JPH0833425B2 - Digital fault locator - Google Patents

Digital fault locator

Info

Publication number
JPH0833425B2
JPH0833425B2 JP4942287A JP4942287A JPH0833425B2 JP H0833425 B2 JPH0833425 B2 JP H0833425B2 JP 4942287 A JP4942287 A JP 4942287A JP 4942287 A JP4942287 A JP 4942287A JP H0833425 B2 JPH0833425 B2 JP H0833425B2
Authority
JP
Japan
Prior art keywords
frequency
error
sampling
value
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4942287A
Other languages
Japanese (ja)
Other versions
JPS63214676A (en
Inventor
源三郎 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4942287A priority Critical patent/JPH0833425B2/en
Priority to AU12552/88A priority patent/AU603871B2/en
Priority to DE8888103281T priority patent/DE3874174T2/en
Priority to EP88103281A priority patent/EP0283786B1/en
Publication of JPS63214676A publication Critical patent/JPS63214676A/en
Priority to US07/453,197 priority patent/US4985843A/en
Publication of JPH0833425B2 publication Critical patent/JPH0833425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電力系統に適用するデジタル型の故障点標
定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a digital fault locator for a power system.

〔従来の技術〕[Conventional technology]

第6図は故障点標定装置が適用される電力系統を示す
図で、(1)は発電機,(2)は母線,(3)は送電
線,(4)は故障点,(5)は変流器,(6)は変成
器,(10)はデジタル型故障点標定装置,(11)は変流
器(5)の出力を適当な値に変換する回路,(12)は変
成器(6)の出力を適当な値に変換する回路,(21)及
び(22)はサンプリング定理から制限される周波数帯を
除去するフイルタ回路,(31)は入力を一定間隔毎にサ
ンプリングし順次AD変換する回路,(100)は演算回路
を示す。
FIG. 6 is a diagram showing an electric power system to which the fault point locating device is applied. (1) is a generator, (2) is a bus bar, (3) is a transmission line, (4) is a fault point, and (5) is Current transformer, (6) transformer, (10) digital fault locator, (11) circuit for converting output of current transformer (5) to appropriate value, (12) transformer ( A circuit for converting the output of 6) to an appropriate value, (21) and (22) are filter circuits for removing the frequency band restricted from the sampling theorem, and (31) is a sampling of the input at regular intervals and sequential AD conversion. The circuit, (100), indicates an arithmetic circuit.

デジタル型の故障点標定装置としては、故障点迄の送
電線の抵抗分R,インダクタンス分Lと故障電流iから、
母線電圧vは の関係式が成立することから、相異なる2つの一定時間
の積分値(2)及び(3)式を得て この両式から連立方程式を解くことによりR及びLを求
める方式が知られている。
As a digital fault point locator, from the resistance R, inductance L and fault current i of the transmission line up to the fault point,
The bus voltage v is Since the relational expression of is established, we obtain two integral values (2) and (3) A method of obtaining R and L by solving simultaneous equations from these two equations is known.

ところでデジタル型における演算処理では積分を一定
時刻間隔でサンプリングした離散的な値を用いて近似的
に求める必要が生じる為この近似式が周波数特性を持ち
誤差要因となつていた。この周波数特性を改善する手法
として特願昭60−179640号「デジタル距離継電装置」が
提案されている。
By the way, in the calculation processing in the digital type, it is necessary to approximately obtain the integral by using discrete values sampled at constant time intervals, and thus this approximate expression has a frequency characteristic and is an error factor. As a method for improving this frequency characteristic, Japanese Patent Application No. 60-179640 "Digital Distance Relay" has been proposed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

この方式では一定の間隔で連続したサンプリング時刻
をtn,tn+1,tn+2とし各々の時刻でサンプリングした電流
値をi(n),i(n+1),i(n+2)とした場合、電流の積分値を で近似している為、高次の周波数域で誤差が大きくなる
問題があつた。
In this method, the continuous sampling time is set to t n , t n + 1 , and t n + 2 at regular intervals, and the current value sampled at each time is i (n) , i (n + 1) , i (n + 2) , the integrated value of current is Since it is approximated by, there is a problem that the error becomes large in the higher frequency range.

この発明は上記のような問題点を解消するためになさ
れたもので、高次の周波数域に於いても周波数特性の改
善ができるデジタル形故障点標定装置を得ることを目的
とするものである。
The present invention has been made to solve the above problems, and it is an object of the present invention to obtain a digital fault locator which can improve frequency characteristics even in a higher frequency range. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は(1)式に示される送電系統に生じる関係式
を時刻tn-1からtn+1及びtnからtn+2まで積分して得られ
る(2),(3)式の両式から連立方程式を解くことで
R,Lを求めるのであるが、この際、奇数点数のサンプリ
ング量を使用し、高次の周波数で生じる誤差に対して補
正係数を掛けて積分近似する事によつて高次の周波数特
性を改善した故障点標定装置を提供するものである。
The present invention is obtained by integrating the relational expression occurring in the transmission system shown in the equation (1) from time t n-1 to t n + 1 and from t n to t n + 2 . By solving simultaneous equations from both equations
R and L are obtained, but at this time, the sampling frequency of an odd number of points is used, and the error occurring at the higher order frequency is multiplied by the correction coefficient and integrated approximation is performed to improve the higher order frequency characteristic. The present invention provides a fault location device.

〔作用〕[Action]

この発明による積分近似式によればK1,K2……Kn+1
後述する方法で決定する事によりn+1個の周波数に対
して積分近似誤差を零にすることが出来る為、R,Lの演
算誤差の周波数特性が改善される。
According to the integral approximation formula according to the present invention, the integral approximation error can be made zero for n + 1 frequencies by determining K 1 , K 2 ... K n + 1 by the method described later. The frequency characteristic of the L calculation error is improved.

〔発明の実施例〕Example of Invention

以下、この発明の実施例を図について説明する。第6
図について演算回路(100)は例えばマイクロコンピユ
ータよりなり次の(4)式を演算することで本発明が目
的としている高次の高調波における誤差を無くすことが
できる。
Embodiments of the present invention will be described below with reference to the drawings. Sixth
Referring to the figure, the arithmetic circuit (100) is composed of, for example, a microcomputer, and by calculating the following equation (4), it is possible to eliminate the error in the higher harmonics which is the object of the present invention.

但し i(n+1)−i(n)=B i(n+1)−i(n-1)=D △=EB−FD を示す。 However i (n + 1) −i (n) = B i (n + 1) −i (n-1) = D △ = EB-FD is shown.

第1図は本発明の一実施例について上記演算回路(10
0)の機能を説明するためのブロツク図で(111)〜(11
4)は近似積分を導出する回路で(111)は上述のA,(11
2)はC,(113)はE,(114)はF,をそれぞれ導出する演
算回路である。(115)はB,(116)はDを算出する引算
回路である。(121)〜(123)は演算回路で、(121)
はAB−CD,(122)はCE−AF,(123)は△を算出する。そ
して割算回路(131)で故障点迄の抵抗成分Rを、割算
回路(132)で故障点迄のインダクタンス成分Lを導出
するものである。
FIG. 1 shows the arithmetic circuit (10
(111) to (11) in the block diagram for explaining the function of (0).
4) is a circuit for deriving the approximate integral, and (111) is the above-mentioned A, (11
2) is an arithmetic circuit that derives C, (113) is E, and (114) is F. (115) is a subtraction circuit for calculating B and (116) is for calculating D. (121) to (123) are arithmetic circuits, and (121)
AB-CD, (122) CE-AF, and (123) Δ. The division circuit (131) derives the resistance component R up to the failure point, and the division circuit (132) derives the inductance component L up to the failure point.

電流電圧の積分値を得ることで後述するようにデジタ
ル型故障点標定装置が得られるため、ここでは先ずこれ
らの積分値をデジタル量を使用して求める方法について
説明する。第2図は任意の単一周波数の正弦波で一般式
がi=sin(ωt+β)で表わされる波形とする。ここ
でβは電圧ベクトル(図示略)に対する位相角を示す。
i(n-1),i(n),i(n+1)は時刻tn-1,tn,tn+1における電流i
の各々の瞬時値でサンプリングして導出される値を示
す。今、サンプリングする時刻tn-1,tn,tn+1の間隔を等
間隔とし角度成分でθ角度とした場合、仮りにtn-1から
tn+1迄の電流iの績分値を近似的に簡単に求めるならば
次のようにして求められる。即ちb1−i(n-1)−i(n+1)
a1で囲まれた四辺形の面積で近似できる。
Since a digital fault point locating device can be obtained by obtaining the integrated value of the current voltage as described later, here, first, a method of obtaining these integrated values by using a digital amount will be described. FIG. 2 is a sine wave having an arbitrary single frequency and a waveform represented by the general formula i = sin (ωt + β). Here, β represents a phase angle with respect to a voltage vector (not shown).
i (n-1) , i (n) , i (n + 1) is the current i at time t n-1 , t n , t n + 1
The values derived by sampling with the respective instantaneous values are shown. Now, assuming that the sampling times t n-1 , t n , and t n + 1 are equally spaced and the angle components are θ angles, from t n-1
If the divided value of the current i up to t n + 1 can be obtained simply and approximately, it can be obtained as follows. That is, b 1 −i (n-1) −i (n + 1)
It can be approximated by the area of a quadrangle surrounded by a 1 .

しかし系統故障発生時には種々の高調波が発生するた
め、この時でも求めた積分値が近似したものである必要
があるが、第8図に示すように第2図の周波数成分の2
倍の周波数とすると、この場合、b1−i(n-1)−i(n+1)
a1で囲まれた四辺形の面積、この場合は三角形となつて
いるが図から判るように明らかに真値に比べ誤差が大き
くなる。このことから、サンプリング間隔を狭まくすれ
ば良くなることが想像できる。
However, since various harmonics are generated when a system failure occurs, it is necessary that the integrated values obtained at this time be similar, but as shown in FIG. 8, 2 of the frequency components of FIG.
In this case, b 1 −i (n-1) −i (n + 1)
The area of the quadrilateral surrounded by a 1 is a triangle in this case, but as you can see from the figure, the error is obviously larger than the true value. From this, it can be imagined that the sampling interval can be reduced.

即ち中間のサンプル値を使用してb1−i(n-1)−i(n)
a0で囲まれた四辺形の面積とa0−i(n)−i(n+1)−a1で囲
まれた四辺形の面積を加算とすることで先に考えた方法
より誤差量を改善することができる。
That is, using an intermediate sample value, b 1 −i (n-1) −i (n)
a 0 enclosed by a quadrilateral area and a 0 -i (n) -i ( n + 1) error amount from a method of the area of the quadrilateral surrounded by -a 1 considered earlier by an addition Can be improved.

しかし、このようにしても更に高次の高周波について
考えると、誤差は依然として存在することになるので更
にサンプリング間隔を狭くすることが考えられるがこれ
とて限度がある。
However, even in this case, when considering a higher-order high frequency, an error still exists, so that it is possible to further reduce the sampling interval, but there is a limit to this.

このような観点から本発明ではサンプリング間隔によ
らずに奇数点数のサンプル値を多く使用することで高次
の高周波域まで誤差を極少に抑える方法を考えたので次
にその考え方を順を追つて説明して行く。
From such a viewpoint, in the present invention, a method of suppressing the error to a high frequency region of a high order by using a large number of sample values of odd points regardless of the sampling interval is considered. I'll explain.

第2図において時刻tn-1からtn+1迄の積分値をサンプ
リング間隔θとして求めると真値Iは次式となる。
In FIG. 2, when the integral value from time t n-1 to t n + 1 is obtained as the sampling interval θ, the true value I is as follows.

次に近似積分値をSとすると次式となる。 Next, when the approximate integral value is S, the following equation is obtained.

ここで i(n-1)=sin{ωt+β+(n−1)θ} i(n)=sin(ωt+β+nθ) i(n+1)=sin{ωt+β+(n+1)θ} であるので(6)式に代入すると この(7)式で求めた近似値が(5)式で求めた真値と
等しいものとするために(7)式に係数Cを掛けて補正
した近似積分値をSCとして置くと SC=Cθsin(ωt+β+nθ)(1+cosθ) ……
(8) となる。
Here, i (n-1) = sin {ωt + β + (n-1) θ} i (n) = sin (ωt + β + nθ) i (n + 1) = sin {ωt + β + (n + 1) θ} Substituting into The (7) an approximate integral value corrected by multiplying the coefficient C in the equation (7) in order to approximate value obtained is the (5) being equal to the true value obtained by the formula in expression when placed as S C S C = Cθsin (ωt + β + nθ) (1 + cosθ)
(8)

従つて(5)と(8)式から近似値を真値とするため
に掛ける係数は とすれば良いことが判る。
Therefore, the coefficient to multiply the approximate value from equations (5) and (8) to be the true value is It turns out that

ところが、このように補正を掛けた近似積分式でも、
今まで考えて来た周波数よりm倍の高次高調波が印加さ
れた場合について考えると補正近似積分は(6)式にC
を掛けて ここでiの瞬時値は i(n-1)=sin{mωt+β+(n−1)mθ i(n)=sin(mωt+β+nmθ i(n+1)=sin{mωt+β+(n+1)mθ} であるので、前記と同様に展開すれば 補正係数Cに(9)式を代入して となる。
However, even with the approximate integral equation corrected in this way,
Considering the case where a higher harmonic of m times the frequency that has been considered so far is applied, the corrected approximate integral is expressed by C in Equation (6).
Multiply by Since the instantaneous value of i is i (n-1) = sin {mωt + β + (n-1) mθi (n) = sin (mωt + β + nmθi (n + 1) = sin {mωt + β + (n + 1) mθ}, If you deploy the same as above Substituting equation (9) into the correction coefficient C Becomes

一方積分値の真値は(5)式と同様に展開して よつて誤差は(11),(12)式より となり、先に補正したCを掛けてもm次の高調波では誤
差が生じる結果となる。
On the other hand, the true value of the integrated value is expanded in the same way as equation (5). Therefore, the error is calculated from Eqs. (11) and (12) Therefore, even if the corrected C is applied, an error occurs in the mth harmonic.

本発明ではこれらの誤差を補正するものとして、サン
プリング間隔はそのままで第4図に示すように奇数点数
(但し、点数×θ<2πを満足する事)のサンプリング
値を使用することで近似積分の式を多項式とし、その各
々の項に特定の周波数で誤差を零とするように補正係数
を掛けたことにある。
In the present invention, to correct these errors, the sampling interval is left unchanged and the sampling value of an odd number of points (provided that the number of points × θ <2π is satisfied) is used as shown in FIG. The equation is a polynomial, and each term is multiplied by a correction coefficient so that the error is zero at a specific frequency.

即ち第4図に於いて四辺形b1−i(n-1)−i(n)−a0及び
四辺形a0−i(n)−i(n+1)−a1の面積を加算して一つの項
となし、それに例えば基本波での周波数で誤差が零とな
るように補正係数K1を掛けて を(6)式で求めたと同様にして得る。
That is, in FIG. 4, add the areas of the quadrangle b 1 −i (n-1) −i (n) −a 0 and the quadrangle a 0 −i (n) −i (n + 1) −a 1. Then, it becomes one term, and it is multiplied by the correction coefficient K 1 so that the error becomes zero at the frequency of the fundamental wave. Is obtained in the same manner as the equation (6).

次に四辺形b1−i(n-1)−i(n+1)−a1の面積に例えば2
倍周波で誤差が零となるように補正係数K2を掛けて S1=K2θ{i(n-1)+i(n+1)} を得る。
Next, in the area of the quadrangle b 1 −i (n-1) −i (n + 1) −a 1 , for example, 2
The correction coefficient K 2 is multiplied so that the error becomes zero at the double frequency, and S 1 = K 2 θ {i (n-1) + i (n + 1) } is obtained.

更に四辺形b2−i(n-2)−i(n+2)−a2の面積に特定の周
波数で誤差が零となるように補正係数K3を掛けて S2=2K3θ{i(n-2)+i(n+2)} を得る。同様にして Sn-1=Kn(n-1)θ{i(1)+i(2n-1)} Sn=Kn+1nθ{i(0)+i(2n)} を得る。そして、それらの和 を近似積分式とする。
Further, the area of the quadrangle b 2 −i (n-2) −i (n + 2) −a 2 is multiplied by a correction coefficient K 3 so that the error is zero at a specific frequency, and S 2 = 2K 3 θ { i (n-2) + i (n + 2) } is obtained. Similarly, S n-1 = K n (n-1) θ {i (1) + i (2n-1) } S n = K n + 1 nθ {i (0) + i (2n) } is obtained. And the sum of them Is an approximate integral formula.

次に、この式中の補正係数の算出方法について説明す
る。
Next, a method of calculating the correction coefficient in this equation will be described.

今、電流の波形がm次の高調波として時刻t0でのiの
瞬時値を i(0)=sin(mωt+β) とすると であるのでこれらの値を(14)式に代入すると を得る。
Now, assuming that the current waveform is a harmonic of the mth order and the instantaneous value of i at time t 0 is i (0) = sin (mωt + β) Therefore, substituting these values into equation (14) Get.

一方tn-1からtn+1迄の真の積分値は となる。On the other hand, the true integral value from t n -1 to t n + 1 is Becomes

従つて近似積分値STを真値と等しくするために補正係
数を決めるなら、(15)式と(16)式を恒等式とするこ
とで求めることができる(同じ箇所の面積を繰り返し重
複加算すると、繰り返し加算する回数により真値からか
け離れた値になるように思われるが、繰り返し加算する
各項式から得られる面積毎に重み付けの係数を乗算して
補正するので、逆に真値に近づけることが可能にな
る。)。即ち(15)と(16)式の同類項を削除して恒等
式で示すと となる。
Therefore, if a correction coefficient is determined to make the approximate integrated value S T equal to the true value, it can be obtained by using equations (15) and (16) as identities. , It seems that it becomes a value that is far from the true value depending on the number of repeated additions, but since it is corrected by multiplying the weighting coefficient for each area obtained from each term expression that repeats addition, it should be closer to the true value. Will be possible.) That is, if the similar terms in Eqs. (15) and (16) are deleted and shown by the identities Becomes

この式から、特定の周波数に於いて誤差が零となるよ
う式を作り得られた式から連立方程式を解くことで補正
係数を得ることができる。例えば3点のサンプリング値
を使用して基本波と2倍周波数で誤差を零とするならば
サンプリングポイントはb1,a0,a1の3点であることから
(17)式中のnにはn=1が代入される。
From this equation, a correction coefficient can be obtained by solving the simultaneous equations by creating an equation so that the error becomes zero at a specific frequency. For example, if the error is zero between the fundamental wave and the doubled frequency by using the sampling values of 3 points, the sampling points are 3 points of b 1 , a 0 , and a 1 ; Is assigned n = 1.

従つて基本波の場合について(17)式を作るとm=1
を代入して θK1(1+cosθ)+2θK2cosθ=2sinθ 次に2倍周波の場合について(17)式を作るとm=2
を代入して θK1{1+cos(2θ)}+2θK2cos(2θ) =sin(2θ) 従つて の行列式を解くことで補正係数K1,K2の値が得られる。
第5図(200)の特性は3点サンプリングでサンプリン
グ間隔θを30゜としてK1,K2を算出し、(14)式の近似
積分式に代入して真値との誤差分を縦軸に、基本周波数
に対する高調波次数の割合/を横軸に描いた
もので、この3点サンプリングについては既に提案され
て周知のものである。
Therefore, when formula (17) is created for the case of the fundamental wave, m = 1
By substituting θK 1 (1 + cosθ) + 2θK 2 cosθ = 2sinθ Next, when formula (17) is created for the case of double frequency, m = 2
By substituting θK 1 {1 + cos (2θ)} + 2θK 2 cos (2θ) = sin (2θ) The values of the correction coefficients K 1 and K 2 can be obtained by solving the determinant of.
The characteristic of Fig. 5 (200) is to calculate K 1 and K 2 with 3-point sampling at a sampling interval θ of 30 ° and substitute it into the approximate integral formula (14) to calculate the error from the true value on the vertical axis. To the fundamental frequency
The ratio / 0 of the harmonic orders for 0 which was drawn on the horizontal axis, is well known already been proposed for this three sampling.

本発明によれば例えば5点及び7点等奇数点数の使用
サンプリング数を増して行つて高調波域まで誤差を無く
すことができる。
According to the present invention, the error can be eliminated up to the harmonic range by increasing the number of used samplings with an odd number of points such as 5 points and 7 points.

例えば7点の時はサンプリングポイントはb3,b2,b1,a
0,…a3であることから(17)式中のnにはn=3が代入
される。ここで、基本波,2倍周波,3倍周波,4倍周波成分
で誤差を零とするならば次の4つの式から連立方程式を
解くことにより補正係数K1…K4を求めることができる。
For example, when there are 7 points, the sampling points are b 3 , b 2 , b 1 , a
Since 0 , ... A 3 , n = 3 is substituted for n in the equation (17). Here, if the error is zero in the fundamental wave, double frequency, triple frequency, and quadruple frequency components, the correction coefficients K 1 ... K 4 can be obtained by solving simultaneous equations from the following four equations. .

即ち、基本波時、m=1を代入して θK1(1+cosθ)+2θK2cosθ+4θK3cos(2θ) +6θK4cos(3θ)=2sin(θ) 2倍周波時、m=2を代入して θK1{1+cos(2θ)}+2θK2cos(2θ) +4θK3cos(4θ)+6θK4cos(6θ) =sin(2θ) 3倍周波時、m=3を代入して 4倍周波時、m=4を代入して を得、これらの式から の行列式を解くことで補正係数K1…K4を求めることがで
きる。第5図(300)の特性は、この7点サンプリング
を使用してサンプリング間隔θを30゜として補正係数を
算出し(14)式の近似積分を行なつた場合の周波数特性
を示す。
That is, when the fundamental wave, m = 1 is substituted and θK 1 (1 + cos θ) + 2θK 2 cos θ + 4 θK 3 cos (2θ) +6 θK 4 cos (3θ) = 2 sin (θ) At the time of double frequency, m = 2 is substituted and θK 1 {1 + cos (2θ)} + 2θK 2 cos (2θ) + 4θK 3 cos (4θ) + 6θK 4 cos (6θ) = sin (2θ) At triple frequency, substitute m = 3 Substituting m = 4 at quadruple frequency And from these expressions The correction coefficient K 1 ... K 4 can be obtained by solving the determinant of. The characteristic of FIG. 5 (300) shows the frequency characteristic when the correction coefficient is calculated by using this 7-point sampling with the sampling interval θ of 30 ° and the approximate integration of the equation (14) is performed.

このように近似積分を(14)式とし、式中の補正係数
を前記した方法で求めることにより高次の高調波まで誤
差を無くすことができ周波数特性が改善されたことにな
る。
Thus, by approximating the approximate integral by the equation (14) and determining the correction coefficient in the equation by the above-mentioned method, it is possible to eliminate the error up to higher harmonics and improve the frequency characteristic.

このようにして求められた近似積分値は、説明の冒頭
で記した(2)及び(3)式の連立方程式から得られる
次の積分項に使用し、 を算出することで電力系統で発生した故障点迄の抵抗成
分R及びインダクタンス成分Lを求めることができるの
でデジタル型故障点標定装置が提供できたことになる。
The approximate integral value thus obtained is used for the next integral term obtained from the simultaneous equations (2) and (3) described at the beginning of the description, Since the resistance component R and the inductance component L up to the fault point that has occurred in the power system can be obtained by calculating the above, the digital fault point locating device can be provided.

尚、上記では電流の積分手法について記したが、電圧
の積分についても同様に得られること、また本発明の実
施例のハードウエア構成については通常のデジタルリレ
ーと同じで既に周知とするところであるので詳細は省略
した。
In the above, the method of integrating the current is described, but the fact that the integration of the voltage can be obtained in the same manner, and the hardware configuration of the embodiment of the present invention is the same as that of a normal digital relay and is already known. Details are omitted.

なお以上の説明では電圧、電流について時にことわつ
ていないが、通常の三相電力系統では短絡故障点標定装
置の場合は線間電圧、線間電流が、地絡故障点標定装置
では相電圧、零相電流を補償した相電流が用いられるの
は言うまでもない。
In the above explanation, voltage and current are not mentioned sometimes, but in a normal three-phase power system, the line voltage and line current in the case of a short-circuit fault locator, and the phase voltage in a ground fault locator. Needless to say, the phase current that compensates the zero-phase current is used.

故障点標定装置においては高速に故障点迄の抵抗成分
R,インダクタンス成分Lを算出しなくても良いという性
格上、電力系統故障時の電圧、電流を記憶しておき、後
で記憶値を使用して算出しても良い。この為、精度を高
めることの方が重要であることから多くのサンプリング
値を使用することは特に問題とならない。
In the fault point locator, the resistance component up to the fault point at high speed
In consideration of the fact that R and the inductance component L do not have to be calculated, the voltage and current at the time of a power system failure may be stored and later calculated using the stored values. For this reason, it is not a problem to use a large number of sampling values because it is more important to improve the accuracy.

また演算時間の許容範囲内で多くのサンプリング値を
使用して距離継電器に適用できることは言うまでもな
い。
Further, it goes without saying that the present invention can be applied to the distance relay by using many sampling values within the allowable range of the calculation time.

更に電圧、電流のスカラー量を得るのに使用出来るこ
とも言うまでもない。
Further, it goes without saying that it can be used to obtain a scalar quantity of voltage and current.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば高次の高周波域での
誤差に対し補正係数を設けるようにしたので高次の高周
波域まで周波数特性が改善できる効果がある。
As described above, according to the present invention, since the correction coefficient is provided for the error in the high-order high frequency range, there is an effect that the frequency characteristic can be improved up to the high-order high frequency range.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の演算機能を説明するためのブロツク
図、第2図及び第3図は近似積分の概要を説明する為の
図で、第2図は基本波成分の波形を、第3図は2倍周波
成分の波形の場合を示す。第4図は本発明による近似積
分の原理を説明する図、第5図は積分近似の周波数特性
を示す図で図中の(200)は従来提案されている特性、
(300)は本発明により改善された周波数特性を示す。
第6図は故障点標定装置が適用される電力系統を示す図
である。 なお図中同一符号は同一又は相当部分を示す。
FIG. 1 is a block diagram for explaining the calculation function of the present invention, FIGS. 2 and 3 are diagrams for explaining the outline of the approximate integration, and FIG. 2 shows the waveform of the fundamental wave component. The figure shows the case of the waveform of the double frequency component. FIG. 4 is a diagram for explaining the principle of approximate integration according to the present invention, and FIG. 5 is a diagram showing frequency characteristics of integral approximation. (200) in the figure is a conventionally proposed characteristic,
(300) indicates the frequency characteristic improved by the present invention.
FIG. 6 is a diagram showing a power system to which the fault location device is applied. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電力系統の電圧v,電流iを等間隔で寄数点
数サンプリングしv,iと送電線の抵抗R,インダクタンス
Lの間の関係式 から一連のサンプリング時刻をt0,t1…tn-1,tn,tn+1,…
t2nとし の2式を得、式中の積分演算 に対し ここでK1,K2…Kn+1は定数 θはサンプリング角度 i(0),i(1)…i(2n)は時刻t(0),t(1)…t(2n)のiの瞬時値 で近似する事によつてこれらの関係式からR,Lを求める
事を特徴とするデジタル型故障点標定装置。
1. A relational expression between a voltage v and a current i of a power system, which are sampled at even intervals by a multipoint sampling, and a resistance R and an inductance L of a transmission line From t 0 , t 1 … t n-1 , t n , t n + 1 ,…
t 2n 2 equations are obtained and the integral operation in the equations Against Where K 1 , K 2 … K n + 1 is a constant θ is the sampling angle i (0) , i (1) … i (2n) is i at time t (0) , t (1) … t (2n) A digital fault point locator characterized by finding R and L from these relational expressions by approximating by the instantaneous value of.
JP4942287A 1987-03-03 1987-03-03 Digital fault locator Expired - Lifetime JPH0833425B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4942287A JPH0833425B2 (en) 1987-03-03 1987-03-03 Digital fault locator
AU12552/88A AU603871B2 (en) 1987-03-03 1988-03-02 Digital locator
DE8888103281T DE3874174T2 (en) 1987-03-03 1988-03-03 DIGITAL LOCALIZER.
EP88103281A EP0283786B1 (en) 1987-03-03 1988-03-03 Digital locator
US07/453,197 US4985843A (en) 1987-03-03 1989-12-26 Digital locator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4942287A JPH0833425B2 (en) 1987-03-03 1987-03-03 Digital fault locator

Publications (2)

Publication Number Publication Date
JPS63214676A JPS63214676A (en) 1988-09-07
JPH0833425B2 true JPH0833425B2 (en) 1996-03-29

Family

ID=12830642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4942287A Expired - Lifetime JPH0833425B2 (en) 1987-03-03 1987-03-03 Digital fault locator

Country Status (1)

Country Link
JP (1) JPH0833425B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2768101B1 (en) 2011-10-13 2018-05-30 Mitsubishi Electric Corporation Protective control device

Also Published As

Publication number Publication date
JPS63214676A (en) 1988-09-07

Similar Documents

Publication Publication Date Title
JP2677722B2 (en) Digital protection relay
US5081413A (en) Method and apparatus for measuring AC power
US4885656A (en) Digital protective relay
JP5181427B2 (en) Phase / amplitude detection apparatus and method
JPH10311741A (en) Output signal processing device of encoder
KR920005055B1 (en) Electric quantity detecting apparatus
JPH0833425B2 (en) Digital fault locator
EP0283786B1 (en) Digital locator
JP2011047839A (en) Vector measuring device, vector measuring system, and vector measuring method
JP3814834B2 (en) Harmonic detection method by fixed sampling
JP4107570B2 (en) Control method of self-excited converter
JPH0616067B2 (en) Digital fault locator
JP2003079154A (en) Electric railway power synchronizing signal detector
JPH10178741A (en) Power-line conditioner
JPH0737997B2 (en) Electricity detector
JP3030481B2 (en) Frequency detector
JPH02213770A (en) Method for computing effective value of three-phase voltage and current and three-phase active and reactive power
JP3182777B2 (en) Electric energy measurement method
JP3000326B2 (en) Digital type distance relay
JP2665759B2 (en) Digital protection relay
JPH0767226B2 (en) Digital protection relay
JP2004301550A (en) Operation device of power related quantity and phase angle
JPH0648279B2 (en) Amplitude value calculator
JPH10243659A (en) Current control apparatus
JPH0454815A (en) Digital protective relay unit

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term