JPH02213770A - Method for computing effective value of three-phase voltage and current and three-phase active and reactive power - Google Patents

Method for computing effective value of three-phase voltage and current and three-phase active and reactive power

Info

Publication number
JPH02213770A
JPH02213770A JP3375189A JP3375189A JPH02213770A JP H02213770 A JPH02213770 A JP H02213770A JP 3375189 A JP3375189 A JP 3375189A JP 3375189 A JP3375189 A JP 3375189A JP H02213770 A JPH02213770 A JP H02213770A
Authority
JP
Japan
Prior art keywords
phase
current
voltage
cycle
sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3375189A
Other languages
Japanese (ja)
Inventor
Shinya Kawada
川田 信哉
Atsushi Shimura
淳 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3375189A priority Critical patent/JPH02213770A/en
Publication of JPH02213770A publication Critical patent/JPH02213770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To establish the computation method which decreases characteristic changes, has excellent responsiveness and can improve the detection accuracy of basic waves by simultaneously sampling three phases of a voltage or current at the frequency of the even times the higher harmonics to be removed per one cycle of AC. CONSTITUTION:The over sampling of the N point which is the even times the higher harmonics to be removed per one cycle is executed. Such oversampling is executed simultaneously with the three phases of the voltage or current. The instantaneous voltages Vu, Vv, Vw of the respective phases obtd. by this sampling are computed by using equation I of three phase square sum at every sampling point. The accurate effective value of the three phase AC voltage in which the error components of the higher harmonic difference components are canceled is obtd. The instantaneous currents Iu, Iv, Iw of the respective phases obtd. by the simultaneous sampling for the three phase current are also computed by equation II at every sampling point similarly with respect to the current as well. The effective value of the three phase AC current in which the error components of the higher harmonics are canceled is obtd. by taking the moving average of the one cycle of this value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、三相交流電源線の電圧・電流を検出し、こ
の検出値により発電機の電力あるいは電圧を制御する電
力用制御装置や電圧制御装置等に使用される電圧電流実
効値検出装置および有効無効電力検出装置の演算方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention detects the voltage and current of a three-phase AC power line, and uses the detected values to control the power or voltage of a generator. The present invention relates to a calculation method for a voltage/current effective value detection device and an active/reactive power detection device used in a control device or the like.

〔従来の技術〕[Conventional technology]

一般に、三相交流電源線にはトランスやサイリスタ変換
器等から発生される高調波が含まれており、三相交流電
源線の基本波電圧電流を検出する際、この高調波成分が
検出値の誤差原因となっている。従来、この高調波成分
の影響を回避するために、高次の強力なアナログフィル
タを使用して基本波成分を抽出してから、三相同時サン
プリングによりA/D変換を行う方法が採られていた。
In general, three-phase AC power lines contain harmonics generated from transformers, thyristor converters, etc., and when detecting the fundamental voltage and current of three-phase AC power lines, these harmonic components are part of the detected value. This is a cause of error. Conventionally, in order to avoid the effects of harmonic components, a method has been adopted in which a high-order powerful analog filter is used to extract the fundamental wave component, and then A/D conversion is performed using three-phase simultaneous sampling. Ta.

このA/D変換後のディジタルデータを三相二乗和の平
方根の式により演算すれば三相交流の電圧電流実効値が
得られ、αβ変換法の式により演算すれば三相交流の有
効電力と無効電力とが得られる。
If this digital data after A/D conversion is calculated using the square root equation of the sum of squares of three phases, the effective voltage and current value of three-phase AC can be obtained, and if it is calculated using the αβ conversion method, the effective power of three-phase AC can be obtained. Reactive power can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前述した高次のアナログフィルタを用い
て基本波を抽出する方法は、次のような問題点を有して
いた。
However, the method of extracting the fundamental wave using the high-order analog filter described above has the following problems.

■ アナログフィルタとしてゲインの高い演算増幅器で
構成するアクティブフィルタを用いるため、演算増幅器
のゲインやオフセットなどの変化による精度低下が発生
し易く、従って、基本波抽出に対するアナログフィルタ
の特性変化の影響が大きい。
■ Since an active filter consisting of a high-gain operational amplifier is used as an analog filter, accuracy decreases are likely to occur due to changes in the gain and offset of the operational amplifier, and therefore, changes in the characteristics of the analog filter have a large effect on fundamental wave extraction. .

■ アナログフィルタの減衰特性には、どうしても緩や
かな部分が有り、特に基本波近傍の高調波を全て取り切
れないため、このアナログフィルタを通過した高調波成
分が演算精度の低下を生じさせていた。
■ The attenuation characteristics of an analog filter inevitably have a gradual part, and in particular cannot remove all harmonics near the fundamental wave, so the harmonic components that pass through this analog filter cause a decrease in calculation accuracy.

また、周波数サンプリングしたデータをフーリエ変換し
て、基本波成分を抽出し、この基本波成分から実効値等
を演算する方法も考えられるが、その場合には、 ■ 最低交流1サイクル分以上の入力データが揃わない
と演算ができず、しかも三相分の1回のフーリエ変換に
要する時間がさらにかかるために、応答が遅い。
Another possible method is to Fourier transform the frequency sampled data, extract the fundamental wave component, and calculate the effective value etc. from this fundamental wave component, but in that case, ■ Input for at least one cycle of AC. Calculations cannot be performed unless the data is complete, and furthermore, it takes more time to perform one Fourier transform for three phases, resulting in a slow response.

■ 最少でも交流1サイクル以下にはならないため、応
答周期が粗い。
■ The response cycle is rough because it does not go below at least one cycle of AC.

という問題点がある。There is a problem.

そこで、本発明の目的は、従来、アナログフィルタに頼
っていた高調波誤差成分の除去を、オーバサンプリング
手法を適用して、より効果的に行い、特性変化が少なく
応答性にも優れ、基本波検出精度を向上することのでき
る三相電圧電流実効値および三相有効無効電力の演算方
法を提供するにある。
Therefore, the purpose of the present invention is to more effectively remove harmonic error components, which conventionally relied on analog filters, by applying an oversampling method, to reduce characteristic changes, to provide excellent response, and to provide a fundamental An object of the present invention is to provide a calculation method for three-phase voltage and current effective values and three-phase active reactive power that can improve detection accuracy.

〔8題を解決するための手段〕 本発明に係る三相電圧電流実効値の演算方法は、三相交
流電圧または電流信号の交流1サイクル当り、除去する
高調波の偶数倍の周波数で電圧または電流の三相同時サ
ンプリングを行って得られるA/D変換データに対し三
相二乗和の平方根の式を用いて毎回各点ごとに演算し、
この演算値の1サイクル移動平均を算出することを特徴
とする。
[Means for Solving Problem 8] The method of calculating the effective value of three-phase voltage and current according to the present invention calculates voltage or current at a frequency that is an even multiple of the harmonic to be removed per AC cycle of a three-phase AC voltage or current signal. The A/D conversion data obtained by simultaneous three-phase sampling of current is calculated for each point using the square root formula of the sum of squares of three phases.
The method is characterized in that a one-cycle moving average of the calculated values is calculated.

また、本発明に係る三相有効無効電力の演算方法は、三
相交流電圧および電流信号の交流1サイクル当り、除去
する高調波の偶数倍の周波数で電圧および電流の六相同
時サンプリングを行って得られるA/D変換データに対
しαβ変操法の式を用いて毎回各点ごとに演算し、この
演算値の1サイクル移動平均を算出することを特徴とす
る。
Furthermore, the method for calculating three-phase active reactive power according to the present invention includes simultaneously sampling six phases of voltage and current at a frequency that is an even number multiple of the harmonic to be removed per AC cycle of three-phase AC voltage and current signals. The method is characterized in that the obtained A/D converted data is calculated for each point each time using the formula of the αβ variation method, and a 1-cycle moving average of the calculated values is calculated.

〔作 用〕[For production]

本発明に係る三相電圧電流実効値および三相有効無効電
力の演算方法によれば、交流1サイクル当り、除去する
高調波の偶数倍の周波数でサンプリングするオーバサン
プリング手法によって、折返し雑音の混入を防止するた
めの前置フィルタは次数の低い簡単な回路のアナログフ
ィルタで良いため、従来のように高次の強力なアナログ
フィルタを入力部に用いる必要がなく、従って、高速応
答特性が良くなる。また、三相同時サンプリングを行い
各点毎に演算して1サイクル移動平均をとるようにした
ため、高調波誤差成分を効果的にキャンセルでき検出精
度向上を図ることができる。
According to the method of calculating the three-phase voltage/current effective value and the three-phase active reactive power according to the present invention, the inclusion of aliasing noise is suppressed by the oversampling method of sampling at a frequency that is an even number multiple of the harmonic to be removed per AC cycle. Since the pre-filter for preventing this can be a low-order, simple circuit analog filter, there is no need to use a high-order, powerful analog filter at the input section as in the past, and therefore, high-speed response characteristics are improved. Furthermore, since three-phase simultaneous sampling is performed and calculations are made for each point to obtain a one-cycle moving average, harmonic error components can be effectively canceled and detection accuracy can be improved.

〔実施例〕〔Example〕

次に、本発明に係る三相電圧電流実効値および三相有効
無効電力の演算方法の実施例につき、添付図面を参照し
ながら以下詳細に説明する。
Next, an embodiment of the method for calculating three-phase voltage and current effective values and three-phase active reactive power according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図は、−相分の交流波形の1サイクル(1周期)に
対するサンブリング状態を示す図であり、1サイクル当
り、除去しよ゛うとする高調波の偶数倍であるN点のオ
ーバサンプリングを行っている。このようなオーバサン
プリングを、電圧又は電流三相分に対して同時に行う、
第2図は三相電圧に対して同時サンプリングした状態を
示す図で、このサンプリングで得られた各相の瞬時電圧
Vu、Vv。
Figure 1 is a diagram showing the sampling state for one cycle (one period) of an AC waveform of the -phase component, and per cycle, oversampling of N points that are an even multiple of the harmonic to be removed is performed. It is carried out. Performing such oversampling simultaneously for three phases of voltage or current,
FIG. 2 is a diagram showing a state in which three-phase voltages are simultaneously sampled, and the instantaneous voltages Vu and Vv of each phase obtained by this sampling.

Vwを、サンプリング点毎に下記のように三相二乗和の
式を用いて演算する。
Vw is calculated for each sampling point using a three-phase sum of squares formula as shown below.

この値は、交流1サイクルで1回誤差が変動する点に着
目して、1サイクルの移動平均をとることによって、高
調波誤差成分がキャンセルされた精度の良い三相交流電
圧の実効値を得ることができる。
Focusing on the fact that the error fluctuates once per AC cycle, this value is calculated by taking a moving average over one cycle to obtain a highly accurate effective value of the three-phase AC voltage in which harmonic error components are canceled. be able to.

同様に、電流に関しても第3図で示すように、三相電流
に対して同時サンプリングで得られた各相の瞬時電流I
u、Iv、Iwを、サンプリング点毎に次式により演算
する。
Similarly, regarding the current, as shown in Figure 3, the instantaneous current I of each phase obtained by simultaneous sampling for the three-phase current
u, Iv, and Iw are calculated for each sampling point using the following equation.

この値の1サイクルの移動平均をとることによって、高
調波誤差成分をキャンセルした三相交流電流の実効値を
得ることができる。
By taking the moving average of this value over one cycle, it is possible to obtain the effective value of the three-phase alternating current with harmonic error components canceled.

この演算方法は、第4図に示す検出装置(こ適用するこ
とができる。第4図にお〜1て、参照符号10は発電機
であり、発電機10の出力は遮断器14を介して電力系
統161.こ送電される0発電機10の出力線12に取
っ付番すな計器用変圧器(三相)20および変流器(三
相)18を介して、検出装置30番よ出力線12の三相
電圧および三相電流を監視して、所要の検出量を演算し
、図示しな〜1電力用fIIJ御装置に送り、発電機1
0の制御を行うためのものである。検出装置30はA/
D変換部32、パスライン34および検出量演算部36
からなり、A/D変換部32において、三相電圧または
三相電流を1サイクル当り、除去する高調波の偶数倍の
周波数で三相同時サンプリングしてディジタルデータに
変換する。このディジタルデータはサンプリングごとに
パスライン34を介して検出量演算部36に送られ、検
出量演算部36では、例えば、前記した三相二乗和の式
を用いて演算し、この演算値を交流1サイクルにつき移
動平均をとり、三相電圧実効値または三相電流実効値を
算出する。
This calculation method can be applied to the detection device shown in FIG. 4. In FIG. Power system 161. This power is transmitted to the output line 12 of the generator 10 through the instrument transformer (three-phase) 20 and current transformer (three-phase) 18, and the output from the detection device No. 30. The three-phase voltage and three-phase current of the line 12 are monitored, the required detection amount is calculated, and the result is sent to the power fIIJ control device (not shown) for the power generator 1.
This is for controlling 0. The detection device 30 is A/
D conversion section 32, pass line 34, and detection amount calculation section 36
In the A/D converter 32, the three-phase voltage or three-phase current is simultaneously sampled per cycle at a frequency that is an even number multiple of the harmonic to be removed and converted into digital data. This digital data is sent to the detected amount calculation unit 36 via the path line 34 for each sampling, and the detected amount calculation unit 36 calculates it using, for example, the above-mentioned three-phase sum of squares formula, and converts this calculated value into an AC A moving average is taken for each cycle, and the three-phase voltage effective value or three-phase current effective value is calculated.

ここで、計器用変圧器20および変流器18を介して三
相電圧および三相電流の六相分を同時に検出し、第1図
で示すように交流1サイクル当り、除去する高調波の偶
数倍であるN点のオーバサンプリングを電圧電流の六相
分行うと、すなわち、第2図および第3図の瞬時電圧電
流のディジタルデータVu。
Here, six phases of the three-phase voltage and three-phase current are detected simultaneously through the instrument transformer 20 and the current transformer 18, and an even number of harmonics to be removed per AC cycle as shown in FIG. When oversampling of N points is performed for six phases of voltage and current, that is, the instantaneous voltage and current digital data Vu in FIGS. 2 and 3 is obtained.

Vv、Vw、Iu、Iv、Iwを得るようにすると、こ
の各A/D変換データを、サンプリングの各点に対して
、 P=■α・Iα十■β・Iβ Q=Vβ ・ Iu−Vα ・ Iβ で示されるαβ変換法の式により演算し、この値の1サ
イクルの移動平均をとれば、高調波誤差成分がキャンセ
ルされた精度の良い三相有効電力Pおよび三相無効電力
Qを得ることができる。
When Vv, Vw, Iu, Iv, and Iw are obtained, each A/D conversion data is calculated as follows for each sampling point: P=■α・Iα×β・Iβ Q=Vβ・Iu−Vα - Calculate using the αβ conversion formula shown by Iβ and take the moving average of this value over one cycle to obtain highly accurate three-phase active power P and three-phase reactive power Q with harmonic error components canceled. be able to.

〔発明の効果〕〔Effect of the invention〕

前述した実施例から明らかなように、本発明によれば、
高調波が含まれる三相交流電源線の電圧電流実効値検出
°装置の演算方法にオーバサンプリング手法を採りいれ
、交流1サイクル当り、除去する高調波の偶数倍の周波
数で多点サンプリングを行い、各点毎に三相二乗和によ
り演算して1サイクル移動平均をとるようにしたことに
より、高調波誤差成分の極めて少ない精度の良い三相電
圧電流実効値を得ることができ、ディジタル式高速電圧
電流検出装置の高性能化が可能となり、よりディジタル
制御系への適用を広げる効果がある。また、有効無効電
力検出装置にこの演算方法を採りいれることにより、デ
ィジタル式高速有効無効電力検出装置の高性能化が可能
となり、同様の効果が得られる。
As is clear from the embodiments described above, according to the present invention,
Detecting the effective voltage and current value of a three-phase AC power line that contains harmonics The oversampling method is adopted in the calculation method of the device, and per AC cycle, multi-point sampling is performed at a frequency that is an even multiple of the harmonic to be removed. By calculating the three-phase sum of squares for each point and taking a one-cycle moving average, it is possible to obtain highly accurate three-phase voltage and current effective values with extremely low harmonic error components. It becomes possible to improve the performance of the current detection device, which has the effect of expanding its application to digital control systems. Further, by adopting this calculation method in the active reactive power detection device, it is possible to improve the performance of the digital high-speed active reactive power detection device, and the same effect can be obtained.

さらに、アナログフィルタとして高次のアクティブフィ
ルタを用いる必要がなくなるため、従来のような基本波
抽出に対するアナログフィルタの特性変化の影響を受け
ることがない。
Furthermore, since there is no need to use a high-order active filter as an analog filter, fundamental wave extraction is not affected by changes in characteristics of the analog filter as in the conventional method.

本発明に係る演算方法を、ディジタル・シグナル・プロ
セッサ(DSP)に適用して、高速演算を行うようにす
れば、交流で約半サイクルの高速応答時間の検出装置が
実現できる。
If the calculation method according to the present invention is applied to a digital signal processor (DSP) to perform high-speed calculation, a detection device with a high-speed response time of about half a cycle in AC can be realized.

以上、本発明の好適な実施例について説明したが、本発
明は前記実施例に限定されることなく、本発明の精神を
逸脱・しない範囲内において種々の設計変更をなし得る
ことは勿論である。
Although preferred embodiments of the present invention have been described above, the present invention is not limited to the embodiments described above, and it goes without saying that various design changes can be made without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一相分の交流波形の1サイクルに対するオーバ
サンプリングを示す説明図、第2図は三相電圧に対して
三相同時サンプリングした状態を示す説明図、第3図は
三相電流に対して三相同時サンプリングした状態を示す
説明図、第4図は検出装置の使用例を示す説明図である
。 10・・・発′@機 12・・・出力線 14・・・遮断器 16・・・電力系統 18・・・変流器(三相) 20・・・計器用変圧器(三相) 30・・・検出装置 32・・・A/D変換部 34・・・パスライン 36・・・検出量演算部 FIo、2
Figure 1 is an explanatory diagram showing oversampling for one cycle of an AC waveform for one phase, Figure 2 is an explanatory diagram showing a state in which three phases are simultaneously sampled for three-phase voltage, and Figure 3 is an explanatory diagram for three-phase current. On the other hand, FIG. 4 is an explanatory diagram showing a state in which three phases are simultaneously sampled, and FIG. 4 is an explanatory diagram showing an example of how the detection device is used. 10... Source @ machine 12... Output line 14... Circuit breaker 16... Power system 18... Current transformer (three-phase) 20... Instrument transformer (three-phase) 30 ...Detection device 32...A/D conversion section 34...Pass line 36...Detection amount calculation section FIo, 2

Claims (2)

【特許請求の範囲】[Claims] (1)三相交流電圧または電流信号の交流1サイクル当
り、除去する高調波の偶数倍の周波数で電圧または電流
の三相同時サンプリングを行つて得られるA/D変換デ
ータに対し三相二乗和の平方根の式を用いて毎回各点ご
とに演算し、この演算値の1サイクル移動平均を算出す
ることを特徴とする三相電圧電流実効値の演算方法。
(1) Three-phase sum of squares for A/D conversion data obtained by performing three-phase simultaneous sampling of voltage or current at a frequency that is an even multiple of the harmonic to be removed per AC cycle of a three-phase AC voltage or current signal. A method for calculating effective values of three-phase voltage and current, characterized in that calculation is performed for each point each time using the square root formula of , and a 1-cycle moving average of the calculated values is calculated.
(2)三相交流電圧および電流信号の交流1サイクル当
り、除去する高調波の偶数倍の周波数で電圧および電流
の六相同時サンプリングを行って得られるA/D変換デ
ータに対しαβ変換法の式を用いて毎回各点ごとに演算
し、この演算値の1サイクル移動平均を算出することを
特徴とする三相有効無効電力の演算方法。
(2) αβ conversion method is applied to A/D conversion data obtained by performing simultaneous six-phase sampling of voltage and current at a frequency that is an even multiple of the harmonic to be removed per AC cycle of three-phase AC voltage and current signals. A method for calculating three-phase active and reactive power, characterized in that calculation is performed for each point each time using a formula, and a 1-cycle moving average of the calculated values is calculated.
JP3375189A 1989-02-15 1989-02-15 Method for computing effective value of three-phase voltage and current and three-phase active and reactive power Pending JPH02213770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3375189A JPH02213770A (en) 1989-02-15 1989-02-15 Method for computing effective value of three-phase voltage and current and three-phase active and reactive power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3375189A JPH02213770A (en) 1989-02-15 1989-02-15 Method for computing effective value of three-phase voltage and current and three-phase active and reactive power

Publications (1)

Publication Number Publication Date
JPH02213770A true JPH02213770A (en) 1990-08-24

Family

ID=12395130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3375189A Pending JPH02213770A (en) 1989-02-15 1989-02-15 Method for computing effective value of three-phase voltage and current and three-phase active and reactive power

Country Status (1)

Country Link
JP (1) JPH02213770A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157775A (en) * 1991-12-10 1993-06-25 Toho Gas Co Ltd Three-phase ac fast measuring apparatus
JP2002188936A (en) * 2000-12-20 2002-07-05 Tokyo Gas Co Ltd Method for measuring mean value of pulsation including higher harmonics and mean value measuring instrument using the same
CN104833844A (en) * 2015-05-11 2015-08-12 上海市计量测试技术研究院 Alternating-current effective value sampling measurement method
WO2022074724A1 (en) * 2020-10-06 2022-04-14 東芝三菱電機産業システム株式会社 Power measurement device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157775A (en) * 1991-12-10 1993-06-25 Toho Gas Co Ltd Three-phase ac fast measuring apparatus
JP2002188936A (en) * 2000-12-20 2002-07-05 Tokyo Gas Co Ltd Method for measuring mean value of pulsation including higher harmonics and mean value measuring instrument using the same
JP4519312B2 (en) * 2000-12-20 2010-08-04 東京瓦斯株式会社 Method for measuring average value of pulsation including harmonics and average value measuring apparatus using the same
CN104833844A (en) * 2015-05-11 2015-08-12 上海市计量测试技术研究院 Alternating-current effective value sampling measurement method
CN104833844B (en) * 2015-05-11 2017-09-05 上海市计量测试技术研究院 A kind of method of sampled measurements AC value
WO2022074724A1 (en) * 2020-10-06 2022-04-14 東芝三菱電機産業システム株式会社 Power measurement device
JPWO2022074724A1 (en) * 2020-10-06 2022-04-14

Similar Documents

Publication Publication Date Title
US5567994A (en) Active harmonic filter with time domain analysis
CA2133864C (en) Apparatus for detecting the amplitude and phase of an a.c. signal
US4885656A (en) Digital protective relay
JPH0737998B2 (en) Electricity detector
JPH02213770A (en) Method for computing effective value of three-phase voltage and current and three-phase active and reactive power
US4947109A (en) Detector of quantity of electricity
JPH10178741A (en) Power-line conditioner
JP3505626B2 (en) Power converter and power converter controller
JP3191652B2 (en) Power converter
JP3182777B2 (en) Electric energy measurement method
JP3205855B2 (en) Power converter
JPH10341599A (en) Control equipment of motor
JP3000326B2 (en) Digital type distance relay
JPS5850085B2 (en) Protective relay method
SU1725165A1 (en) Method for shaping a signal proportional to three-phase voltage system generalized vector
JPS62222166A (en) Ac signal detector
JPH02188119A (en) Digital protective relay
Lobos et al. Signal analysis in converter-fed drives using adaptive neural networks
RU2010240C1 (en) Device for measurement of orthogonal components of voltage
JPH075212A (en) Frequency detector
JPS5872387A (en) Method and device for vector controlling of induction motor
JPH0763794A (en) Negative phase current detector
JPH0572237A (en) Ac quantity-of-electricity detector
KR20180080171A (en) Modified single phase-locked loop control method using moving average filter
JPH0915275A (en) Higher harmonic detector