JPH0833497B2 - X-ray curved crystal - Google Patents

X-ray curved crystal

Info

Publication number
JPH0833497B2
JPH0833497B2 JP62071099A JP7109987A JPH0833497B2 JP H0833497 B2 JPH0833497 B2 JP H0833497B2 JP 62071099 A JP62071099 A JP 62071099A JP 7109987 A JP7109987 A JP 7109987A JP H0833497 B2 JPH0833497 B2 JP H0833497B2
Authority
JP
Japan
Prior art keywords
crystal
substrate
ray
adhesive
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62071099A
Other languages
Japanese (ja)
Other versions
JPS63236948A (en
Inventor
勝 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP62071099A priority Critical patent/JPH0833497B2/en
Publication of JPS63236948A publication Critical patent/JPS63236948A/en
Publication of JPH0833497B2 publication Critical patent/JPH0833497B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は,X線分光あるいはX線リソグラフィーの分野
でX線の分光用あるいは集光素子として用いられるX線
湾曲結晶に関する。
TECHNICAL FIELD The present invention relates to an X-ray curved crystal used for X-ray spectroscopy or as a focusing element in the field of X-ray spectroscopy or X-ray lithography.

(ロ)従来技術 X線分光用素子として長年用いられてきた湾曲結晶
は,近年X線リソグラフィーの分野においてX線集光素
子として注目されている。
(B) Prior Art The curved crystal, which has been used for many years as an X-ray spectroscopic element, has recently attracted attention as an X-ray focusing element in the field of X-ray lithography.

従来このX線分光結晶にはSiやGe等がありまた結晶を
張り付ける基板にはAl等の金属が使われてきた。
Conventionally, this X-ray dispersive crystal includes Si, Ge, etc., and a metal such as Al has been used for the substrate to which the crystal is attached.

ところで,結晶を湾曲させて基板に張り付ける場合,
薄い結晶の方が曲げやすさの点で有利である。しかし,
結晶を薄くすればするほど基板との膨張率の違いから熱
的変化によって結晶が割れる危険もそれだけ大きくな
る。SiやGe等の結晶の膨張率とAl等の金属の膨張率には
一桁程度の違いがあるため,従来の分光結晶は温度変化
に弱いという欠点をかかえていた。また基板に金属を用
いた場合,結晶を張り付ける接着剤として紫外線硬化接
着剤が使えず,エポキシ樹脂等に限られていた。この場
合硬化時間が限られていたので結晶を湾曲させ,基板に
張り付けるという作業を数10分から数時間という短時間
のうちに行わなければならなかった。長時間かけて少し
ずづ曲げていけばクリープによって結晶は曲がりやすく
なるが,従来の接着時間で曲げればそれだけ割れる危険
性も増大する。
By the way, when the crystal is bent and attached to the substrate,
Thin crystals are advantageous in terms of bendability. However,
The thinner the crystal, the greater the risk of the crystal breaking due to thermal changes due to the difference in expansion coefficient from the substrate. Since the coefficient of expansion of crystals such as Si and Ge and the coefficient of expansion of metals such as Al are on the order of one digit, conventional dispersive crystals had the drawback of being weak against temperature changes. Further, when a metal is used for the substrate, an ultraviolet curing adhesive cannot be used as an adhesive for sticking crystals, and it is limited to epoxy resin or the like. In this case, since the curing time was limited, the work of bending the crystal and attaching it to the substrate had to be performed within a short time of several tens of minutes to several hours. If the crystals are bent a little over a long period of time due to creep, the crystals tend to bend, but if bent with the conventional bonding time, the risk of cracking increases.

さらに金属基板では接着剤の層を直接見ることができ
ないので,接着層が均一になるよう監視することは原理
的にできない。
Furthermore, since the adhesive layer cannot be seen directly on the metal substrate, it is impossible in principle to monitor the adhesive layer for uniformity.

結晶を基板に接着する際,結晶の周辺部の接着剤は比
較的外へ逃げやすいが,結晶が大きくなるにしたがい結
晶の中央付近の接着剤は外側へ逃げにくくなる。このた
め結晶が大きくなるほど接着層が不均一になりやすく,
これが結晶表面の凹凸の原因となっていた。この凹凸の
ため局所的にX線を回折しない部分が出てくることがあ
った。
When the crystal is bonded to the substrate, the adhesive around the crystal is relatively easy to escape to the outside, but as the crystal becomes larger, the adhesive near the center of the crystal is less likely to escape to the outside. Therefore, the larger the crystal, the more uneven the adhesive layer,
This was the cause of irregularities on the crystal surface. Due to this unevenness, there may be a portion where the X-ray is not locally diffracted.

(ハ)目的 本発明は,結晶を湾曲させ基板に張り付ける際に,接
着時間を自由に選べ,かつ接着層を監視でき,また接着
層に不均一が生じないような構造を持ち,更に張り付け
後の温度変化にも強いX線湾曲結晶を提供することにあ
る。
(C) Purpose The present invention has a structure in which a bonding time can be freely selected, a bonding layer can be monitored when a crystal is curved and bonded to a substrate, and the bonding layer does not have unevenness. It is to provide an X-ray curved crystal that is resistant to subsequent temperature changes.

(ニ)構成 結晶を張り付ける支持基板に膨張率が結晶の2倍以下
で,かつ紫外線と可視光を透過するガラス等の材料を用
い,該基板の結晶張り付け面に余分な接着剤を逃がすめ
1本以上の溝を入れるか,適当な数の穴をあける。この
場合,結晶を基板張り付け面に滑らかにそわせるために
は穴の径はできるだけ小さく,溝の幅はできるだけ細
く,かつ穴や溝の総面積は張り付け面の3分の1以下で
あることが望ましい。
(D) Structure Use a material such as glass that has a coefficient of expansion less than twice that of the crystal and that transmits ultraviolet and visible light for the support substrate to which the crystal is attached, and allow extra adhesive to escape to the crystal attachment surface of the substrate. Make one or more grooves or make an appropriate number of holes. In this case, the diameter of the hole should be as small as possible, the width of the groove should be as narrow as possible, and the total area of the hole or groove should be less than one-third of that of the bonding surface in order to smoothly align the crystal with the substrate bonding surface. desirable.

(ホ)実施例 本発明のX線湾曲結晶を第1図(a)に示す。支持基
板1は,結晶3の膨張率の2倍以下の膨張率を有し,可
視光と波長365nm近辺の紫外線に対して透明なガラス等
の材料で形成されている。これにより接着剤として紫外
線硬化接着剤2を使用し,基板1裏面より紫外線を照射
して接着剤を硬化することができ,接着時間を任意にと
ることが可能となる。また,基板1裏面より接着層の監
視をすることもできる。さらに,結晶3の張り付け面に
は第2図に示す如く,多数の溝(同(a)図)または多
数の穴(同(b)図)が形成されている。これにより,
張り付け作業において,接着剤の逃げが確保されて接着
層の均一化を図ることが可能となる。
(E) Example An X-ray curved crystal of the present invention is shown in FIG. The supporting substrate 1 has a coefficient of expansion not more than twice the coefficient of expansion of the crystal 3, and is made of a material such as glass which is transparent to visible light and ultraviolet rays having a wavelength of around 365 nm. As a result, the ultraviolet curable adhesive 2 can be used as the adhesive, and the adhesive can be cured by irradiating the back surface of the substrate 1 with ultraviolet rays to cure the adhesive. Also, the adhesive layer can be monitored from the back surface of the substrate 1. Further, as shown in FIG. 2, a large number of grooves (FIG. 2 (a)) or a large number of holes (FIG. 2 (b)) are formed on the bonding surface of the crystal 3. By this,
In the pasting work, the escape of the adhesive can be secured and the adhesive layer can be made uniform.

以下,このような結晶の製作法について述べる。第1
図において,まず第2図で説明した基板1の張り付け面
に紫外線硬化接着剤2を均一に塗る(b)。
The manufacturing method of such a crystal will be described below. First
In the figure, first, the ultraviolet curable adhesive 2 is uniformly applied to the bonding surface of the substrate 1 described in FIG. 2 (b).

次に,張り付ける結晶3を張り付け面上に置き,上か
ら押え板4を用い恒温室で徐々に曲げて,はりつけ面に
そわせていく。曲げにかける時間を長くとると,クリー
プが大きくなって,結晶は割れずに曲げやすくなる
(c)。
Next, the crystal 3 to be pasted is placed on the pasting surface, and the pressing plate 4 is used from above to gradually bend it in a thermostatic chamber so as to align it with the pasting surface. When the bending time is long, the creep becomes large and the crystal is easy to bend without cracking (c).

結晶3が完全に張り付け面にそって曲がったことを基
板1の裏面から確認し,接着層の厚みが均一になるよう
に結晶の干渉縞を見ながら,基板1や押え板4を調節す
る。調節を終えたら基板1の裏面から紫外線5を均一に
照射し,接着剤2を硬化させる(d)。
It is confirmed from the back surface of the substrate 1 that the crystal 3 is completely bent along the attachment surface, and the substrate 1 and the holding plate 4 are adjusted while observing the interference fringes of the crystal so that the adhesive layer has a uniform thickness. After the adjustment, the back surface of the substrate 1 is uniformly irradiated with ultraviolet rays 5 to cure the adhesive 2 (d).

最後に,押え板4をはずし,結晶3の表面をうすい酸
で洗えばX線湾曲結晶の製作は完了する(a)。
Finally, the holding plate 4 is removed, and the surface of the crystal 3 is washed with dilute acid to complete the production of the X-ray curved crystal (a).

次に具体的な結晶の例を示す。 Next, specific examples of crystals will be shown.

大きさが70×80(mm)で,厚みが0.3mmのGe(111)を
結晶として用いる場合を例にとる。
An example is the case where Ge (111) with a size of 70 × 80 (mm) and a thickness of 0.3 mm is used as a crystal.

Geの膨張率は,室温で6.0×10-6-1なので,張り付
ける基板1の材料としては,室温で同じ膨張率を持つLa
SF06やLaSF019(小原光学製光学ガラス)等が用いられ
る(ちなみに,Al基板の膨張率は室温で23×10
-6-1)。特にLaSF06は厚さ10mmあたり,360nmの波長の
光に対して38%,370nmの波長の光に対して62%と紫外線
に対して比較的高い透過率を示す。基板材料として光学
ガラスを選んだのは,接着層の膜厚監視を可視光でやる
ためと,紫外線照射時,ガラスの品質の均一性が要求さ
れるので一般ガラスより好ましいためである。また,光
学ガラスでは膨張率の選択の幅も広い。
Since the expansion coefficient of Ge is 6.0 × 10 -6 ° C -1 at room temperature, La that has the same expansion coefficient at room temperature as the material of the substrate 1 to be attached.
SF 06 and LaSF 019 (optical glass manufactured by Ohara Optical Co., Ltd.) are used (By the way, the expansion coefficient of the Al substrate is 23 × 10 at room temperature.
-6 ° C -1 ). In particular, LaSF 06 has a relatively high transmittance for ultraviolet rays of 38% for light of 360 nm wavelength and 62% for light of 370 nm wavelength per 10 mm thickness. Optical glass was selected as the substrate material because it is preferable to general glass because the thickness of the adhesive layer is monitored with visible light and uniformity of glass quality is required during ultraviolet irradiation. In addition, there is a wide range of expansion coefficients for optical glass.

結晶3の張り付け面(基板1)には0.5mm,深さ0.5mm
の溝を間隔2mmで多数切り,接着剤2の逃げとする。
0.5mm on the bonding surface of the crystal 3 (substrate 1), 0.5mm depth
Cut multiple grooves at intervals of 2 mm to allow the adhesive 2 to escape.

この基板1に紫外線硬化接着剤を均一に塗布し,結晶
をその上に固定し,押え板5で徐々に結晶を曲げてい
く。結晶が張り付け面にそったことを確認したら,接着
層が均一になるように調節し,水銀燈を裏面から均一に
照射し,接着剤を硬化させる。最後に押え板5をはず
し,フッ酸と硝酸のうすい溶液で結晶3の表面を洗う。
An ultraviolet curing adhesive is evenly applied to the substrate 1, the crystal is fixed thereon, and the crystal is gradually bent by the holding plate 5. When it is confirmed that the crystals are on the attachment surface, adjust the adhesive layer so that it is uniform, and irradiate the mercury lamp uniformly from the back surface to cure the adhesive. Finally, the holding plate 5 is removed, and the surface of the crystal 3 is washed with a dilute solution of hydrofluoric acid and nitric acid.

(ヘ)効果 従来の金属製基板を用いたX線湾曲結晶に対し次の点
が改善された。
(F) Effect The following points have been improved over the conventional X-ray curved crystal using a metal substrate.

まず,基板の膨張率が張り付ける結晶に近いため,作
製されるX線湾曲結晶は従来のX線分光結晶にくらべ温
度変化に対して割れにくくなった。そのために用いる結
晶も従来にくらべて薄くすることができ,その結果結晶
を湾曲させるとき,曲げやすくなり,割れる危険も少な
くなった。
First, since the expansion coefficient of the substrate is close to that of the attached crystal, the manufactured X-ray curved crystal is less likely to be cracked by the temperature change than the conventional X-ray dispersive crystal. The crystal used for that purpose can be made thinner than before, and as a result, when bending the crystal, it becomes easier to bend and the risk of cracking is reduced.

次に紫外線硬化接着剤による張り付けが可能になった
ので,結晶の曲げにかける時間を任意にとれるようにな
り,長時間にわたって徐々に結晶を曲げていけば,クリ
ープが期待でき,その分結晶が割れにくく曲げやすくな
った。
Next, since it became possible to attach with an ultraviolet curing adhesive, the time required to bend the crystal could be set arbitrarily, and if the crystal was gradually bent over a long period of time, creep could be expected, and that amount of crystal could be expected. It is hard to break and easy to bend.

また可視光を透過する基板は結晶の湾曲状態と接着層
の監視に役立ち,さらに基板の張り付け面の多数の穴や
溝は余分な接着剤を逃がし,接着層を均一にするのに役
立つ。この結果,接着層の局所的不均一による結晶表面
の凹凸の問題はとり除かれ,均一なX線の集光が可能に
なった。
A substrate that transmits visible light is useful for monitoring the curved state of the crystal and the adhesive layer, and a large number of holes and grooves on the attachment surface of the substrate help escape excess adhesive and help to make the adhesive layer uniform. As a result, the problem of unevenness of the crystal surface due to local nonuniformity of the adhesive layer was eliminated, and uniform X-ray focusing became possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のX線湾曲結晶ならびにその製作工程を
説明する図,第2図は結晶用基板の概略図で,接着剤の
逃げとしてはりつけ面に多数の溝を切った場合(a),
多数の穴をあけた場合(b)をそれぞれ示す。 1……支持基板,2……紫外線硬化接着剤,3……結晶,4…
…押え板,5……紫外線
FIG. 1 is a diagram for explaining an X-ray curved crystal of the present invention and a process for manufacturing the same, and FIG. 2 is a schematic diagram of a crystal substrate, in which a large number of grooves are cut in a gluing surface as an escape of an adhesive (a). ,
The case where a large number of holes are formed is shown in FIG. 1 ... Support substrate, 2 ... UV curable adhesive, 3 ... Crystal, 4 ...
… Presser plate, 5… UV

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】結晶を支持基板の曲面にそわせて張り付け
たX線結晶において,前記支持基板をその膨張率が結晶
の膨張率の2倍以下でかつ可視光と紫外線に対して透明
な材料で形成すると共に支持基板の結晶張り付け面に接
着剤を逃がすための1本以上の溝または適当な数の穴を
設けたことを特徴とするX線湾曲結晶。
1. An X-ray crystal obtained by sticking a crystal along a curved surface of a supporting substrate, wherein the supporting substrate has a coefficient of expansion not more than twice the coefficient of expansion of the crystal and is transparent to visible light and ultraviolet rays. An X-ray curved crystal, which is formed by the method described above and is provided with one or more grooves or an appropriate number of holes for allowing the adhesive to escape on the crystal sticking surface of the supporting substrate.
JP62071099A 1987-03-25 1987-03-25 X-ray curved crystal Expired - Lifetime JPH0833497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62071099A JPH0833497B2 (en) 1987-03-25 1987-03-25 X-ray curved crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62071099A JPH0833497B2 (en) 1987-03-25 1987-03-25 X-ray curved crystal

Publications (2)

Publication Number Publication Date
JPS63236948A JPS63236948A (en) 1988-10-03
JPH0833497B2 true JPH0833497B2 (en) 1996-03-29

Family

ID=13450754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62071099A Expired - Lifetime JPH0833497B2 (en) 1987-03-25 1987-03-25 X-ray curved crystal

Country Status (1)

Country Link
JP (1) JPH0833497B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214685A (en) * 1991-10-08 1993-05-25 Maxwell Laboratories, Inc. X-ray lithography mirror and method of making same
US6317483B1 (en) * 1999-11-29 2001-11-13 X-Ray Optical Systems, Inc. Doubly curved optical device with graded atomic planes
JP5540305B2 (en) * 2008-10-01 2014-07-02 独立行政法人 宇宙航空研究開発機構 X-ray reflection device and manufacturing method thereof
JP5125994B2 (en) * 2008-11-04 2013-01-23 株式会社島津製作所 Germanium curved spectroscopic element
JP6069609B2 (en) 2015-03-26 2017-02-01 株式会社リガク Double-curved X-ray condensing element and its constituent, double-curved X-ray spectroscopic element and method for producing the constituent
CN109702909B (en) * 2019-01-17 2020-11-27 同济大学 Clamping tool applied to spherical curved crystal manufacturing and manufacturing method
CN113924628A (en) * 2019-07-18 2022-01-11 株式会社岛津制作所 Light splitting element

Also Published As

Publication number Publication date
JPS63236948A (en) 1988-10-03

Similar Documents

Publication Publication Date Title
EP1147522B1 (en) Curved optical device and method of fabrication
JP6029502B2 (en) Method for manufacturing curved diffraction grating
KR100272885B1 (en) Method for manufactuaring refklecting element and appatatus therefor
JPH0833497B2 (en) X-ray curved crystal
US20060061866A1 (en) Method of manufacturing replica diffraction grating
JPH07261010A (en) Replica diffraction grating
EP0189905B1 (en) Method of manufacturing recording discs
JP3263927B2 (en) Liquid crystal display panel manufacturing method
JPH03219441A (en) Long-sized stamper and its manufacture
JP2797190B2 (en) Manufacturing method of X-ray exposure mask
JP2004230471A (en) Ceramic fine pattern forming method
JP2001343555A (en) Method for producing optical fiber array and its optical fiber array
JP2988459B2 (en) X-ray spectrometer and method of manufacturing the same
JPH10142589A (en) Production of optical substrate
JPH1090692A (en) Manufacture of liquid crystal display device
JPH055904B2 (en)
JPH01165053A (en) Method for forming stamper for reproducing optical disk
JPH0776802B2 (en) Fixing structure of optical waveguide and optical fiber and fixing method thereof
JPH0630173B2 (en) Method for manufacturing stamper for optical disk
JPH0796239A (en) Apparatus and method for manufacture of plastic lens
JPH02201322A (en) Nonlinear optical element and production thereof
JPS62212605A (en) Production of optical waveguide
JPS62116793A (en) Production of electroforming stamper
JPS62164240A (en) Production of information recording substrate
JP2002062433A (en) Optical device