-3-221144
Japanese Patent Laid-Open No. Hei 3-293035). However, this supported noble metal catalyst is a hydrocarbon (HC) which becomes a reducing agent for NOx due to the strong oxidation catalytic activity of the noble metal [in this specification, the term "hydrocarbon" means a hydrocarbon in a narrow sense]. The oxygenated hydrocarbon, which is a partial oxide thereof, such as those containing alcohols, ketones and the like], reacts preferentially with oxygen present in excess to enhance the selectivity of the NOx reduction reaction. There is a problem that there is no.
【0005】本出願人は、最近、金属炭化物及び金属窒
化物から選ばれる少なくとも一種からなる担体にイリジ
ウムが担持されてなる触媒が、過剰量の酸素存在下でも
NOxに対する炭化水素による還元選択性を高めること
を見いだした(特開平6−31173号公報)。しか
し、この触媒のNOx除去能は酸素及び炭化水素濃度に
対する依存性が高いために、特に、高酸素濃度条件下、
又は低炭化水素濃度条件下では必ずしも十分にNOxを
除去することができないことがある。The present applicant has recently found that a catalyst in which iridium is supported on a carrier composed of at least one selected from metal carbides and metal nitrides has a reduction selectivity by hydrocarbons for NOx even in the presence of excess oxygen. It has been found that the level is increased (JP-A-6-31173). However, since the NOx removing ability of this catalyst is highly dependent on the oxygen and hydrocarbon concentrations, under high oxygen concentration conditions, in particular,
Alternatively, it may not always be possible to sufficiently remove NOx under low hydrocarbon concentration conditions.
【0006】[0006]
【発明の解決すベき課題】本発明は、上記従来の排気ガ
ス処理用触媒の課題を解決すベくなされたものであり、
その目的とするところは、炭化水素を含む還元性成分と
該還元性成分全てを完全酸化するのに要する化学量論量
より過剰の酸素(O2 )と窒素酸化物(NOx)とを含
有する排気ガスに対して、低炭化水素濃度条件下であっ
ても、より一層高いNOx除去率と水分共存下での高温
耐久性を示す排気ガス浄化用触媒を提供することにあ
る。SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the conventional exhaust gas treatment catalysts described above.
Its purpose is to contain a reducing component containing hydrocarbons and oxygen (O 2 ) and nitrogen oxides (NOx) in excess of the stoichiometric amount required to completely oxidize all the reducing components. An object of the present invention is to provide an exhaust gas purifying catalyst that exhibits a higher NOx removal rate and high temperature durability in the presence of water even under low hydrocarbon concentration conditions.
【0007】[0007]
【課題を解決するための手段】本発明者らは、炭化硅素
からなる担体上に、イリジウムとニッケルとを共存担持
させてなる触媒が、かかる課題を解決するものであるこ
とを見いだした。以下、本発明の排気ガス浄化用触媒に
ついて詳細に説明する。The present inventors have found that a catalyst comprising iridium and nickel coexistingly supported on a carrier made of silicon carbide solves such a problem. Hereinafter, the exhaust gas purifying catalyst of the present invention will be described in detail.
【0008】担体 本発明の触媒の担体としては、炭化硅素が使用される。
安価に入手できるものとして、例えば粒径0.1〜10
0μm程度の粉末又はウィスカーとして市販されている
ものが使用できる。 Carrier Silicon carbide is used as a carrier for the catalyst of the present invention.
Those that can be obtained at low cost, for example, have a particle size of 0.1 to 10
A commercially available powder or whiskers of about 0 μm can be used.
【0009】従来、排気ガス浄化用Ir触媒は、多孔
性、高比表面積の金属酸化物担体に高分散度、微小粒径
で担持されたものが用いられた〔例えば、K. C. Taylor
and J. C. Schlaher, J. Catal, 63(1)53-71(1980)
〕。これに対し、本発明の触媒は、担体が金属酸化物
ではなく、炭化硅素であるために、高温、水蒸気共存下
で過剰の酸素を含む排気ガス中のNOxに対し転化反応
の高選択性と長寿命を示すというユニークな特徴を示
す。さらに、本発明において担体として用いられる炭化
硅素は低比表面積、非多孔質であることが好ましく、具
体的には25m2 /g以下(特に5〜20m2 /g)のB.E.
T.比表面積と0.5 cm3 /g以下(特に0.2 〜0.8cm3 /g)
の細孔容積を有することが好ましい。Conventionally, an Ir catalyst for exhaust gas purification has been used in which a metal oxide carrier having a porous surface and a high specific surface area is supported with a high dispersity and a fine particle size [eg, KC Taylor.
and JC Schlaher, J. Catal, 63 (1) 53-71 (1980)
]. On the other hand, the catalyst of the present invention has high selectivity of the conversion reaction with respect to NOx in the exhaust gas containing excess oxygen at high temperature and in the presence of steam, because the carrier is silicon carbide instead of metal oxide. It has the unique feature of having a long life. Further, the silicon carbide used as a carrier in the present invention preferably has a low specific surface area and is non-porous, specifically, a BE of 25 m 2 / g or less (particularly 5 to 20 m 2 / g).
T. Specific surface area and 0.5 cm 3 / g or less (especially 0.2-0.8 cm 3 / g)
It is preferable to have a pore volume of.
【0010】活性成分 本発明の触媒では、上記の担体に、Irと、Niとが共
存担持される。担持されたIrの存在状態は特に限定さ
れない。Irの存在状態としては、例えば、金属状態;
IrO、Ir2 O3 、IrO2 等の酸化物状態;これら
の状態が混在した状態等が挙げられる。これらのIr
は、担体上に、Ni元素とともに分散担持されることが
好ましい。分散担持されたIrは、粉末法X線回折法で
観察される結晶子径が2〜100nmの範囲が好まし
く、より好ましくは5〜20nmである。結晶子径が小
さすぎると、還元剤となるHC及びCOのO2 による酸
化反応が進み過ぎ好ましくない。結晶子径が大き過ぎる
と担持量の割には得られる触媒活性が低い。Irの担体
ヘの担持量は、触媒全体に対して、金属イリジウム換算
で0.1〜10.0重量%が好ましく、0.5〜5.0
重量%がより好ましい。少な過ぎると触媒の活性自体が
低すぎ、多過ぎると還元剤と酸素との反応が進み過ぎ、
NOx還元の選択性が低下する。 Active ingredient In the catalyst of the present invention, Ir and Ni are coexistently supported on the above carrier. The state of existence of the carried Ir is not particularly limited. The existing state of Ir is, for example, a metallic state;
An oxide state of IrO, Ir 2 O 3 , IrO 2 or the like; a state in which these states are mixed and the like can be mentioned. These Ir
Is preferably dispersed and supported together with the Ni element on the carrier. The dispersed and supported Ir preferably has a crystallite diameter observed by a powder X-ray diffraction method of 2 to 100 nm, more preferably 5 to 20 nm. If the crystallite size is too small, the oxidation reaction of HC and CO serving as a reducing agent with O 2 proceeds undesirably. If the crystallite size is too large, the catalytic activity obtained is low relative to the amount supported. The amount of Ir supported on the carrier is preferably 0.1 to 10.0% by weight in terms of metal iridium, and 0.5 to 5.0 with respect to the whole catalyst.
Weight percent is more preferred. If it is too small, the activity of the catalyst itself is too low, and if it is too large, the reaction between the reducing agent and oxygen proceeds too much,
The NOx reduction selectivity is reduced.
【0011】また、本発明の触媒において、担持された
Niの存在状態も特に制限されない。Niの存在状態と
しては、例えば、金属状態;NiOの酸化物状態;これ
らの状態が混在した状態等が挙げられる。Niの担持量
は、好ましくはイリジウムに対し原子比で0.1〜20
倍であり、より好ましくは0.2〜10倍である。Ni
の量が少な過ぎると、IrにNiを併用する効果が得ら
れない。また、Niの担持量が多過ぎると、得られる触
媒の初期活性が低下し、かつ、NOx転化率のライトオ
フ温度が高温側ヘシフトし、低温での活性が低下する。Further, in the catalyst of the present invention, the state of existence of supported Ni is not particularly limited. Examples of the existing state of Ni include a metallic state; an oxide state of NiO; and a state in which these states are mixed. The supported amount of Ni is preferably 0.1 to 20 in atomic ratio with respect to iridium.
It is double, and more preferably 0.2 to 10 times. Ni
If the amount is too small, the effect of using Ni in combination with Ir cannot be obtained. On the other hand, if the amount of Ni supported is too large, the initial activity of the resulting catalyst will decrease, and the light-off temperature of the NOx conversion will shift to the high temperature side, decreasing the activity at low temperatures.
【0012】触媒の調製法 本発明の触媒の調製方法は特に限定されず、従来公知の
方法が適用される。例えばIrの原料塩とNiの原料塩
との均一混合溶液を、担体である炭化硅素に含浸させ、
乾燥後、焼成する等して、IrとNiの同時担持法で調
製される。あるいは、まずIrの原料塩を上記担体に含
浸させ、乾燥後焼成してIrの不溶性化合物又はIr金
属として該担体上に固定化した後、Niの原料塩を含浸
させ、再び乾燥、焼成することにより結果的に担体上
に、IrとNiとを共存担持せしめる。又は、その逆
に、まずNiを担持固定化した後、Irを担持固定化さ
せる等の各種の逐次担持法が適用される。 Preparation Method of Catalyst The preparation method of the catalyst of the present invention is not particularly limited, and a conventionally known method is applied. For example, a homogeneous mixed solution of a raw material salt of Ir and a raw material salt of Ni is impregnated into silicon carbide as a carrier,
After drying, firing and the like are carried out to prepare by the simultaneous loading method of Ir and Ni. Alternatively, the raw material salt of Ir is first impregnated into the above carrier, dried and baked to immobilize on the carrier as an insoluble compound of Ir or Ir metal, and then impregnated with the raw material salt of Ni, dried and baked again. As a result, Ir and Ni are coexisted and supported on the carrier. Alternatively, on the contrary, various sequential loading methods such as first loading and fixing Ni and then loading and fixing Ir are applied.
【0013】本発明の触媒の調製において、イリジウム
及びNiの出発原料には特に制約は無い。イリジウムの
出発原料としては、例えば、三塩化イリジウム(IrC
l3)、塩化イリジウム酸(H2 IrCl6 )、塩化イ
リジウム酸ナトリウム(Na3 IrCl6 )、同(Na
2 IrCl6 )、硝酸イリジウム(Ir(N
O3 )4)、硫酸イリジウム(Ir(SO4 )2 )等の
イリジウムの水溶性塩が使用される。また、Ir3 (C
O)12等のIrの金属カルボニル、IrCl(CO)(PPh3 )2
等のIrの有機金属錯体をヘキサン、アセトン、クロロ
ホルム、エタノール等の有機溶媒に溶かして用いてもよ
い。ニッケルの出発原料としては、例えば、Niの塩化
物、硝酸塩、硫酸塩、酢酸塩等が使用できる。中でも、
水溶媒ヘの溶解度が大きい硝酸塩が特に好ましい。In the preparation of the catalyst of the present invention, there are no particular restrictions on the starting materials for iridium and Ni. Examples of the starting material of iridium include iridium trichloride (IrC).
l 3 ), chloroiridate (H 2 IrCl 6 ), sodium chloroiridate (Na 3 IrCl 6 ), the same (Na
2 IrCl 6 ), iridium nitrate (Ir (N
Water-soluble salts of iridium such as O 3 ) 4 ) and iridium sulfate (Ir (SO 4 ) 2 ) are used. Also, Ir 3 (C
O) 12, such as Ir metal carbonyl, IrCl (CO) (PPh 3 ) 2
The organometallic complex of Ir, etc. may be dissolved in an organic solvent such as hexane, acetone, chloroform, ethanol or the like and used. As the nickel starting material, for example, Ni chloride, nitrate, sulfate, acetate, etc. can be used. Above all,
A nitrate having a high solubility in a water solvent is particularly preferable.
【0014】上記、同時担持法、あるいは逐次担持法に
おいて、担体上に触媒前駆体として担持されたIr化合
物及び/又はNiの化合物の焼成分解時の雰囲気は、前
駆体の種類によって、空気中、真空中、窒素等不活性ガ
ス気流中あるいは水素気流中等、適宜選択される。焼成
温度は300〜1000℃が好ましく、より好ましくは
600〜900℃である。焼成時間は、適宜選定すれば
よいが、通常10分〜20時間程度でよく、好ましくは
30分〜5時間程度である。また、焼成は複数の処理を
段階的に組み合わせて行ってもよい。例えば、空気中6
00〜800℃で焼成後、水素気流中600〜900 ℃
で還元処理してもよい。In the above-described simultaneous loading method or sequential loading method, the atmosphere during the firing decomposition of the Ir compound and / or the Ni compound loaded as the catalyst precursor on the carrier depends on the kind of the precursor, in air, A vacuum, a flow of an inert gas such as nitrogen, or a flow of hydrogen is appropriately selected. The firing temperature is preferably 300 to 1000 ° C, more preferably 600 to 900 ° C. The firing time may be appropriately selected, but is usually about 10 minutes to 20 hours, preferably about 30 minutes to 5 hours. Further, the firing may be performed by combining a plurality of treatments stepwise. For example, 6 in the air
After firing at 00-800 ℃, 600-900 ℃ in hydrogen stream
May be reduced.
【0015】排気ガスの浄化方法 本発明によれば、上記の触媒を用いた、内燃機関等の排
気ガスの浄化方法も提供される。即ち、本発明は、炭化
水素を含む還元性成分と、該還元性成分全てを完全酸化
するのに要する化学量論量より過剰の、酸素及び窒素酸
化物を含む酸化性成分とを含有する排気ガスを、触媒含
有層と接触させることからなる該排気ガスの浄化方法に
おいて、該触媒含有層に含まれる触媒が上記の触媒であ
る方法を提供する。この方法によって、該排気ガス中の
窒素酸化物が窒素(N2 )と水(H2 O)とに選択的に
還元分解されるとともに、排気ガス中の炭化水素及び一
酸化炭素(CO)からなる還元性成分は二酸化炭素(C
O2 )と水(H2 O)ヘと酸化される。 Exhaust Gas Purification Method According to the present invention, there is also provided an exhaust gas purification method for an internal combustion engine or the like using the above catalyst. That is, the present invention relates to an exhaust gas containing a reducing component containing hydrocarbon and an oxidizing component containing oxygen and nitrogen oxide in excess of the stoichiometric amount required to completely oxidize all the reducing component. A method for purifying the exhaust gas, which comprises contacting a gas with a catalyst-containing layer, wherein the catalyst contained in the catalyst-containing layer is the above catalyst. By this method, nitrogen oxides in the exhaust gas are selectively reductively decomposed into nitrogen (N 2 ) and water (H 2 O), and at the same time, hydrocarbons and carbon monoxide (CO) in the exhaust gas are removed. The reducing component is carbon dioxide (C
O 2 ) and water (H 2 O).
【0016】触媒含有層 本発明の触媒を上記の排気ガス浄化方法に使用する際の
触媒含有層の形態は特に制限されない。例えば、該方法
に用いられる触媒含有層は、前記の触媒のみから構成さ
れていてもよい。この場合には、通常、一定空間内に触
媒を充填する方法、所定の形状に触媒を成形する方法等
が考えられる。所定の形状に触媒を成形する場合は、該
触媒を、適当なバインダーと混合し、又はバインダー無
しで適当な一定の形状、に成形するとよい。また、Ir
とNiとの担持処理を行うに先立って担体を予め適当な
形状に成形しておいてもよい。成形触媒の形状は特に制
限されず、例えば、球状、ペレット状、円筒状、ハニカ
ム状、ラセン状、粒状、リング状等が挙げられる。形
状、大きさ等は使用条件に応じて任意に選択することが
できる。The form of the catalyst-containing layer when the catalyst of the catalyst-containing layer present invention for use in an exhaust gas purification method described above is not particularly limited. For example, the catalyst-containing layer used in the method may be composed of only the above-mentioned catalyst. In this case, usually, a method of filling the catalyst in a fixed space, a method of molding the catalyst into a predetermined shape, and the like can be considered. When the catalyst is formed into a predetermined shape, the catalyst may be mixed with an appropriate binder or formed into an appropriate fixed shape without the binder. Also, Ir
The carrier may be preliminarily formed into an appropriate shape before carrying out the supporting process of Ni and Ni. The shape of the shaped catalyst is not particularly limited, and examples thereof include a spherical shape, a pellet shape, a cylindrical shape, a honeycomb shape, a spiral shape, a granular shape, and a ring shape. The shape, size, etc. can be arbitrarily selected according to the usage conditions.
【0017】あるいは、触媒含有層は、触媒を耐火性材
料からなる支持基質の表面に被覆してなる触媒被覆構造
体で構成してもよい。該触媒被覆構造体としては、例え
ば、該支持基質を排気ガスの流れの方向に配置される多
数の貫通孔を有するように成形し、少なくともその貫通
孔の内表面に触媒を被覆してなるもの等が考えられる。
さらに、このような支持基質には、その流れ方向に垂直
な断面で見たときに、通常、開孔率60〜90%、好ま
しくは70〜90%で、1平方インチ(5.06c
m2 )当り30〜700個、好ましくは200〜600
個の貫通孔が設けられていることが好ましい。上記の支
持基質としては、例えば、コージェライト、ムライト等
のセラミックスや、ステンレス等の金属をハニカム状や
発泡体に一体成形したもの等が挙げられる。Alternatively, the catalyst-containing layer may be composed of a catalyst-coated structure obtained by coating the surface of a supporting substrate made of a refractory material with a catalyst. As the catalyst coating structure, for example, the supporting substrate is formed so as to have a large number of through holes arranged in the exhaust gas flow direction, and at least the inner surface of the through holes is coated with the catalyst. Etc. are possible.
In addition, such support substrates typically have a porosity of 60 to 90%, preferably 70 to 90%, and a square inch (5.06 c) when viewed in a cross section perpendicular to the flow direction.
30-700 per m 2 ), preferably 200-600
It is preferable that individual through holes are provided. Examples of the above-mentioned support substrate include ceramics such as cordierite and mullite, and a metal such as stainless steel integrally formed into a honeycomb shape or a foam.
【0018】触媒被覆構造体の製造に際しては、上記の
支持基質の表面に、本発明の触媒を適当なバインダーと
共に、又はバインダー無しで被覆(例えばウォッシュコ
ート)して用いるとよい。また、上記の支持基質に、予
め担体のみを触媒を用いた場合と同様な方法で被覆し、
得られる担体のみを被覆した支持基質にIrとNiとの
担持処理を行って触媒被覆構造体を製造してもよい。支
持基質上ヘの触媒の被覆量は特に制約はなく、好ましく
は支持基質単位体積当たり50〜200g/L、より好
ましくは80〜160g/Lである。支持基質単位体積
当たりのIr担持量は好ましくは0.05〜20.0g
/L、より好ましくは、0.3〜10.0g/Lであ
り、Niの担持量は、好ましくは原子比でIrの0.1
〜20倍、より好ましくは0.2〜10倍である。In the production of the catalyst-coated structure, the catalyst of the present invention may be coated (eg, wash-coated) with or without a suitable binder on the surface of the above-mentioned supporting substrate. In addition, the above-mentioned supporting substrate is previously coated only with a carrier in the same manner as in the case of using a catalyst,
The support substrate coated only with the obtained carrier may be subjected to a supporting treatment with Ir and Ni to produce a catalyst-coated structure. The coating amount of the catalyst on the supporting substrate is not particularly limited, and is preferably 50 to 200 g / L, more preferably 80 to 160 g / L per unit volume of the supporting substrate. The amount of Ir carried per unit volume of the supporting substrate is preferably 0.05 to 20.0 g.
/ L, more preferably 0.3 to 10.0 g / L, and the supported amount of Ni is preferably 0.1 of Ir in terms of atomic ratio.
˜20 times, more preferably 0.2 to 10 times.
【0019】バインダーとしては、例えば、アルミナゾ
ル、シリカゾル、チタニアゾル等の慣用の無機質バイン
ダーを使用することができる。支持基質上ヘの触媒粉末
の被覆は、例えば、触媒粉末にアルミナゾルと水とを加
え、混練してスラリーを形成し、この中ヘ支持基質を浸
漬した後、乾燥、焼成して行うことができる。As the binder, for example, a commonly used inorganic binder such as alumina sol, silica sol, titania sol can be used. The coating of the catalyst powder on the supporting substrate can be performed, for example, by adding alumina sol and water to the catalyst powder, kneading to form a slurry, and immersing the supporting substrate in the slurry, followed by drying and firing. .
【0020】上記触媒含有層を流れる排気ガスのガス空
間速度には特に制約はなく、好ましくは空間速度 5,000
〜 200,000/hr、より好ましくは10,000〜 150,000/hr
である。該空間速度が低すぎると大容量の触媒が必要に
なり、また高すぎるとNOx除去率が低下する。また、
NOxの選択的還元が起こるための、排気ガスの触媒含
有層入口温度は、好ましくは200〜700℃であり、
より好ましくは300〜600℃である。この温度が、
低過ぎるとNOxの転化率が立ち上がらず、高過ぎると
NOx還元の選択率が低下する。The gas space velocity of the exhaust gas flowing through the catalyst-containing layer is not particularly limited, and the space velocity is preferably 5,000.
~ 200,000 / hr, more preferably 10,000 ~ 150,000 / hr
Is. If the space velocity is too low, a large amount of catalyst is required, and if it is too high, the NOx removal rate decreases. Also,
The catalyst-containing layer inlet temperature of the exhaust gas for the selective reduction of NOx is preferably 200 to 700 ° C.,
More preferably, it is 300 to 600 ° C. This temperature is
If it is too low, the NOx conversion rate will not rise, and if it is too high, the NOx reduction selectivity will decrease.
【0021】本発明の排気ガスの浄化方法が対象とする
排気ガスは、酸化性成分と還元性成分との重量比A/F
は化学量論量(A/F=14.6)よりも、還元性成分
過少側(A/F>14.6)であることが好ましい。本
発明の触媒は化学量論量付近でもNOx除去性能を発揮
するが、その本領が発揮されるのはA/F>17の酸素
過剰雰囲気においてである。このような酸素過剰雰囲気
では、従来の貴金属触媒はいずれも著しく不充分なNO
x還元選択性しか示さなかった。これに対し、本発明の
触媒は、A/F>17、例えばO2 濃度>3%の領域に
おいて充分高いNOx除去率を示す。さらに、本発明の
触媒は、A/F>24、例えばO2 濃度>10%の高酸
素濃度域においても、外部からの還元剤HCの追加添加
無しで、排気ガス中のHCのみによって十分なNOx還
元能を示す。また、エンジンの仕様によっては排気ガス
中に含まれるHCが比較的少ない〔THC(メタンに換
算した炭化水素濃度)/NOx=3程度〕こともある
が、本発明の触媒はこのようなHC濃度が比較的少ない
条件下でも十分なNOx還元能を発揮する。The exhaust gas targeted by the exhaust gas purification method of the present invention is a weight ratio A / F of an oxidizing component and a reducing component.
Is preferably on the smaller reducing component side (A / F> 14.6) than the stoichiometric amount (A / F = 14.6). The catalyst of the present invention exhibits NOx removal performance even in the vicinity of the stoichiometric amount, but its main advantage is exhibited in an oxygen excess atmosphere with A / F> 17. In such an oxygen-rich atmosphere, the conventional noble metal catalysts are all extremely deficient in NO.
Only x reduction selectivity was shown. On the other hand, the catalyst of the present invention shows a sufficiently high NOx removal rate in the region of A / F> 17, for example, O 2 concentration> 3%. Further, the catalyst of the present invention is sufficient even with A / F> 24, for example, a high oxygen concentration region of O 2 concentration> 10%, without the additional addition of a reducing agent HC from the outside, by using only HC in the exhaust gas. It shows NOx reduction ability. Further, depending on the engine specifications, the amount of HC contained in the exhaust gas may be relatively small [THC (hydrocarbon concentration converted into methane) / NOx = about 3], but the catalyst of the present invention has such an HC concentration. A sufficient NOx reduction ability is exhibited even under conditions where the amount of oxygen is relatively small.
【0022】[0022]
【作用】本発明の触媒に接触させることにより、排気ガ
ス中のNOxは、排気ガス中に共存するHC、CO及び
場合によって追加添加されたHC等を還元剤として、N
2 とH2 Oとに還元分解される。活性金属であるIr
が、共存するNiと共に炭化硅素からなる担体の表面上
に安定した状態で担持されているため、排気ガス中のH
C、CO等の還元剤とNOxとの反応の選択性が向上す
ると共に、熱劣化に対する耐久性も向上するものと推定
される。その結果、排気ガス中のNOxが長期に亘って
効率よく除去される。By contacting with the catalyst of the present invention, NOx in the exhaust gas is converted to N by using HC and CO coexisting in the exhaust gas and optionally added HC as a reducing agent.
It is reductively decomposed into 2 and H 2 O. Ir which is an active metal
However, since H is stably supported on the surface of a carrier made of silicon carbide together with coexisting Ni, H in the exhaust gas is
It is presumed that the selectivity of the reaction between the reducing agent such as C and CO and NOx is improved, and the durability against heat deterioration is also improved. As a result, NOx in the exhaust gas is efficiently removed over a long period of time.
【0023】[0023]
【実施例】以下、本発明を実施例により詳しく説明す
る。比較例に係る触媒、触媒被覆構造体及び触媒含有層
には星印(*)を付す。 (触媒の製造)実施例1〔Ir−Ni/SiC触媒被覆ハニカム(A−
1)の製造例〕 (a) 粉末担体へのIr−Niの担持 市販のSiC粉末( LONZA社製、B.E.T.比表面積15m
2 /g、細孔容積 0.54cm3 /g)130g に脱イオン水
2.6Lを加え20分間攪拌しSiC粉末スラリーを得
た。このスラリーに、金属イリジウム1.56gに相当
する塩化イリジウム酸(H2 IrCl6 )を含む脱イオ
ン水溶液160mLと、金属ニッケル0.48gに相当
する硝酸ニッケル・6水和物(Ni(NO3 )2 ・6H
2 O)を含む脱イオン水溶液160mLとの混合溶液を
添加した後、スチームジャケット付きグラスライニング
ディシュ上に移し、攪拌しながら4時間に亘って水分を
蒸発させた。こうして得られた残渣の固形物を電気乾燥
器により105℃で16時間乾燥した後粉砕し、得られ
た粉砕物を石英トレーに入れ電気炉で空気中、800℃
で2時間焼成した。その後さらに、得られた焼成粉末を
100%水素気流中、900℃で2時間還元処理して
1.2重量%Ir−0.4重量%Ni〔Ir/Ni=1
/1(原子比)〕/SiC触媒の粉末を得た。(b) ハニカムへのウオッシュコート (a) で得られた触媒紛末30gに脱イオン水60g及び
アルミナゾル(Al2O3 固形分10重量%含有)4.
0gを加え、得られた混合物をボールミルにて5時間湿
式粉砕し、触媒のスラリーを得た。このスラリーに市販
の400セルコージェライトハニカムからくり貫かれた
直径1インチ×長さ2.5インチのコアを浸漬して、こ
のコアに触媒を付着させ、余分のスラリーを空気ブロー
で除去した後、300℃で20分間乾燥し、さらに、5
00℃で30分間焼成してハニカム容積1リッター当た
り触媒が130g被覆されたIr−Ni/SiC触媒被
覆ハニカム(Aー1)を得た。EXAMPLES The present invention will be described in detail below with reference to examples. A star (*) is attached to the catalyst, the catalyst coating structure, and the catalyst-containing layer according to the comparative example. (Production of catalyst) Example 1 [Ir-Ni / SiC catalyst-coated honeycomb (A-
Production Example of 1)] (a) Support of Ir-Ni on Powder Carrier Commercially available SiC powder (manufactured by LONZA, BET specific surface area 15 m
2.6 L of deionized water was added to 130 g of 2 / g, pore volume 0.54 cm 3 / g) and stirred for 20 minutes to obtain a SiC powder slurry. 160 mL of a deionized aqueous solution containing iridium chloride (H 2 IrCl 6 ) corresponding to 1.56 g of metal iridium, and nickel nitrate hexahydrate (Ni (NO 3 )) corresponding to 0.48 g of metal nickel were added to this slurry. 2 · 6H
After adding a mixed solution with 160 mL of a deionized aqueous solution containing 2 O), the mixture was transferred onto a glass lined dish with a steam jacket, and water was evaporated with stirring for 4 hours. The residue solid thus obtained was dried for 16 hours at 105 ° C by an electric dryer and then pulverized, and the obtained pulverized product was placed in a quartz tray in an electric furnace at 800 ° C in air.
It was baked for 2 hours. Thereafter, the obtained calcined powder was further reduced in a 100% hydrogen stream at 900 ° C. for 2 hours to obtain 1.2 wt% Ir-0.4 wt% Ni [Ir / Ni = 1.
/ 1 (atomic ratio)] / SiC catalyst powder was obtained. (b) 30 g of catalyst powder obtained by washcoating (a ) on honeycomb, 60 g of deionized water and alumina sol (containing 10% by weight of Al 2 O 3 solid content) 4.
0 g was added, and the resulting mixture was wet-milled for 5 hours with a ball mill to obtain a catalyst slurry. A core of 1 inch in diameter and 2.5 inches in length hollowed from a commercially available 400-cell cordierite honeycomb was immersed in this slurry, a catalyst was attached to this core, and excess slurry was removed by air blowing. Dry at 300 ° C for 20 minutes, then 5
By firing at 00 ° C. for 30 minutes, an Ir—Ni / SiC catalyst-coated honeycomb (A-1) coated with 130 g of catalyst per 1 liter of honeycomb volume was obtained.
【0024】実施例2〔Ir−Ni/SiC触媒被覆ハ
ニカム(A−2)の製造例〕 (a) 炭化硅素粉末のハニカムへのウオッシュコート 実施例1(b) の触媒粉末の代わりに、炭化硅素粉末を用
いる以外は実施例1(b) と同様にして、ハニカム1L当
たりドライ換算で130gの炭化硅素を被覆したハニカ
ムコアピースを得た。(b) Ir−Niの担持 Ir分9.98gを含む塩化イリジウム酸とNi分3.
07gを含む硝酸ニッケルとの脱イオン水溶液1000
mLに実施例2(a) で得られた炭化硅素被覆済ハニカム
コアピースを浸漬し、室温にて3分間保持、吸水率分の
IrとNiの混合溶液を含浸させた。エアブローで余分
のIrとNiの混合溶液を除去し、乾燥した後、電気炉
で空気中、800℃で2時間焼成した。その後さらに、
得られた焼成物を100%水素気流中、900℃で2時
間還元処理してIr−Ni/SiC触媒被覆ハニカム
(A−2)〔1.2重量%Ir−0.4重量%Ni〔I
r/Ni=1/1(原子比)〕/SiC〕を得た。 Example 2 [Ir-Ni / SiC catalyst coated ha
Production Example of Nicam (A-2)] (a) Washcoat of Silicon Carbide Powder on Honeycomb Same as Example 1 (b) except that silicon carbide powder is used instead of the catalyst powder of Example 1 (b). Then, a honeycomb core piece coated with 130 g of silicon carbide in terms of dry per 1 L of honeycomb was obtained. (b) Ir-Ni supported iridium chlorate containing 9.98 g of Ir content and Ni content 3.
Deionized aqueous solution 1000 with nickel nitrate containing 07 g
The silicon carbide-coated honeycomb core piece obtained in Example 2 (a) was immersed in mL, kept at room temperature for 3 minutes, and impregnated with a mixed solution of Ir and Ni for water absorption. The excess Ir and Ni mixed solution was removed by air blowing, and after drying, it was baked in an electric furnace in air at 800 ° C. for 2 hours. After that,
The obtained calcined product was subjected to reduction treatment at 900 ° C. for 2 hours in a 100% hydrogen stream, and Ir-Ni / SiC catalyst coated honeycomb (A-2) [1.2 wt% Ir-0.4 wt% Ni [I
r / Ni = 1/1 (atomic ratio)] / SiC] was obtained.
【0025】実施例3〔Ir−Ni/SiC触媒被覆ハ
ニカム(A−3)の製造例〕 実施例1(a) において、水素気流中、900℃で2時間
還元処理する代わりに、水素気流中、700℃で2時間
還元処理した以外は実施例1と同様にしてIr−Ni/
SiC触媒被覆ハニカム(A−3)を得た。 Example 3 [Ir-Ni / SiC catalyst coated ha
Production Example of Nicam (A-3)] Example 1 except that, in Example 1 (a), reduction treatment was performed at 700 ° C. for 2 hours in hydrogen stream instead of reduction treatment at 900 ° C. for 2 hours in hydrogen stream. Ir-Ni /
A SiC catalyst-coated honeycomb (A-3) was obtained.
【0026】実施例4〔Ir−Ni/SiC触媒被覆ハ
ニカム(A−4)の製造例〕 実施例1(a) において、水素気流中、900℃で2時間
還元処理を行わず、実施例1(b) において、500℃で
30分間焼成後に水素気流中、900℃で2時間還元処
理を行う以外は実施例1と同様にしてIr−Ni/Si
C触媒被覆ハニカム(A−4)を得た。 Example 4 [Ir-Ni / SiC catalyst coated ha
Production Example of Nicam (A-4)] In Example 1 (a), reduction treatment was not performed at 900 ° C. for 2 hours in hydrogen gas flow, and in Example 1 (b), hydrogen gas flow was performed after firing at 500 ° C. for 30 minutes. Ir-Ni / Si in the same manner as in Example 1 except that the reduction treatment was performed at 900 ° C. for 2 hours.
A C catalyst-coated honeycomb (A-4) was obtained.
【0027】実施例5〔Ir−Ni/SiC触媒被覆ハ
ニカム(A−5)の製造例〕 実施例4において、SiC粉末の量を121g、金属イ
リジウムの量を5.2g、金属ニッケルの量を1.60
gにした以外は実施例4と同様にしてIr−Ni/Si
C触媒被覆ハニカム(A−5)〔4.0重量%Ir−
1.3重量%Ni〔Ir/Ni=1/1(原子比)〕/
SiC〕を得た。 Example 5 [Ir-Ni / SiC catalyst coated ha
Production Example of Nicam (A-5)] In Example 4, the amount of SiC powder was 121 g, the amount of metallic iridium was 5.2 g, and the amount of metallic nickel was 1.60.
Ir-Ni / Si in the same manner as in Example 4 except that g was changed to g.
C catalyst coated honeycomb (A-5) [4.0 wt% Ir-
1.3 wt% Ni [Ir / Ni = 1/1 (atomic ratio)] /
SiC] was obtained.
【0028】実施例6〔Ir−Ni/SiC触媒被覆ハ
ニカム(A−6)の製造例〕 実施例1(a) において、市販のSiC粉末の量を126
g、金属ニッケルの量を4.80gにした以外は実施例
1と同様にしてIr−Ni/SiC触媒被覆ハニカム
(A−6)〔1.2重量%Ir−4.0重量%Ni〔I
r/Ni=1/10(原子比)〕/SiC〕を得た。 Example 6 [Ir-Ni / SiC catalyst coated ha
Production Example of Nicam (A-6)] In Example 1 (a), the amount of commercially available SiC powder was 126
g, and the amount of metallic nickel was set to 4.80 g in the same manner as in Example 1 Ir-Ni / SiC catalyst coated honeycomb (A-6) [1.2 wt% Ir-4.0 wt% Ni [I
r / Ni = 1/10 (atomic ratio)] / SiC] was obtained.
【0029】比較例1〔Ir/SiC触媒被覆ハニカム
(B−1* )の製造例〕 実施例1(a) において、塩化イリジウム酸と硝酸ニッケ
ルとの混合溶液の代わりに、金属イリジウム1.56g
に相当する塩化イリジウム酸(H2 IrCl6)を含む
脱イオン水溶液160mLのみを用いた以外は実施例1
と同様にしてIr/SiC触媒被覆ハニカム(B−
1* )(1.2重量%Ir/SiC)を得た。 Comparative Example 1 [Ir / SiC catalyst coated honeycomb
Production Example of (B-1 * )] In Example 1 (a), 1.56 g of metal iridium was used instead of the mixed solution of iridium chloride and nickel nitrate.
Example 1 except that only 160 mL of a deionized aqueous solution containing chloroiridate (H 2 IrCl 6 ) corresponding to
In the same manner as in Ir / SiC catalyst coated honeycomb (B-
1 * ) (1.2 wt% Ir / SiC) was obtained.
【0030】比較例2〔Ir/SiC触媒被覆ハニカム
(B−2* )の製造例〕 実施例2(b) において、塩化イリジウム酸と硝酸ニッケ
ルとの混合溶液の代わりに、金属イリジウム9.98g
に相当する塩化イリジウム酸を含む脱イオン水溶液10
00mLを用いた以外は実施例2と同様にしてIr/S
iC触媒被覆ハニカム(B−2* )(1.2重量%Ir
/SiC)を得た。 Comparative Example 2 [Ir / SiC catalyst coated honeycomb
Production Example of (B-2 * )] In Example 2 (b), instead of the mixed solution of iridium chloride and nickel nitrate, 9.98 g of metal iridium was used.
Deionized aqueous solution containing chloroiridate corresponding to
Ir / S in the same manner as in Example 2 except that 00 mL was used.
iC catalyst coated honeycomb (B-2 * ) (1.2 wt% Ir
/ SiC) was obtained.
【0031】比較例3〔Ni/SiC触媒被覆ハニカム
(B−3* )の製造例〕 実施例1(a) において、塩化イリジウム酸と硝酸ニッケ
ルとの混合溶液の代わりに、金属ニッケル0.48gに
相当する硝酸ニッケル・6水和物(Ni(NO3 )2 ・
6H2 O)を含む脱イオン水溶液160mLを用いた以
外は実施例1と同様にしてNi/SiC触媒被覆ハニカ
ム(B−3* )(0.4重量%Ni/SiC)を得た。 Comparative Example 3 [Ni / SiC catalyst coated honeycomb
Production Example of (B-3 * )] In Example 1 (a), in place of the mixed solution of iridium chloride and nickel nitrate, nickel nitrate hexahydrate (Ni ( NO 3 ) 2・
Ni / SiC catalyst-coated honeycomb (B-3 * ) (0.4 wt% Ni / SiC) was obtained in the same manner as in Example 1 except that 160 mL of a deionized aqueous solution containing 6H 2 O) was used.
【0032】比較例4〔Ir−Ni/Al2 O3 触媒被
覆ハニカム(B−4* )の製造例〕 実施例1(a) においてSiC紛末の代わりに市販のAl
2 O3 粉末(住友化学製、B.E.T.比表面積160m2 /
g)130gを用いた以外は、実施例1と同様にしてI
r−Ni/Al2 O3 触媒被覆ハニカム(B−4* )
〔1.2重量%Ir−0.4重量%Ni〔Ir/Ni=
1/1(原子比)〕/Al2 O3 〕を得た。 Comparative Example 4 [Ir-Ni / Al 2 O 3 catalyst coating]
Production Example of Covered Honeycomb (B-4 * )] In Example 1 (a), commercially available Al was used instead of SiC powder.
2 O 3 powder (manufactured by Sumitomo Chemical, BET specific surface area 160 m 2 /
g) I in the same manner as in Example 1 except that 130 g was used.
r-Ni / Al 2 O 3 catalyst coated honeycomb (B-4 * )
[1.2 wt% Ir-0.4 wt% Ni [Ir / Ni =
1/1 (atomic ratio)] / Al 2 O 3 ] was obtained.
【0033】(性能評価)以下の各性能評価例におい
て、触媒含有層は、上記の実施例で調製された触媒被覆
ハニカムを充填して構成した。以下の記載において、例
えば実施例1の触媒被覆ハニカムA−1からなる触媒含
有層を「触媒含有層A−1」のごとく記述する。(Performance Evaluation) In each of the following performance evaluation examples, the catalyst-containing layer was formed by filling the catalyst-coated honeycomb prepared in the above Examples. In the following description, for example, the catalyst-containing layer made of the catalyst-coated honeycomb A-1 of Example 1 is described as “catalyst-containing layer A-1”.
【0034】性能評価例1〔モデルガスによるライトオ
フ性能評価−(1)〕 本発明の実施例の触媒含有層A−1及び比較例の触媒含
有層B−1* の各々について、下記組成のリーンバーン
エンジンモデル排気ガス(A)をガス空間速度SV60,0
00/hrで流しながら、触媒含有層入口ガス温度を150
℃から500℃まで連続して昇温させ、その間に触媒含
有層出口で流出するガス中のCO、HC及びNOxの濃
度を連続的に測定しライトオフ性能(触媒含有層入口ガ
ス温度と転化率の関係)を評価した。触媒含有層A−1
についての結果を図1に示し、比較例の触媒含有層B−
1* についての結果を図2に示す。 Performance Evaluation Example 1 [Lite on with model gas
Performance Evaluation- (1)] For each of the catalyst-containing layer A-1 of the example of the present invention and the catalyst-containing layer B-1 * of the comparative example, a lean burn engine model exhaust gas (A) having the following composition was used as a gas space. Speed SV60,0
While flowing at 00 / hr, the catalyst-containing layer inlet gas temperature was set to 150
The temperature is continuously raised from ℃ to 500 ℃, during which the concentration of CO, HC and NOx in the gas flowing out at the outlet of the catalyst containing layer is continuously measured to determine the light-off performance (catalyst containing layer inlet gas temperature and conversion rate). Relationship) was evaluated. Catalyst-containing layer A-1
The results are shown in FIG. 1, and the catalyst-containing layer B-
The results for 1 * are shown in FIG.
【0035】 [0035]
【0036】図1から、実施例1の触媒A−1を用いた
触媒含有層A−1は、300〜500℃でCO、HC、
NOxの3成分すベてを良好な転化率で排気ガスから除
去できることがわかる。他方、図2から、比較例1の触
媒B−1* を用いた触媒含有層B−1* は、HCとCO
とを400℃以上の温度で良好に転化できるものの、N
Oxの転化率は実施例1の触媒含有層A−1と比較して
著しく劣ることがわかる。As shown in FIG. 1, the catalyst-containing layer A-1 using the catalyst A-1 of Example 1 has CO, HC, and
It can be seen that all of the three NOx components can be removed from the exhaust gas with good conversion. On the other hand, as shown in FIG. 2, the catalyst-containing layer B-1 * using the catalyst B-1 * of Comparative Example 1 was composed of HC and CO.
Although it can convert satisfactorily at a temperature of 400 ° C or higher,
It can be seen that the Ox conversion rate is significantly inferior to that of the catalyst-containing layer A-1 of Example 1.
【0037】性能評価例2(NOx転化率の酸素濃度依
存性評価) 酸素濃度が、それぞれ、3.2%,5.0%,7.5
%,10.0%及び14.0%と異なるほかは前記のモ
デル排気ガス(A)と同一組成である5種のモデル排気
ガスを用いた以外は性能評価例1と同様にして触媒含有
層A−1及び触媒含有層B−1* のライトオフ性能を評
価し、ライトオフ性能曲線を求めた。得られた各酸素濃
度におけるライトオフ性能曲線の最大NOx転化率(ラ
イトオフ性能曲線の極大値)をプロットした結果を図3
に示す。図3から、触媒含有層A−1が酸素濃度3.2
%(この場合、A/F=17相当)から酸素濃度14%
(この場合、A/F=38相当)にわたり高い最大NO
x転化率を保持していることがわかる。これに対し、触
媒含有層B−1* の最大NOx転化率は、酸素濃度の増
加に従い急激に減少し、特に酸素濃度5%以上の酸素濃
度域では、著しく低下することがわかる。本発明の触媒
は酸素濃度3.2%(A/F=17相当)から14.0
%(A/F=38相当)までの広い酸素濃度範囲に亘っ
てNOx転化率が高く、酸素濃度依存性が少ないことが
示された。 Performance Evaluation Example 2 (Depending on the oxygen concentration of the NOx conversion rate)
Existence evaluation) Oxygen concentration is 3.2%, 5.0%, 7.5, respectively.
%, 10.0% and 14.0%, except that 5 kinds of model exhaust gas having the same composition as the above model exhaust gas (A) were used, and the catalyst containing layer was prepared in the same manner as in Performance Evaluation Example 1. The light-off performance of A-1 and the catalyst-containing layer B-1 * was evaluated, and the light-off performance curve was obtained. The results of plotting the maximum NOx conversion rate (maximum value of the light-off performance curve) of the light-off performance curve at each oxygen concentration obtained are shown in FIG.
Shown in From FIG. 3, the catalyst-containing layer A-1 has an oxygen concentration of 3.2.
% (In this case, A / F = 17) to oxygen concentration 14%
High maximum NO over (A / F = 38 equivalent in this case)
It can be seen that the x conversion is retained. On the other hand, the maximum NOx conversion rate of the catalyst-containing layer B-1 * sharply decreases as the oxygen concentration increases, and in particular, it is significantly reduced in the oxygen concentration range of 5% or more. The catalyst of the present invention has an oxygen concentration of 3.2% (A / F = 17 equivalent) to 14.0.
It was shown that the NOx conversion rate was high and the oxygen concentration dependency was small over a wide oxygen concentration range up to 100% (A / F = 38).
【0038】性能評価例3〔モデルガスによるライトオ
フ性能評価−(2)〕 実施例の触媒を用いた触媒含有層A−1〜A−6及び比
較例の触媒を用いた触媒含有層B−1* 〜B−4* の各
々について、下記組成のリーンバーンガソリンエンジン
モデル排気ガス(B)をガス空間速度SV38,000/hrで
流しながら、触媒含有層入口ガス温度を150℃から7
00℃まで連続して昇温させ、その間に触媒含有層出口
で流出するガスのNOx濃度を連続測定した。 Performance Evaluation Example 3 [Lite on with model gas
Performance evaluation- (2)] For each of the catalyst-containing layers A-1 to A-6 using the catalyst of the example and the catalyst-containing layers B-1 * to B-4 * using the catalyst of the comparative example, Lean-burn gasoline engine model exhaust gas (B) of composition is flowed at a gas space velocity SV38,000 / hr while the catalyst-containing layer inlet gas temperature is changed from 150 ° C to 7 ° C.
The temperature was continuously raised to 00 ° C., and the NOx concentration of the gas flowing out at the outlet of the catalyst-containing layer was continuously measured during that period.
【0039】 [0039]
【0040】表1に触媒含有層A−1〜A−6及びB−
1* 〜B−4* について、最大NOx転化率を示す。表
1の結果から、実施例の触媒含有層A−1〜A−6は、
従来の担持Ir触媒、担持Ni触媒又はIr−Ni/A
l2 O3 触媒を用いた、比較例の触媒含有層(B−
1* 、B−3* 又はB−4* )のいずれと比較しても、
化学量論量より過剰の酸素の存在下で窒素酸化物の転化
率が優れていることがわかる。In Table 1, catalyst-containing layers A-1 to A-6 and B-
The maximum NOx conversion rate is shown for 1 * to B-4 * . From the results of Table 1, the catalyst-containing layers A-1 to A-6 of the examples are
Conventional supported Ir catalyst, supported Ni catalyst or Ir-Ni / A
using l 2 O 3 catalyst, the catalyst-containing layer of the Comparative Example (B-
1 * , B-3 * or B-4 * ),
It can be seen that the conversion of nitrogen oxide is excellent in the presence of oxygen in excess of the stoichiometric amount.
【0041】[0041]
【表1】 [Table 1]
【0042】性能評価例4〔NOx転化率のHC濃度依
存性評価〕 プロピレン濃度が、それぞれ、500ppm、750p
pm、1,000ppm、1,250ppm及び1,5
00ppmと異なるほかは前記のモデル排気ガス(B)
と同一組成である5種のモデル排気ガスを用いた以外は
性能評価例3と同様にして、触媒含有層A−2及び触媒
含有層B−2* のライトオフ性能を評価した。得られた
各プロピレン濃度におけるライトオフ性能曲線の最大N
Ox転化率(ライトオフ性能曲線の最大値)をプロット
した結果を図4に示す。図4から、触媒含有層A−2が
プロピレン濃度1,500ppm(THC/NOx=
9)から500ppm(THC/NOx=3)にわたり
高い最大NOx転化率を保持していることがわかる。こ
れに対し、触媒含有層B−2* の最大NOx転化率は、
プロピレン濃度の減少に従い、急激に減少し、特に、プ
ロピレン濃度1,200ppm以下の濃度域では、著し
く低下することがわかる。本発明の触媒はTHC/NO
x比が9から3までの広いプロピレン濃度範囲に亘って
NOx転化率が高く、HC濃度依存性が少ないことが示
された。 Performance Evaluation Example 4 [Dependence of NOx conversion rate on HC concentration]
Existence evaluation] Propylene concentrations are 500 ppm and 750 p, respectively.
pm, 1,000 ppm, 1,250 ppm and 1,5
Except for the difference from 00ppm, the above model exhaust gas (B)
The light-off performances of the catalyst-containing layer A-2 and the catalyst-containing layer B-2 * were evaluated in the same manner as in Performance Evaluation Example 3 except that 5 types of model exhaust gas having the same composition as the above were used. Maximum N of the light-off performance curve at each propylene concentration obtained
The result of plotting the Ox conversion rate (maximum value of the light-off performance curve) is shown in FIG. From FIG. 4, the catalyst-containing layer A-2 has a propylene concentration of 1,500 ppm (THC / NOx =
It is understood that a high maximum NOx conversion rate is maintained from 9) to 500 ppm (THC / NOx = 3). On the other hand, the maximum NOx conversion rate of the catalyst-containing layer B-2 * is
It can be seen that the propylene concentration sharply decreases as the propylene concentration decreases, and particularly in the concentration range of the propylene concentration of 1,200 ppm or less. The catalyst of the present invention is THC / NO
It was shown that the NOx conversion was high and the HC concentration dependency was small over a wide propylene concentration range in which the x ratio was 9 to 3.
【0043】性能評価例5〔モデル排気ガスによるライ
トオフ性能評価−(3)〕 性能評価例3において実施例の中では最もNOx転化率
の低かった触媒含有層A−5及び比較例の中では最も最
大NOx転化率の高かった触媒含有層B−2*につい
て、高温条件下での耐熱性試験を行った。触媒含有層A
−5及び触媒含有層B−2* について、10%H2 O+
90%空気の混合ガス流通下、700℃及び800℃で
各々5時間エージング処理した後、性能評価例3と同様
にしてNOx転化率の評価を行った。その結果を表2に
示す。エージング処理を全く施さない場合(フレッシ
ュ)の結果も合わせて示す。表2から、触媒含有層B−
2* は、800℃のエージング処理によってNOxの転
化率が73%から56%へ低下した。これに対して触媒
含有層A−5は同じ800℃エージング処理後もNOx
の転化率が61%とフレッシュ時の63%とほぼ同等で
あり、NOx除去能が維持されたことがわかる。従っ
て、本発明の触媒は水蒸気共存下での高温耐久性におい
ても優れていることが示された。 Performance Evaluation Example 5 [Light with model exhaust gas
Tooff Performance Evaluation- (3)] In Performance Evaluation Example 3, the catalyst-containing layer A-5 having the lowest NOx conversion rate among the examples and the catalyst-containing layer B-having the highest maximum NOx conversion rate among the comparative examples. 2 * was subjected to a heat resistance test under high temperature conditions. Catalyst-containing layer A
About 5 and the catalyst-containing layer B-2 *, 10% H 2 O +
After aging treatment at 700 ° C. and 800 ° C. for 5 hours under a mixed gas flow of 90% air, the NOx conversion rate was evaluated in the same manner as in Performance Evaluation Example 3. The results are shown in Table 2. The results when no aging treatment is performed (fresh) are also shown. From Table 2, the catalyst-containing layer B-
In 2 * , the NOx conversion rate decreased from 73% to 56% by the aging treatment at 800 ° C. On the other hand, the catalyst-containing layer A-5 has NOx even after the same 800 ° C aging treatment.
The conversion rate was 61%, which was almost the same as 63% when fresh, indicating that the NOx removal ability was maintained. Therefore, it was shown that the catalyst of the present invention is also excellent in high temperature durability in the presence of steam.
【0044】[0044]
【表2】 [Table 2]
【0045】[0045]
【発明の効果】本発明の排気ガス浄化用触媒は、従来の
排気ガス浄化用触媒に比較して、化学量論量より過剰の
酸素を含有する排気ガスから、酸素や炭化水素の濃度に
よらず、窒素酸化物の高い転化率を示す。さらにこの触
媒は、水分存在下の高温での耐久性にも優れている。従
って、本発明の排気ガス浄化用触媒は、自動車エンジン
のような内燃機関、ボイラー等の酸素及び水蒸気を多量
に含む排気ガス中の窒素酸化物を除去するのに有効であ
る。特に、この触媒は、負荷変動の激しい条件で使用さ
れる車両用リーンバーンエンジンの排気ガス処理用触媒
として有用である。The exhaust gas purifying catalyst of the present invention differs from conventional exhaust gas purifying catalysts in that the exhaust gas containing oxygen in excess of the stoichiometric amount changes the concentration of oxygen and hydrocarbons. In other words, it shows a high conversion rate of nitrogen oxides. Further, this catalyst is also excellent in durability at high temperature in the presence of water. Therefore, the exhaust gas purifying catalyst of the present invention is effective for removing nitrogen oxides in exhaust gas containing a large amount of oxygen and water vapor from internal combustion engines such as automobile engines and boilers. In particular, this catalyst is useful as an exhaust gas treatment catalyst for a lean burn engine for a vehicle used under conditions where load changes are severe.
【図1】触媒含有層A−1のリーンバーンエンジンモデ
ル排気ガス(A)に対する、CO、HC及びNOxのラ
イトオフ特性を示す図である。FIG. 1 is a diagram showing light-off characteristics of CO, HC and NOx with respect to a lean burn engine model exhaust gas (A) of a catalyst containing layer A-1.
【図2】触媒含有層B−1* のリーンバーンエンジンモ
デル排気ガス(A)に対する、CO、HC及びNOxの
ライトオフ特性を示す図である。FIG. 2 is a diagram showing light-off characteristics of CO, HC and NOx with respect to a lean burn engine model exhaust gas (A) of a catalyst containing layer B-1 * .
【図3】触媒含有層A−1及び触媒含有層B−1* の最
高NOx転化率の酸素濃度依存性を示す図である。FIG. 3 is a diagram showing the oxygen concentration dependence of the maximum NOx conversion rates of the catalyst-containing layer A-1 and the catalyst-containing layer B-1 * .
【図4】触媒含有層A−2及び触媒含有層B−2* の最
高NOx転化率のプロピレン濃度依存性を示す図であ
る。FIG. 4 is a diagram showing the propylene concentration dependence of the maximum NOx conversion rates of the catalyst-containing layer A-2 and the catalyst-containing layer B-2 * .
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成6年8月31日[Submission date] August 31, 1994
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0009[Correction target item name] 0009
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0009】従来、排気ガス浄化用Ir触媒は、多孔
性、高比表面積の金属酸化物担体に高分散度、微小粒径
で担持されたものが用いられた〔例えば、K.C.Ta
ylor and J.C.Schlaher,J.C
atal,63(1)53−71(1980)〕。これ
に対し、本発明の触媒は、担体が金属酸化物ではなく、
炭化硅素であるために、高温、水蒸気共存下で過剰の酸
素を含む排気ガス中のNOxに対し転化反応の高選択性
と長寿命を示すというユニークな特徴を示す。さらに、
本発明において担体として用いられる炭化硅素は低比表
面積、非多孔質であることが好ましく、具体的には25
m2/g以下(特に5〜20m2/g)のB.E.T.
比表面積と0.8cm3/g以下(特に0.2〜0.8
cm3/g)の細孔容積を有することが好ましい。Conventionally, an Ir catalyst for purifying exhaust gas has been used, which is supported on a metal oxide carrier having a high porosity and a high specific surface area with a high degree of dispersion and a fine particle size [eg, K. C. Ta
Yor and J. C. Schlaher, J .; C
atal, 63 (1) 53-71 (1980)]. On the other hand, in the catalyst of the present invention, the carrier is not a metal oxide,
Since it is silicon carbide, it has the unique feature of exhibiting high selectivity and long life of the conversion reaction with respect to NOx in the exhaust gas containing excess oxygen in the presence of steam at high temperature. further,
The silicon carbide used as a carrier in the present invention preferably has a low specific surface area and is non-porous, and specifically 25
B. of m 2 / g or less (particularly 5 to 20 m 2 / g). E. FIG. T.
Specific surface area and 0. 8 cm 3 / g or less (especially 0.2 to 0.8
It is preferred to have a pore volume of cm 3 / g).
Claims (4)
とニッケルとを共存担持させてなる排気ガス浄化用触
媒。1. An exhaust gas purifying catalyst comprising iridium and nickel coexistingly supported on a carrier made of silicon carbide.
基質の表面上に被覆された請求項1に記載の触媒からな
る排気ガス浄化用触媒被覆構造体。2. A catalyst-coated structure for purifying exhaust gas comprising the support substrate made of a refractory material and the catalyst according to claim 1 coated on the surface of the support substrate.
成分全てを完全酸化するのに要する化学量論量より過剰
の、酸素及び窒素酸化物を含む酸化性成分とを含有する
排気ガスを、触媒含有層と接触させることからなる該排
気ガスの浄化方法において、該触媒含有層に含まれる触
媒が請求項1に記載の触媒である方法。3. Exhaust gas containing a reducing component containing hydrocarbons and an oxidizing component containing oxygen and nitrogen oxides in excess of the stoichiometric amount required to completely oxidize all the reducing components. In the method for purifying the exhaust gas, which comprises contacting the catalyst with a catalyst-containing layer, the catalyst contained in the catalyst-containing layer is the catalyst according to claim 1.
て、前記の触媒含有層が請求項2の触媒被覆構造体で構
成されている排気ガスの浄化方法。4. The exhaust gas purifying method according to claim 3, wherein the catalyst-containing layer comprises the catalyst-coated structure according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6192797A JPH0833845A (en) | 1994-07-25 | 1994-07-25 | Catalyst for purifying exhaust gas and purifying method of exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6192797A JPH0833845A (en) | 1994-07-25 | 1994-07-25 | Catalyst for purifying exhaust gas and purifying method of exhaust gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0833845A true JPH0833845A (en) | 1996-02-06 |
Family
ID=16297155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6192797A Pending JPH0833845A (en) | 1994-07-25 | 1994-07-25 | Catalyst for purifying exhaust gas and purifying method of exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0833845A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7160839B2 (en) | 2001-01-11 | 2007-01-09 | Ict Co., Ltd. | Catalyst for purifying nitrogen oxides |
-
1994
- 1994-07-25 JP JP6192797A patent/JPH0833845A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7160839B2 (en) | 2001-01-11 | 2007-01-09 | Ict Co., Ltd. | Catalyst for purifying nitrogen oxides |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4012320B2 (en) | Exhaust gas purification catalyst for lean combustion engine | |
US6613299B2 (en) | Catalyzed diesel particulate matter exhaust filter | |
JP5982987B2 (en) | Exhaust gas purification catalyst containing exhaust gas purification catalyst material | |
JPH0631173A (en) | Catalyst for purification of exhaust gas and method for purifying exhaust gas | |
KR20060093102A (en) | A catalyzed diesel particulate matter filter with improved thermal stability | |
WO1997037761A1 (en) | Exhaust gas purifying catalyst and exhaust gas purifying method | |
JP2005000829A (en) | Catalyst for purifying exhaust gas and production method therefor | |
JPH11276907A (en) | Catalyst for purifying exhaust gas and its production | |
JP2007090331A (en) | Catalyst for oxidizing and removing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas | |
JP4330666B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JPH06327945A (en) | Purifying method of exhaust gas | |
JPH0582258B2 (en) | ||
JP2005131551A (en) | Catalyst for purifying exhaust gas | |
JP3609859B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP3626999B2 (en) | Exhaust gas purification material and exhaust gas purification method | |
JP6167834B2 (en) | Exhaust gas purification catalyst | |
JPH0833845A (en) | Catalyst for purifying exhaust gas and purifying method of exhaust gas | |
JP3956158B2 (en) | Nitrogen oxide removal catalyst | |
JP3447513B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JPH07246337A (en) | Catalyst for purification of exhaust gas and method for purifying the same | |
JPH1176819A (en) | Catalyst for cleaning of exhaust gas | |
JP2700386B2 (en) | Exhaust gas purifying material and exhaust gas purifying method | |
JPH0731884A (en) | Catalyst for purifying exhaust gas and purifying method of exhaust gas | |
JPH09299763A (en) | Denitration catalyst layer and denitrating method | |
JPH08309186A (en) | Catalyst for purifying exhaust gas and method for purification of exhaust gas |