JPH08335720A - Nitrate semiconductor light emitting diode - Google Patents

Nitrate semiconductor light emitting diode

Info

Publication number
JPH08335720A
JPH08335720A JP14096695A JP14096695A JPH08335720A JP H08335720 A JPH08335720 A JP H08335720A JP 14096695 A JP14096695 A JP 14096695A JP 14096695 A JP14096695 A JP 14096695A JP H08335720 A JPH08335720 A JP H08335720A
Authority
JP
Japan
Prior art keywords
light emitting
emitting chip
nitride semiconductor
resin
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14096695A
Other languages
Japanese (ja)
Inventor
Hitoshi Umemoto
整 梅本
Takao Yamada
孝夫 山田
Shuji Nakamura
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP14096695A priority Critical patent/JPH08335720A/en
Publication of JPH08335720A publication Critical patent/JPH08335720A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE: To prevent the exfoliation of electrodes and the breaking of wires of a light emitting chip by surrounding directly the light emitting chip, in which the anode and cathode are provided on the same surface side, with resin of JIS-A hardness 30 or less or sealing material of gel or liquid type. CONSTITUTION: The nitrate semiconductor layer 2 of a double hetero-structure is deposited on a sapphire substrate 1 by an MOCVD method. Many light emitting chips, in which the anodes and the cathodes are formed on the same surface side of the nitrate semiconductor layer 2, are provided. Transparent silicone resin 4 (specific gravity is 1.10) is injected into the inside of the cup of a lead frame 3 by the dispenser of a molding device. After immersing lead frames 3 and 3' inside a molding die into which epoxy resin 5 (specific gravity is 1.80) is injected in advance, the resin is cured after removing the die and the LED of an artillery shell shape is made. When it is surrounded by such a soft material, the electrode do not exfoliate and the reliability is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化物半導体(InX
YGa1-X-YN、0≦X、0≦Y、X+Y≦1)よりなる発
光チップを有する発光ダイオード(LED)に関する。
The present invention relates to a nitride semiconductor (In X A
L Y Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) The present invention relates to a light emitting diode (LED) having a light emitting chip.

【0002】[0002]

【従来の技術】窒化物半導体よりなる高輝度青色LE
D、青緑色LEDが実用化されている。図3に従来の青
色LED、青緑色LEDの代表的な構造を示す。発光チ
ップは基本的にサファイア基板31と、そのサファイア
基板31の上にダブルへテロ構造となるようにヘテロエ
ピタキシャル成長された窒化物半導体層32よりなり、
窒化物半導体層32の同一面側から正、負両電極が取り
出された、いわゆるフリップチップ方式である。この発
光チップはフェイスアップとされて、リードフレーム3
3のカップ内に載置され、両電極はそれぞれワイヤーボ
ンディングされて、リードフレーム33、33’と接続
されている。発光チップは例えば耐候性のエポキシ樹脂
よりなるモールド樹脂34で封止されてLEDとされて
いる。このLEDは順方向電流(If)20mAにおい
て、順方向電圧(Vf)3.6V、ピーク発光波長45
0〜530nm、光度1cd以上、発光出力1.2mW
以上と青色LED、青緑LEDでは過去最高の性能を示
している。
2. Description of the Related Art High brightness blue LE made of nitride semiconductor
D and blue-green LEDs have been put to practical use. FIG. 3 shows typical structures of conventional blue LEDs and blue-green LEDs. The light emitting chip basically includes a sapphire substrate 31 and a nitride semiconductor layer 32 heteroepitaxially grown on the sapphire substrate 31 so as to have a double hetero structure.
This is a so-called flip chip method in which both positive and negative electrodes are taken out from the same surface side of the nitride semiconductor layer 32. This light emitting chip is face up, and the lead frame 3
It is placed in the cup No. 3 and both electrodes are wire-bonded to each other and connected to the lead frames 33 and 33 '. The light emitting chip is sealed with a mold resin 34 made of, for example, weatherproof epoxy resin to form an LED. This LED has a forward voltage (Vf) of 3.6 V and a peak emission wavelength of 45 at a forward current (If) of 20 mA.
0-530nm, luminous intensity 1cd or more, emission output 1.2mW
Above all, the blue LED and the blue-green LED show the highest performance ever.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、窒化物
半導体という新たな材料で高輝度な青色LED、青緑色
が実現されると数々の問題が発生してきた。そのひとつ
に発光チップの電極にワイヤーボンディングされた金線
のボールが剥がれやすくなったり、また電極が窒化物半
導体と剥がれやすくなるという問題がある。これらの問
題はLEDの信頼性を低下させる。また電極が剥がれか
けてくると、LEDのVfが次第に上がってきて、つい
にはオープンでLEDが不点灯となる。
However, when a high-luminance blue LED and blue-green are realized by a new material called a nitride semiconductor, various problems have occurred. One of them is that the ball of the gold wire wire-bonded to the electrode of the light emitting chip is easily peeled off, and the electrode is easily peeled off from the nitride semiconductor. These problems reduce the reliability of LEDs. Further, when the electrodes are peeling off, Vf of the LED gradually rises, and finally the LED becomes open and the LED does not light up.

【0004】これらの問題の原因は発光チップの熱膨張
係数と、モールド樹脂の熱膨張係数との差によるストレ
スから派生することが多い。通常、GaAs、GaAl
As、GaP等のホモエピタキシャル成長された材料よ
りなる従来の赤外、赤色、黄色LEDにおいては、発光
チップとモールド樹脂間のストレスを緩和するために、
発光チップ全体をまずシリコーン樹脂のような柔らかい
樹脂で包囲してから、エポキシ樹脂でモールドすること
により、前記問題を解決している。
The cause of these problems is often derived from stress due to the difference between the thermal expansion coefficient of the light emitting chip and the thermal expansion coefficient of the molding resin. Usually GaAs, GaAl
In the conventional infrared, red, and yellow LEDs made of homoepitaxially grown materials such as As and GaP, in order to reduce the stress between the light emitting chip and the mold resin,
The above problem is solved by first surrounding the entire light emitting chip with a soft resin such as silicone resin and then molding with an epoxy resin.

【0005】同様に窒化物半導体よりなる発光チップを
シリコーン樹脂でまず包囲して、エポキシ樹脂で包囲す
るのは常套手段であるが、青色、青緑色LEDは従来の
長波長LEDと異なり、窒化物半導体と全く異なる基板
に積層された、いわゆるヘテロエピタキシャル成長され
た発光チップを有するため、従来のシリコーン樹脂で包
囲しただけでは未だ満足できるものではなかった。
Similarly, it is a common practice to first surround a light emitting chip made of a nitride semiconductor with a silicone resin and then with an epoxy resin. However, blue and turquoise LEDs are different from conventional long wavelength LEDs in that they are nitrided. Since it has a so-called heteroepitaxially grown light emitting chip which is laminated on a substrate which is completely different from the semiconductor, it is still not satisfactory only to be surrounded by a conventional silicone resin.

【0006】従って本発明はこのような事情を鑑みて成
されたものであり、その目的とするところは、窒化物半
導体よりなる発光チップの電極の剥がれ、ワイヤーの切
れ等を無くすことにより、長寿命で信頼性に優れた窒化
物半導体LEDを提供することにある。
Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to eliminate the peeling of the electrodes of the light emitting chip made of a nitride semiconductor and the breakage of the wire to improve the long life. It is to provide a nitride semiconductor LED having a long life and excellent reliability.

【0007】[0007]

【課題を解決するための手段】我々は窒化物半導体が同
一面側から電極を取り出したフリップチップ方式と、さ
らにヘテロエピであるという構造に問題が起因している
ことに着目し、本発明を成すに至った。即ち、本発明の
窒化物半導体LEDは基板上に窒化物半導体がヘテロエ
ピタキシャル成長されて、同一面側に正、負一対の電極
が設けられてなる発光チップが、JIS−A硬度30以
下の樹脂か、若しくはゲル状、又は液状の封止材料で直
接包囲されていることを特徴とする。
SUMMARY OF THE INVENTION We have focused on the fact that the problems are caused by the flip-chip method in which the electrodes of the nitride semiconductor are taken out from the same surface side, and by the fact that the structure is heteroepitaxial, and the present invention is achieved. Came to. That is, in the nitride semiconductor LED of the present invention, a nitride semiconductor is heteroepitaxially grown on a substrate, and a light emitting chip provided with a pair of positive and negative electrodes on the same surface side is a resin having JIS-A hardness of 30 or less. Alternatively, it is characterized in that it is directly surrounded by a gel-like or liquid encapsulating material.

【0008】さらに、発光チップの電極は外部より導出
されたリード電極とワイヤーボンディングにより接続さ
れていることを特徴とする。リード電極とは、例えば通
常のLEDであればリードフレーム、メタルポスト、ス
テム等を意味し、またチップタイプのLEDであれば、
LEDを載置したプリント基盤、セラミック基盤上に印
刷、蒸着等で形成されたリード電極等、外部電源と接続
するために導出されたリード電極を意味するものとす
る。
Further, the electrode of the light emitting chip is characterized in that it is connected to a lead electrode led out from the outside by wire bonding. The lead electrode means, for example, a lead frame, a metal post, a stem in the case of a normal LED, or a chip type LED.
The term refers to a lead electrode derived for connecting to an external power source, such as a print substrate on which an LED is mounted or a lead electrode formed on a ceramic substrate by printing or vapor deposition.

【0009】本発明のLEDにおいて、窒化物半導体が
ヘテロエピタキシャル成長される基板には、例えばサフ
ァイア(Al23)、スピネル(MgAl24)等の絶
縁性基板が使用でき、上記のように絶縁性基板の上に窒
化物半導体を例えばホモ、シングルヘテロ、あるいはダ
ブルへテロ構造となるように積層することによりウェー
ハを作製できる。そのウェーハが基板から順にn層とp
層とを積層した構造であれば、p層のエッチングを行
い、n層を表面に露出させる。次に、同一面側に露出し
たp層と、n層とに常法に従い、正電極、負電極を形成
した後、ウェーハを例えばダイサー、スクライバー等で
チップ状に分離することにより、フリップチップ方式の
発光素子を得ることができる。
In the LED of the present invention, an insulating substrate such as sapphire (Al 2 O 3 ) or spinel (MgAl 2 O 4 ) can be used as the substrate on which the nitride semiconductor is heteroepitaxially grown. A wafer can be manufactured by stacking a nitride semiconductor on an insulating substrate so as to have a homo, single hetero, or double hetero structure, for example. The wafer is n layers and p in order from the substrate.
In the case of a structure in which layers are stacked, the p layer is etched to expose the n layer on the surface. Then, a positive electrode and a negative electrode are formed on the p-layer and the n-layer exposed on the same surface side by a conventional method, and then the wafer is divided into chips by, for example, a dicer, a scriber, etc. Can be obtained.

【0010】またJIS−A硬度30以下の樹脂、ゲル
状、又は液状の材料には、例えばシリコーン樹脂、塩化
ビニル、PVA、流動パラフィン等を用いることがで
き、その中でも特に好ましくはシリコーン樹脂、ゲル状
シリコーン樹脂を好ましく用いることができる。
As the resin, gel or liquid material having JIS-A hardness of 30 or less, for example, silicone resin, vinyl chloride, PVA, liquid paraffin and the like can be used, and among them, silicone resin and gel are particularly preferable. A silicone resin can be preferably used.

【0011】[0011]

【作用】基板上にヘテロエピタキシャル成長された発光
チップには強いストレスが係る。それは窒化物半導体と
基板とが他の半導体材料に比べて非常に硬い性質を有し
ており、さらに半導体と基板との間の格子不整、熱膨張
係数の差によるところが大きい。さらにまた発光チップ
はフリップチップ形式という従来のLEDにはない新規
な構造を有している。そのためチップ自体の発熱、外部
からの熱によるエポキシ樹脂の収縮等の要因により、ヘ
テロエピされた発光チップが反ったり、曲がったりする
と電極部分には大きなストレスか係る。このストレスの
緩衝材としてJIS−A硬度30以下の樹脂、ゲル状、
又は液状の封止材料が作用する。これらの材料は特に柔
らかい性質を有しており、ヘテロエピされた窒化物半導
体発光チップに対して非常に有効に作用し電極の剥がれ
を防止して、LEDの信頼性を格段に向上させる。
Function: The light emitting chip heteroepitaxially grown on the substrate is subjected to a strong stress. This is because the nitride semiconductor and the substrate have a very hard property as compared with other semiconductor materials, and are largely due to the lattice mismatch between the semiconductor and the substrate and the difference in the coefficient of thermal expansion. Furthermore, the light emitting chip has a novel structure of a flip chip type, which is not found in conventional LEDs. Therefore, if the heteroepitaxial light emitting chip is warped or bent due to factors such as heat generation of the chip itself and shrinkage of the epoxy resin due to heat from the outside, great stress is applied to the electrode portion. As a buffer material for this stress, resin with JIS-A hardness of 30 or less, gel-like,
Alternatively, a liquid sealing material acts. Since these materials have a particularly soft property, they act very effectively on the hetero-epitaxial nitride semiconductor light emitting chip to prevent the electrode from peeling off, thereby significantly improving the reliability of the LED.

【0012】次に、本発明のLEDは発光チップの電極
が外部より導出されたリード電極とワイヤーボンディン
グにより接続されている。つまり発光チップをフェイス
アップとしてワイヤーボンディングした構造としてい
る。このような発光チップは2箇所のワイヤーボンディ
ングが行われているので、発光チップが反ったり曲がっ
たりすると、金線が切れたり、ボールが電極から剥がれ
る確率は従来のLEDに比べて格段に大きくなる。従っ
て、この発光チップに対して本発明を適用すると、前記
のように金線の切れ、電極の剥がれ等を防止して信頼性
を高めるのに非常に大きな効果がある。
Next, in the LED of the present invention, the electrode of the light emitting chip is connected to the lead electrode led out from the outside by wire bonding. That is, the light emitting chip is face-up and wire-bonded. Since the light emitting chip is wire-bonded at two places, the probability that the gold wire will be broken or the ball will be peeled from the electrode when the light emitting chip is warped or bent becomes significantly larger than that of the conventional LED. . Therefore, when the present invention is applied to this light emitting chip, as described above, there is a great effect in preventing the breakage of the gold wire, the peeling of the electrode, etc., and enhancing the reliability.

【0013】[0013]

【実施例】【Example】

[実施例1]図1は本発明に係るLEDの構造を示す模
式的な断面図であり、図1を元に実施例1について説明
する。
[Embodiment 1] FIG. 1 is a schematic sectional view showing the structure of an LED according to the present invention. Embodiment 1 will be described with reference to FIG.

【0014】MOCVD(有機金属気相成長)法によ
り、サファイア基板1上にダブルヘテロ構造の窒化物半
導体層2が積層され、その窒化物半導体2層の同一面側
に正電極と負電極とが形成された350μm発光チップ
を多数用意する。
A nitride semiconductor layer 2 having a double hetero structure is laminated on a sapphire substrate 1 by MOCVD (Metal Organic Chemical Vapor Deposition) method, and a positive electrode and a negative electrode are formed on the same side of the nitride semiconductor 2 layer. A large number of formed 350 μm light emitting chips are prepared.

【0015】次にこの発光チップをダイボンダーにセッ
トし、カップが設けられたリードフレーム3にフェイス
アップしてダイボンドする。ダイボンド後、リードフレ
ームをワイヤーボンダーに移送し、発光チップの負電極
をカップの設けられたリードフレーム3に金線でワイヤ
ーボンドし、正電極をもう一方のリードフレーム3’に
ワイヤーボンドする。
Next, this light emitting chip is set in a die bonder, face up to the lead frame 3 provided with a cup, and die bonded. After die-bonding, the lead frame is transferred to a wire bonder, the negative electrode of the light emitting chip is wire-bonded to the lead frame 3 provided with the cup with a gold wire, and the positive electrode is wire-bonded to the other lead frame 3 '.

【0016】次にモールド装置に移送し、モールド装置
のディスペンサーでリードフレーム3のカップ内に透明
なシリコーン樹脂4(JIS−A硬度22、比重1.1
0)を注入する。
Next, it is transferred to a molding device, and a transparent silicone resin 4 (JIS-A hardness 22, specific gravity 1.1) is placed in the cup of the lead frame 3 by a dispenser of the molding device.
0) is injected.

【0017】シリコーン樹脂注入後、予めエポキシ樹脂
5(ロックウェル硬度M110、比重1.80)が注入
されたモールド型枠の中にリードフレーム3、3’を浸
漬した後、型枠をはずして樹脂を効果させ、図1に示す
ような砲弾型のLEDとする。
After the silicone resin is injected, the lead frames 3 and 3'are immersed in a mold frame in which epoxy resin 5 (Rockwell hardness M110, specific gravity 1.80) has been injected in advance, and then the frame is removed to remove the resin. To produce a cannonball-shaped LED as shown in FIG.

【0018】このLEDをIf60mAにおいて100
0個点灯し強制試験を行った結果、点灯直後はVf4.
5Vであったが、300時間経過後はVfが5%低下し
ていた。さらに1000個中金線のボールの剥がれ、電
極の剥がれ等は全く発生せず、発光出力の低下はなかっ
た。
This LED is 100 at If 60 mA.
As a result of conducting a forced test with 0 lights, Vf4.
Although it was 5 V, Vf was reduced by 5% after 300 hours. Further, the peeling of the balls of the 1000 gold wire and the peeling of the electrodes did not occur at all, and the emission output was not reduced.

【0019】[実施例2]カップ内に注入する樹脂をゲ
ル状シリコーン樹脂(比重0.98、ゲル状の硬度はJ
IS−Aで表さない。)とする他は実施例1と同様にし
てLEDを作製した。後は実施例1と同様にして強制試
験を行ったところ、1000個全てにおいてボール剥が
れ、電極剥がれ等は発生せず、またVfが5%低下して
いた。
[Embodiment 2] The resin injected into the cup is a gel silicone resin (specific gravity: 0.98, gel hardness: J).
Not represented by IS-A. ) And an LED was produced in the same manner as in Example 1. After that, when a forced test was performed in the same manner as in Example 1, no ball peeling, electrode peeling, or the like occurred in all 1000 pieces, and Vf was reduced by 5%.

【0020】[実施例3]図2は本発明の他の実施例に
係るLEDの構造を示す模式的な断面図であり、具体的
にはチップLEDの構造を示している。実施例3は図2
を元に説明する。
[Embodiment 3] FIG. 2 is a schematic sectional view showing the structure of an LED according to another embodiment of the present invention, and specifically shows the structure of a chip LED. Example 3 is shown in FIG.
Will be explained based on.

【0021】実施例1と同様にサファイア基板1上にダ
ブルヘテロ構造の窒化物半導体層2が積層され、その窒
化物半導体2層の同一面側に正電極と負電極とが形成さ
れた350μm発光チップを多数用意する。
Similar to the first embodiment, a nitride semiconductor layer 2 having a double hetero structure is laminated on a sapphire substrate 1, and a positive electrode and a negative electrode are formed on the same surface side of the nitride semiconductor 2 layer to emit light of 350 μm. Prepare many chips.

【0022】次にこの発光チップをダイボンダーにセッ
トし、予めリード電極40、41が印刷形成されたセラ
ミック基板23にフェイスアップしてダイボンドする。
ダイボンド後、基板23をワイヤーボンダーに移送し、
発光チップの負電極をカップリード電極40に金線でワ
イヤーボンドし、正電極をもう一方のリード電極41に
ワイヤーボンドする。
Next, this light emitting chip is set in a die bonder and face-up and die-bonded to the ceramic substrate 23 on which the lead electrodes 40 and 41 are previously formed by printing.
After die bonding, the substrate 23 is transferred to a wire bonder,
The negative electrode of the light emitting chip is wire-bonded to the cup lead electrode 40 with a gold wire, and the positive electrode is wire-bonded to the other lead electrode 41.

【0023】基板をモールド装置に移送し、モールド装
置のディスペンサーでチップ全体を透明なゲル状シリコ
ーン樹脂24(比重0.98)でモールドする。
The substrate is transferred to a molding device, and the entire chip is molded with a transparent gel silicone resin 24 (specific gravity 0.98) by a dispenser of the molding device.

【0024】さらにそのゲル状シリコーン樹脂24の上
からエポキシ樹脂25(ロックウェル硬度M110、比
重1.80)をディスペンサーでモールドした後、樹脂
を効果させ、図2に示すようなチップタイプのLEDと
する。
Further, an epoxy resin 25 (Rockwell hardness M110, specific gravity 1.80) is molded on the gel silicone resin 24 with a dispenser, and then the resin is made effective to obtain a chip type LED as shown in FIG. To do.

【0025】このLEDを同様にしてIf60mAにお
いて1000個点灯し強制試験を行ったところ、点灯直
後はVf4.5Vであったが、300時間経過後はVf
が5%低下し、1000個中金線のボールの剥がれ、電
極剥がれ等は全く発生せず、発光出力の低下はなかっ
た。
When 1000 LEDs of this LED were similarly turned on at If 60 mA and a forced test was conducted, Vf was 4.5 V immediately after lighting, but after 300 hours, Vf
Was decreased by 5%, the balls of 1000 pieces of gold wire were not peeled off, the electrodes were not peeled off at all, and the emission output was not reduced.

【0026】[0026]

【発明の効果】本発明の特に予想もしなかった効果とし
ては、Vfが低下したということである。つまり、発光
チップの順方向電圧が使用最初の順方向電圧よりも低下
したことである。なお、使用最初とはLED点灯直後の
順方向電圧を指す。青色LEDは他の長波長のLEDと
比べて、Vfが高いというのが一般的な常識とされてい
る。ところが本発明によるとVfを低下させることがで
きたので、LEDを数多く使用したフルカラーディスプ
レイを実現した際に、消費電力を低減させることができ
る。この効果は次のような作用が本発明のLEDの封止
材料にあると推察される。
EFFECTS OF THE INVENTION An unexpected effect of the present invention is that Vf is lowered. That is, the forward voltage of the light emitting chip is lower than the initial forward voltage of the light emitting chip. The term "first use" refers to the forward voltage immediately after the LED is turned on. It is generally accepted that a blue LED has a higher Vf than other long-wavelength LEDs. However, according to the present invention, Vf can be reduced, so that power consumption can be reduced when a full-color display using a large number of LEDs is realized. This effect is presumed to be due to the following effects of the LED sealing material of the present invention.

【0027】窒化物半導体は従来よりp型半導体が得に
くい材料であることが知られている。この原因はアクセ
プター不純物をドープした窒化物半導体において、アク
セプター不純物が水素と結合しており、アクセプターが
不活性化されていることによる。このため、アクセプタ
ー不純物をドープした窒化物半導体を熱的アニールする
ことにより、水素を追い出し低抵抗なp型を得ている。
しかし、このアニール処理でも完全には水素原子を窒化
物半導体から追い出すことは不可能であり、アニーリン
グ処理後に多少の水素が結晶中に残留する。つまりp型
窒化物半導体層中に残留する水素をアクセプターと切り
離すことにより、抵抗値が下がるのでVfも低下する。
詳しくは我々が先に出願した特開平5−183189号
公報に記載している。
It is known that a nitride semiconductor is a material from which a p-type semiconductor is hard to obtain conventionally. This is because in the nitride semiconductor doped with the acceptor impurity, the acceptor impurity is bonded to hydrogen and the acceptor is inactivated. Therefore, by thermally annealing a nitride semiconductor doped with an acceptor impurity, hydrogen is expelled and a low resistance p-type is obtained.
However, even with this annealing treatment, it is impossible to completely displace hydrogen atoms from the nitride semiconductor, and some hydrogen remains in the crystal after the annealing treatment. That is, by separating the hydrogen remaining in the p-type nitride semiconductor layer from the acceptor, the resistance value is lowered, and Vf is also lowered.
The details are described in Japanese Patent Application Laid-Open No. 5-183189 filed by us earlier.

【0028】このようにして得られたp型層を有する発
光チップに通電すると、n型層からp型層中に電子が注
入される。通常電子はホールと結合して発光するが、そ
の他p型層中に残留するアクセプター不純物と結合した
水素イオンと結合することにより、水素イオンをアクセ
プターから切り離す。この水素は従来のエポキシ樹脂の
ような比重の大きい硬い樹脂で包囲されていると発光チ
ップから出にくく、本発明のように柔らかい比重の小さ
い封止材料で封止されていると出やすくなるので、p型
層がさらに低抵抗化してVfが低下していると推察され
る。この作用は窒化物半導体発光チップ特有の作用であ
る。従って本発明の発光チップを包囲する材料には1.
1以下の比重を有する封止材料を選択することが好まし
い。
When the light emitting chip having the p-type layer thus obtained is energized, electrons are injected from the n-type layer into the p-type layer. Usually, an electron combines with a hole to emit light, but by combining with another hydrogen ion combined with an acceptor impurity remaining in the p-type layer, the hydrogen ion is separated from the acceptor. This hydrogen is hard to come out from the light emitting chip when it is surrounded by a hard resin having a large specific gravity such as a conventional epoxy resin, and easily comes out when it is sealed with a soft encapsulating material having a small specific gravity as in the present invention. It is presumed that the resistance of the p-type layer is further lowered and Vf is lowered. This action is peculiar to the nitride semiconductor light emitting chip. Therefore, the material surrounding the light emitting chip of the present invention is 1.
It is preferable to select a sealing material having a specific gravity of 1 or less.

【0029】さらに従来のように硬い材料で包囲されて
いると、発光チップの歪で電極が剥がれかけてくること
により、電極の接触抵抗が大きくなってVfが高くなる
が、本発明のように特に柔らかい材料で包囲すると、電
極が剥がれないので信頼性が向上する。
Further, if the electrode is surrounded by a hard material as in the conventional case, the electrode is peeled off due to the strain of the light emitting chip, and the contact resistance of the electrode increases and Vf increases, but like the present invention. In particular, when it is surrounded by a soft material, the electrode is not peeled off and the reliability is improved.

【0030】以上説明したように、本発明の窒化物半導
体LEDは信頼性が高く、しかもVfが低いため、フル
カラーディスプレイ、信号灯、その他各種光源等に使用
すると、非常に優れた製品を提供することができる。
As described above, since the nitride semiconductor LED of the present invention has high reliability and low Vf, it provides a very excellent product when used in a full color display, a signal light, and various other light sources. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係るLEDの構造を示す
模式断面図。
FIG. 1 is a schematic cross-sectional view showing the structure of an LED according to an embodiment of the present invention.

【図2】 本発明の他の実施例に係るLEDの構造を示
す模式断面図。
FIG. 2 is a schematic cross-sectional view showing the structure of an LED according to another embodiment of the present invention.

【図3】 従来のLEDの構造を示す模式断面図。FIG. 3 is a schematic cross-sectional view showing the structure of a conventional LED.

【符号の説明】[Explanation of symbols]

1・・・・・サファイア基板 2・・・・・窒化物半導体層 3、3’・・・リードフレーム 4・・・・・シリコーン樹脂 5、25・・・エポキシ樹脂 23・・・・・セラミック基板 24・・・・・ゲル状シリコーン樹脂 40、41・・リード電極 1 ... Sapphire substrate 2 ... Nitride semiconductor layer 3, 3 '... Lead frame 4 ... Silicone resin 5, 25 ... Epoxy resin 23 ... Ceramic Substrate 24 ... Gel-like silicone resin 40, 41 ... Lead electrodes

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に窒化物半導体がヘテロエピタキ
シャル成長されて、同一面側に正、負一対の電極が設け
られてなる発光チップが、JIS−A硬度30以下の樹
脂か、若しくはゲル状、又は液状の封止材料で直接包囲
されていることを特徴とする窒化物半導体発光ダイオー
ド。
1. A light emitting chip in which a nitride semiconductor is heteroepitaxially grown on a substrate and a pair of positive and negative electrodes are provided on the same surface side is a resin having a JIS-A hardness of 30 or less, or a gel form. Alternatively, a nitride semiconductor light emitting diode is directly surrounded by a liquid sealing material.
【請求項2】 前記発光チップの電極は外部より導出さ
れたリード電極とワイヤーボンディングにより接続され
ていることを特徴とする請求項1に記載の窒化物半導体
発光ダイオード。
2. The nitride semiconductor light emitting diode according to claim 1, wherein an electrode of the light emitting chip is connected to a lead electrode led out from the outside by wire bonding.
【請求項3】 前記発光チップの順方向電圧が使用最初
の順方向電圧よりも低下することを特徴とする請求項1
に記載の窒化物半導体発光ダイオード。
3. The forward voltage of the light emitting chip is lower than the forward voltage at the beginning of use.
The nitride semiconductor light emitting diode according to.
JP14096695A 1995-06-08 1995-06-08 Nitrate semiconductor light emitting diode Pending JPH08335720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14096695A JPH08335720A (en) 1995-06-08 1995-06-08 Nitrate semiconductor light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14096695A JPH08335720A (en) 1995-06-08 1995-06-08 Nitrate semiconductor light emitting diode

Publications (1)

Publication Number Publication Date
JPH08335720A true JPH08335720A (en) 1996-12-17

Family

ID=15280969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14096695A Pending JPH08335720A (en) 1995-06-08 1995-06-08 Nitrate semiconductor light emitting diode

Country Status (1)

Country Link
JP (1) JPH08335720A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949675A3 (en) * 1998-03-26 2000-04-19 Nec Corporation Heat-resistant solid-state pickup device and manufacturing method thereof
KR20020079516A (en) * 2001-04-09 2002-10-19 가부시끼가이샤 도시바 Light emitting device
US6744124B1 (en) * 1999-12-10 2004-06-01 Siliconix Incorporated Semiconductor die package including cup-shaped leadframe
WO2004112152A2 (en) 2003-06-18 2004-12-23 Leising Guenther Method for the production of white leds, and white led light source
JP2005513817A (en) * 2001-12-24 2005-05-12 ジー・エル・アイ・グローバル・ライト・インダストリーズ・ゲーエム・ベーハー Method for manufacturing light-guided LED module in two steps divided in time
KR100491314B1 (en) * 2001-04-09 2005-05-24 가부시끼가이샤 도시바 Light emitting device
WO2006059828A1 (en) * 2004-09-10 2006-06-08 Seoul Semiconductor Co., Ltd. Light emitting diode package having multiple molding resins
JP2006222382A (en) * 2005-02-14 2006-08-24 Nichia Chem Ind Ltd Semiconductor device and method for forming same
WO2007009528A1 (en) * 2005-07-21 2007-01-25 Wacker Chemie Ag Silicone resin potting of light-emitting diodes
KR100709890B1 (en) * 2004-09-10 2007-04-20 서울반도체 주식회사 Light emitting diode package having multiple molding resins
JP2007300069A (en) * 2006-04-04 2007-11-15 Toyoda Gosei Co Ltd Light emitting element, light emitting device using same, and method for manufacturing same
JP2008166782A (en) * 2006-12-26 2008-07-17 Seoul Semiconductor Co Ltd Light-emitting element
US7589396B2 (en) 1999-09-13 2009-09-15 Vishay-Siliconix Chip scale surface mount package for semiconductor device and process of fabricating the same
US7595547B1 (en) 2005-06-13 2009-09-29 Vishay-Siliconix Semiconductor die package including cup-shaped leadframe
JP2010529645A (en) * 2007-06-01 2010-08-26 ワッカー ケミー アクチエンゲゼルシャフト Silicon molded member having a light emitter
CN102593114A (en) * 2012-03-01 2012-07-18 李海涛 SMD (surface mount device) LED (light-emitting diode) of combined type wire frame
KR101247426B1 (en) * 2005-02-22 2013-03-26 아바고 테크놀로지스 제너럴 아이피 (싱가포르) 피티이 리미티드 Semiconductor light emitting device and method of manufacture
EP2448021A3 (en) * 2004-11-15 2013-08-21 Philips Lumileds Lighting Company, LLC. Molding a lens over a LED die

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949675A3 (en) * 1998-03-26 2000-04-19 Nec Corporation Heat-resistant solid-state pickup device and manufacturing method thereof
US6144107A (en) * 1998-03-26 2000-11-07 Nec Corporation Solid state pickup device excellent in heat-resistance and method of manufacturing the device
US7589396B2 (en) 1999-09-13 2009-09-15 Vishay-Siliconix Chip scale surface mount package for semiconductor device and process of fabricating the same
US6744124B1 (en) * 1999-12-10 2004-06-01 Siliconix Incorporated Semiconductor die package including cup-shaped leadframe
US9040356B2 (en) 1999-12-10 2015-05-26 Vishay-Siliconix Semiconductor including cup-shaped leadframe packaging techniques
US6909170B2 (en) * 1999-12-10 2005-06-21 Siliconix Incorporated Semiconductor assembly with package using cup-shaped lead-frame
US6747293B2 (en) 2001-04-09 2004-06-08 Kabushiki Kaisha Toshiba Light emitting device
KR100491314B1 (en) * 2001-04-09 2005-05-24 가부시끼가이샤 도시바 Light emitting device
US7176623B2 (en) 2001-04-09 2007-02-13 Kabushiki Kaisha Toshiba Light emitting device
KR20020079516A (en) * 2001-04-09 2002-10-19 가부시끼가이샤 도시바 Light emitting device
US7569989B2 (en) 2001-04-09 2009-08-04 Kabushiki Kaisha Toshiba Light emitting device
JP2005513817A (en) * 2001-12-24 2005-05-12 ジー・エル・アイ・グローバル・ライト・インダストリーズ・ゲーエム・ベーハー Method for manufacturing light-guided LED module in two steps divided in time
EP1461836B1 (en) * 2001-12-24 2010-09-22 odelo GmbH Method for manufacturing light emitting diodes with light-guiding bodies in two chronologically separate stages
AT412928B (en) * 2003-06-18 2005-08-25 Guenther Dipl Ing Dr Leising METHOD FOR PRODUCING A WHITE LED AND WHITE LED LIGHT SOURCE
WO2004112152A2 (en) 2003-06-18 2004-12-23 Leising Guenther Method for the production of white leds, and white led light source
US9425364B2 (en) 2003-06-18 2016-08-23 Tridonic Optoelectronics Gmbh Method for the production of white LEDs and white LED light source
US8227273B2 (en) 2003-06-18 2012-07-24 Tridonic Optoelectronics Gmbh Method for the production of white LEDs and white LED light source
EP2273575A2 (en) 2003-06-18 2011-01-12 Ledon Lighting Jennersdorf GmbH White LED light source
JP2012134564A (en) * 2004-09-10 2012-07-12 Seoul Semiconductor Co Ltd Light emitting element and manufacturing method of the same
KR100709890B1 (en) * 2004-09-10 2007-04-20 서울반도체 주식회사 Light emitting diode package having multiple molding resins
US7737463B2 (en) 2004-09-10 2010-06-15 Seoul Semiconductor Co., Ltd. Light emitting diode package with a heat sink support ring and having multiple molding resins, wherein secondary molding resin with higher hardness than primary molding resin and which covers primary molding resin that covers LED die
WO2006059828A1 (en) * 2004-09-10 2006-06-08 Seoul Semiconductor Co., Ltd. Light emitting diode package having multiple molding resins
US7855395B2 (en) 2004-09-10 2010-12-21 Seoul Semiconductor Co., Ltd. Light emitting diode package having multiple molding resins on a light emitting diode die
JP2008512867A (en) * 2004-09-10 2008-04-24 ソウル セミコンダクター カンパニー リミテッド Light emitting diode package with multiple mold resin
US9081167B2 (en) 2004-11-15 2015-07-14 Koninklijke Philips N.V. Lens compression molded over LED die
EP2448021A3 (en) * 2004-11-15 2013-08-21 Philips Lumileds Lighting Company, LLC. Molding a lens over a LED die
JP2014209665A (en) * 2004-11-15 2014-11-06 フィリップスルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Overmolded lens over led die
JP2006222382A (en) * 2005-02-14 2006-08-24 Nichia Chem Ind Ltd Semiconductor device and method for forming same
US9236537B2 (en) 2005-02-22 2016-01-12 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor light emitting device
KR101247426B1 (en) * 2005-02-22 2013-03-26 아바고 테크놀로지스 제너럴 아이피 (싱가포르) 피티이 리미티드 Semiconductor light emitting device and method of manufacture
US8778705B2 (en) 2005-02-22 2014-07-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Method of manufacturing light emitting device
US7595547B1 (en) 2005-06-13 2009-09-29 Vishay-Siliconix Semiconductor die package including cup-shaped leadframe
WO2007009528A1 (en) * 2005-07-21 2007-01-25 Wacker Chemie Ag Silicone resin potting of light-emitting diodes
JP2007300069A (en) * 2006-04-04 2007-11-15 Toyoda Gosei Co Ltd Light emitting element, light emitting device using same, and method for manufacturing same
US8569944B2 (en) 2006-12-26 2013-10-29 Seoul Semiconductor Co., Ltd. Light emitting device
US8405304B2 (en) 2006-12-26 2013-03-26 Seoul Semiconductor Co., Ltd. Light emtting device
JP2008166782A (en) * 2006-12-26 2008-07-17 Seoul Semiconductor Co Ltd Light-emitting element
JP2010529645A (en) * 2007-06-01 2010-08-26 ワッカー ケミー アクチエンゲゼルシャフト Silicon molded member having a light emitter
CN102593114A (en) * 2012-03-01 2012-07-18 李海涛 SMD (surface mount device) LED (light-emitting diode) of combined type wire frame

Similar Documents

Publication Publication Date Title
JPH08335720A (en) Nitrate semiconductor light emitting diode
US8445921B2 (en) Thin film light emitting diode
TWI399865B (en) Allngap led having reduced temperature dependence
TWI242891B (en) Method for manufacturing vertical GaN light emitting diode
CN100407449C (en) Robust group III light emitting diode for high reliability in standard packaging applications
JP2803742B2 (en) Gallium nitride-based compound semiconductor light emitting device and method for forming electrode thereof
US7456438B2 (en) Nitride-based semiconductor light emitting diode
JPH11340514A (en) Flip-chip optical semiconductor element
CN100386890C (en) Method of mfg. GaN-base LED
KR100774196B1 (en) Method of manufacturing light emitting device having vertical structure
KR100774198B1 (en) LED having vertical structure
JP3271645B2 (en) Nitride semiconductor light emitting diode
JP2004080050A (en) Flip chip optical semiconductor element
US20160072016A1 (en) Solid-state light emitters having substrates with thermal and electrical conductivity enhancements and method of manufacture
KR100850945B1 (en) LED package and method of manufacturing the same
KR101209026B1 (en) Method of manufacturing LED having vertical structure
JP4485310B2 (en) Semiconductor light emitting device
JP3239350B2 (en) Electrode of n-type nitride semiconductor layer
KR100450514B1 (en) White light emitting diode
KR100710394B1 (en) Method of manufacturing led having vertical structure
KR100813070B1 (en) Led package and method of manufacturing the same
KR101030071B1 (en) Semiconductor light emitting device and method for fabricating the same
KR20090032212A (en) Nitride semiconductor light emitting device for flip-chip
KR20090003384A (en) Nitride light emitting device
KR101198760B1 (en) LED having vertical structure and method of making the same