JP2004301550A - Operation device of power related quantity and phase angle - Google Patents

Operation device of power related quantity and phase angle Download PDF

Info

Publication number
JP2004301550A
JP2004301550A JP2003092019A JP2003092019A JP2004301550A JP 2004301550 A JP2004301550 A JP 2004301550A JP 2003092019 A JP2003092019 A JP 2003092019A JP 2003092019 A JP2003092019 A JP 2003092019A JP 2004301550 A JP2004301550 A JP 2004301550A
Authority
JP
Japan
Prior art keywords
phase
phase angle
power
voltage
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003092019A
Other languages
Japanese (ja)
Inventor
Atsufumi Kuroda
淳文 黒田
Masaru Shindoi
賢 新土井
Tomohiko Akiyama
智彦 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003092019A priority Critical patent/JP2004301550A/en
Publication of JP2004301550A publication Critical patent/JP2004301550A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Phase Differences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly-accurate and noise-resistant operation device of a power related quantity and a phase angle, not using a zero cross point. <P>SOLUTION: This device has a constitution equipped with power operation means 17A, 18A, 19A for operating the power (for example, W1) of each phase based on a voltage value (for example, V1) and a current value (for example, I1) of each phase, Hilbert transformation means 15, 16 for inputting the voltage value and the current value, and acquiring a voltage output and a current output having a phase angle of 90° between them, reactive power operation means 17B, 18B, 19B for operating a reactive power (for example, var1) of each phase based on the voltage output and the current output, and a phase angle operation means for operating the phase angle between the voltage and the current of each phase based on an operation result of the power operation means and the reactive power operation means. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、電圧電流値の同期検波を利用した電力関連量、即ち、電力、無効電力、電力量、無効電力量およびこれらの高調波成分の少なくとも1つ並びに位相角を演算する電力関連量および位相角演算装置に関するものである。
【0002】
【従来の技術】
従来の位相角の演算は、所定相の電圧値V1と、その他の信号、例えば他相の電圧値V2、V3または電流値I1、I2、I3との位相角を演算する場合、所定相の電圧値V1の1周期の時間Aおよび所定相の電圧値V1と位相角を演算する他相の電圧または電流信号V2、V3、I1、I2、I3との0クロス点または事前に決められた一定レベルでのクロス点の時間のずれBを検出し、(B/A)×360°として算出していた。(例えば特許文献1参照)。
【0003】
【特許文献1】
特開平7−120511号公報(段落0002、図4)
【特許文献2】
特開平6−300796号公報
【特許文献3】
特許第3206273号公報
【0004】
【発明が解決しようとする課題】
従来の位相角の演算装置では、A/D変換器のサンプリング周波数が例えば4000Hzの場合、1/4000秒の精度でしか時間を検出できないため、0クロス点を正確に演算するために直線補間などの処理が必要であった。しかし、直線補間などの処理を行なっても、実際の時間ずれは正確に算出できないため、高精度の位相角算出は不可能であった。また、上記の時間の算出は0クロス点の時間のずれが必要であるため、リアルタイムで位相角を算出することが不可能であるという欠点も生じていた。さらに、0クロス点については、信号に基本波以外のノイズ信号が含まれる場合には、0クロス点が複数点発生することがあるため、正確な演算ができないという問題点があった。
【0005】
この発明は、上述のような問題点を解決するためになされたもので、第1の目的は、0クロス点を用いずに高精度な位相角を求める電力関連量および位相角演算装置を提供することである。
【0006】
また、第2の目的は、信号に基本波以外のノイズ信号が含まれる場合でも、ノイズ信号の影響がほとんどない電力関連量および位相角演算装置を提供することである。
【0007】
さらに、第3の目的は、リアルタイムで演算可能な電力関連量および位相角演算装置を提供することである。
【0008】
【課題を解決するための手段】
この発明に係る電力関連量および位相角演算装置は、各相の電圧値および電流値にもとづいて各相の電力を演算する電力演算手段、上記電圧値および電流値を入力してそれぞれの間に90°の位相角を有する電圧出力および電流出力を得るヒルベルト変換手段、上記電圧出力および電流出力にもとづいて各相の無効電力を演算する無効電力演算手段、上記電力演算手段および無効電力演算手段の演算結果にもとづいて各相の電圧、電流間の位相角を演算する位相角演算手段を備えたものである。
【0009】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図にもとづいて説明する。図1は、実施の形態1による電力関連量演算装置の構成を示すブロック図である。この図において、入力信号である各相の入力電圧をVin、各相の入力電流をIinで示している。
所定相の入力電圧である1側入力電圧Vin−1は、1側電圧センサ11AでA/D変換可能な電圧レベルに降圧し、さらに、1側電圧A/D変換器12Aでデジタル信号である1側電圧値V1に変換される。同様に、2側入力電圧Vin−2は2側電圧センサ21A、2側電圧A/D変換器22Aを介して2側電圧値V2に変換され、3側入力電圧Vin−3は3側電圧センサ31A、3側電圧A/D変換器32Aを介して3側電圧値V3に変換される。また、所定相の入力電流である1側入力電流Iin−1は、1側電流センサ11Bで電圧値に変換され、さらに、1側電流A/D変換器12Bでデジタル信号である1側電流値I1に変換される。同様に、2側入力電流Iin−2は2側電流センサ21B、2側電流A/D変換器22Bを介して2側電流値I2に変換され、3側入力電流Iin−3は3側電流センサ31B、3側電流A/D変換器32Bを介して3側電流値I3に変換される。
【0010】
また、1側電圧値V1と2側電圧値V2は積算器47Aに入力され、それぞれの信号が掛け合わされる。掛け合わされた信号は、ローパスフィルタ(以下、LPFという)48Aと加算平均器49Aで高周波成分とホワイトノイズの除去を行ない、V1とV2の仮想電力(以下、V1V2間同相乗算値という)41が得られる。同様に、1側電圧値V1と3側電圧値V3を積算器57Aで掛け合わせ、LPF58A、加算平均器59Aを経てV1とV3の仮想電力(以下、V1V3間同相乗算値という)51が得られる。また、1側電圧値V1と1側電流値I1を積算器17Aで掛け合わせ、LPF18A、加算平均器19Aを経て1側電力値W1を得、同様に、2側電圧値V2と2側電流値I2を積算器27Aで掛け合わせて2側電力値W2を得、3側電圧値V3と3側電流値I3を積算器37Aで掛け合わせて3側電力値W3を得ている。
【0011】
さらに、この実施の形態は2つの入力信号の位相を90°ずらせるための手段として、ヒルベルト直交相変換器15、25、35とヒルベルト同相変換器16、26、36、46、56を有し、ヒルベルト直交相変換器15を通った1側電圧値V1とヒルベルト同相変換器46を通った2側電圧値V2を積算器47Bに入力し、ここで掛け合わされた信号をLPF48Bと加算平均器49Bでノイズ除去することにより、V1とV2の仮想無効電力(以下、V1V2間直交相乗算値という)42を得ている。
同様に、ヒルベルト直交相変換器15を通った1側電圧値V1とヒルベルト同相変換器56を通った3側電圧値V3を積算器57Bに入力し、LPF58B、加算平均器59Bを経てV1とV3の仮想無効電力(以下、V1V3間直交相乗算値という)52を得ている。また、ヒルベルト直交相変換器15を通った1側電圧値V1とヒルベルト同相変換器16を通った1側電流値I1を積算器17Bに入力し、LPF18B、加算平均器19Bを経て1側無効電力値var1を得、ヒルベルト直交相変換器25を通った2側電圧値V2とヒルベルト同相変換器26を通った2側電流値I2を積算器27Bに入力し、LPF28B、加算平均器29Bを経て2側無効電力値var2を得、ヒルベルト直交相変換器35を通った3側電圧値V3とヒルベルト同相変換器36を通った3側電流値I3を積算器37Bに入力し、LPF38B、加算平均器39Bを経て3側無効電力値var3を得ている。
この実施の形態では、説明をわかりやすくするため、2側電圧値V2および3側電圧値V3にヒルベルト同相変換器46,56を通す例について説明したが、1側電圧値V1に図示しないヒルベルト同相変換器を通し、2側電圧値V2および3側電圧値V3は無効電力演算のために通すヒルベルト直交相変換器25,35の結果を用いれば、同様の機能をさらに演算量を削減して実現できる。
【0012】
この電力関連量演算装置においては、ホワイトノイズは、LPF18A〜58Bと加算平均器19A〜59Bを通すことにより除去することができ、また、n次高周波は、電流にのりやすく電圧にのりにくい性質であるため、積算器17A〜57Bにおいて電圧値Vnと電流値In(仮想のときは、電圧値Vm)の積をとることによってカットすることができ、ノイズを含んだ信号に対しても高精度な電力(仮想電力も含む)および無効電力(仮想無効電力も含む)の演算が可能である。
【0013】
次に、位相角を求める手順について説明する。図2は、電圧、電流の位相角を説明するためのベクトル図、図3は、電力と無効電力から位相角を求める場合の説明図、図4は、仮想電力と仮想無効電力から位相角を求める場合の説明図である。
【0014】
所定相の電圧値V1とその他の信号、例えば他相の電圧値V2、V3または電流値I1、I2、I3との位相角を演算する場合には、上述した電力関連量演算装置で算出ずみの各相の電力Wnおよび無効電力varnを利用して、図2に示すV1とI1間の位相角、V2とI2間の位相角、V3とI3間の位相角を算出する。
この場合、電力Wnおよび無効電力varnを(式1)に代入することにより、図3に示すように、Vnを基準としたVnIn間の位相角θを求めることができる。
しかし、(式1)で求めたVnIn間の位相角θは、0°≦θ≦180°の範囲に限られるので、位相角θが180°<θ<360°、つまりvarn<0の場合には、(式1)による演算結果を360°から減算する形で位相角を求める。
【0015】
【数4】

Figure 2004301550
【0016】
また、V1とV2間の位相角およびV1とV3間の位相角は、上述した電力関連量演算装置にて算出したV1V2間同相乗算値、V1V2間直交相乗算値、V1V3間同相乗算値、V1V3間直交相乗算値を用いて位相角を演算する。即ち、V1Vn間同相乗算値、V1Vn間直交相乗算値を(式2)に代入することにより、図4に示すように、V1を基準としたV1Vn間位相角θを求めることができる。しかし、(式2)で求めたV1Vn間の位相角θは、0°≦θ≦180°の範囲に限られるので、位相角θが180°<θ<360°、つまりvarn<0の場合には、(式2)による演算結果を360°から減算する形で位相角を求める。
【0017】
【数5】
Figure 2004301550
【0018】
なお、図2は、三相4線式の場合の入力電圧Vnおよび入力電流Inの関係を示すものであるため、V1V2間位相角、V1V3間位相角およびV1I1間位相角は、(式2)および(式1)で求めた位相角をそのまま利用することができる。また、V1I2間位相角は、V1V2間位相角とV2I2間位相角を加算することで求めることができ、V1I3間位相角は、V1V3間位相角とV3I3間位相角を減算することで求めることができる。さらに、位相角が360°を超えた場合は、360°を減算することで、出力範囲を0〜360°とすることができる。
【0019】
実施の形態2.
次に、この発明の実施の形態2について説明する。電圧値V1、V2、V3と電流値I1、I2、I3はセンサ、例えば電圧トランスとCTなどの種類および基板のアナログ回路特性により、実際の信号とA/D変換器で取得する信号に位相ずれが発生することがあるため、この実施の形態は以下の処理をすることにより上述の位相ずれを調整するようにしたものである。
【0020】
例えば、1側電力W1を求める過程でLPF18Aから出力された値をW1in、加算平均器19Aに入力する値をW1outとし、1側無効電力var1を求める過程でLPF18Bから出力された値をvar1in、加算平均器19Bに入力する値をvar1outとし、LPF18A、18Bと加算平均器19A、19Bの間で
【数6】
Figure 2004301550
の処理を行なうことにより位相ずれを調整することができる。φは位相ずれ角であるが、センサの種類や基板のアナログ特性にもとづく位相ずれ角φを初期設定時に予め求めておき、初期位相ずれ角φとして保持しておけば容易に演算を行なうことができる。他の各相についても同様の処理を行なうことにより、各相ごとに位相ずれを調整することができる。また、V1Vn間同相乗算値とV1Vn間直交相乗算値についても同様の処理を行なうことができる。
なお、各電圧値の位相については、同一のセンサ、例えば抵抗分圧回路などを用いる場合、位相ずれはほとんど生じないため問題はない。
【0021】
実施の形態3.
次に、この発明の実施の形態3について説明する。この実施の形態は、実施の形態1で求めた位相角の精度を上げるために、求める位相角の角度によって演算式を変えるようにしたものである。即ち、図3、図4において、位相角θが45°≦θ≦135°および225°≦θ≦315°のいずれかの領域にある場合、つまり|Wn|≦|varn|の場合には、位相角θが微小に変化したとき、Wnの変化量の方がvarnの変化量より大きいため、
【数7】
Figure 2004301550
で求めた方が
【数8】
Figure 2004301550
で求めるよりも精度がよくなる。
【0022】
逆に、位相角θが0°<θ<45°、135°<θ<225°および315°<θ<360°のいずれかの領域にある場合、つまり|Wn|>|varn|の場合には、位相角θが微小に変化したとき、varnの変化量の方がWnの変化量より大きいため、
【数9】
Figure 2004301550
で求めた方が
【数10】
Figure 2004301550
で求めるよりも精度がよくなる。
【0023】
ここで、
【数11】
Figure 2004301550
によって求めた位相角θは、0°≦θ≦180°の範囲に限られるので、位相角θが180°<θ<360°、つまりvarn(またはV1Vn間直交相乗算値)<0の場合には、360°から演算結果を減算して位相角を求める。また、
【数12】
Figure 2004301550
によって求めた位相角θは、−90°≦θ≦90°の範囲に限られるので、位相角θが90°<θ<270°、つまりWn(またはV1Vn間同相乗算値)<0の場合には、演算結果に180°を加算して位相角を求め、さらに、位相角θが270°≦θ<360°、つまりWn(またはV1Vn間同相乗算値)≧0で演算結果が負の場合には、演算結果に360°を加算して位相角を求める。
【0024】
よって、VnIn間の位相角θは、(式3)、(式4)によって求めることができる。
【数13】
Figure 2004301550
【0025】
なお、(式3)の演算結果は表1の項目bとc、(式4)の演算結果は表1の項目aとdのように操作して補正される。
【表1】
Figure 2004301550
【0026】
また、V1Vn間位相角θは、上述したVnIn間位相角と同様に(式5)、(式6)を用いて求めることができる。
【数14】
Figure 2004301550
【0027】
なお、(式5)の演算結果は表2の項目fとg、(式6)の演算結果は表2の項目eとhのように操作して補正される。この表で「同相」は同相乗算値を、「直交相」は直交相乗算値をそれぞれ示す。
【表2】
Figure 2004301550
【0028】
また、図2は、三相4線式の場合の入力電圧Vnおよび入力電流Inの関係を示すものであるため、V1V2間位相角、V1V3間位相角およびV1I1間位相角は、(式2)および(式1)で求めた位相角をそのまま利用することができる。また、V1I2間位相角は、V1V2間位相角とV2I2間位相角を加算することで求めることができ、V1I3間位相角は、V1V3間位相角とV3I3間位相角を減算することで求めることができる。さらに、位相角が360°を超えた場合は、360°を減算することで、出力範囲を0〜360°とすることができる。
【0029】
実施の形態4.
次に、この発明の実施の形態4を図にもとづいて説明する。図5は、実施の形態4による電力関連量演算装置の構成を示すブロック図である。この図において、図1と同一または相当部分には同一符号を付して説明を省略する。図1と異なる点は、図1のデジタル信号(1側電圧値V1、2側電圧値V2、3側電圧値V3、1側電流値I1、2側電流値I2、3側電流値I3)に対し、8点移動平均器13A、13B、23A、23B、33A、33B、で8点の移動平均をとり、その信号を1/4リサンプリング14A、14B、24A、24B、34A、34Bに入力することにより、入力信号を4回に1回しか通さず、電力(仮想電力を含む)および無効電力(仮想無効電力を含む)の演算量を1/4に間引いている点である。
【0030】
実施の形態1では、全てのサンプリング点で位相角演算を行なっているのに対し、実施の形態4では上述のように、サンプリング間隔を間引くことにより、演算量を削減することができ、位相角演算にかかる負荷を減らすことができる。
【0031】
【発明の効果】
この発明に係る電力関連量および位相角演算装置は、以上のように構成されているため、0クロス点を用いず各相の電力および無効電力とその演算ルーチンを利用して各相の電圧値から算出した仮想電力および仮想無効電力を利用し高精度で位相角を求めることができる。また、信号に基本波以外のノイズ信号が含まれる場合でも、ノイズ信号の影響をほとんど受けることなく位相角の演算ができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1の構成を示すブロック図である。
【図2】この発明の実施の形態1における電圧間および電圧電流間の位相差の関係を示すベクトル図である。
【図3】この発明の実施の形態1において、電力と無効電力から位相角を求める場合の説明図である。
【図4】この発明の実施の形態1において、仮想電力と仮想無効電力から位相角を求める場合の説明図である。
【図5】この発明の実施の形態4の構成を示すブロック図である。
【符号の説明】
11A,11B,21A,21B,31A,31B 電圧センサ,
12A,12B,22A,22B,32A,32B電圧A/D変換器,
13A,13B,23A,23B,33A,33B 8点移動平均器,
14A,14B,24A,24B,34A,34B 1/4リサンプリング,
15,25,35 ヒルベルト直交相変換器,
16,26,36,46,56 ヒルベルト同相変換器,
17A,17B,27A,27B,37A,37B,47A,47B,57A,57B 積算器,
18A,18B,28A,28B,38A,38B,48A,48B,58A,58B ローパスフィルタ,
19A,19B,29A,29B,39A,39B,49A,49B,59A,59B 加算平均器,
41 V1V2間同相乗算値, 42 V1V2間直交相乗算値,
51 V1V3間同相乗算値, 52 V1V3間直交相乗算値。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power-related amount utilizing synchronous detection of a voltage / current value, that is, a power-related amount for calculating at least one of power, reactive power, power amount, reactive power amount and harmonic components thereof and a phase angle, and The present invention relates to a phase angle calculation device.
[0002]
[Prior art]
Conventional phase angle calculation involves calculating the phase angle between a predetermined phase voltage value V1 and another signal, for example, a voltage value V2, V3 or a current value I1, I2, I3 of another phase. The time A of one cycle of the value V1, the voltage value V1 of the predetermined phase, and the zero cross point of the voltage or current signal V2, V3, I1, I2, I3 of the other phase for calculating the phase angle or a predetermined fixed level , The time lag B of the cross point at the time is detected and calculated as (B / A) × 360 °. (See, for example, Patent Document 1).
[0003]
[Patent Document 1]
JP-A-7-120511 (paragraph 0002, FIG. 4)
[Patent Document 2]
JP-A-6-300796 [Patent Document 3]
Japanese Patent No. 3206273
[Problems to be solved by the invention]
In a conventional phase angle calculation device, when the sampling frequency of the A / D converter is, for example, 4000 Hz, time can be detected only with an accuracy of 1/4000 second. Was required. However, even if processing such as linear interpolation is performed, the actual time lag cannot be calculated accurately, so that it is impossible to calculate the phase angle with high accuracy. Further, since the above calculation of the time requires a time lag of the zero cross point, there is a disadvantage that it is impossible to calculate the phase angle in real time. In addition, when the signal includes a noise signal other than the fundamental wave, a plurality of zero cross points may occur at the zero cross point, so that there is a problem that accurate calculation cannot be performed.
[0005]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and a first object of the present invention is to provide a power-related quantity and a phase angle calculation device for obtaining a highly accurate phase angle without using a zero cross point. It is to be.
[0006]
It is a second object of the present invention to provide a power-related amount and phase angle calculation device that is hardly affected by a noise signal even when the signal includes a noise signal other than the fundamental wave.
[0007]
Further, a third object is to provide a power-related amount and phase angle calculation device that can be calculated in real time.
[0008]
[Means for Solving the Problems]
A power-related quantity and phase angle calculation device according to the present invention includes: a power calculation means for calculating power of each phase based on a voltage value and a current value of each phase; A Hilbert transforming means for obtaining a voltage output and a current output having a phase angle of 90 °, a reactive power calculating means for calculating the reactive power of each phase based on the voltage output and the current output, a power calculating means and a reactive power calculating means. A phase angle calculating means for calculating a phase angle between a voltage and a current of each phase based on the calculation result is provided.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration of a power-related amount calculation device according to the first embodiment. In this figure, the input voltage of each phase as an input signal is indicated by Vin, and the input current of each phase is indicated by Iin.
The one-side input voltage Vin-1, which is an input voltage of a predetermined phase, is reduced to a voltage level that can be A / D converted by the one-side voltage sensor 11A, and is a digital signal by the one-side voltage A / D converter 12A. It is converted to the one-side voltage value V1. Similarly, the second-side input voltage Vin-2 is converted into the second-side voltage value V2 via the second-side voltage sensor 21A and the second-side voltage A / D converter 22A, and the third-side input voltage Vin-3 is converted to the third-side voltage sensor. The voltage is converted to a third-side voltage value V3 via a third-side voltage A / D converter 32A. The one-side input current Iin-1 which is an input current of a predetermined phase is converted to a voltage value by the one-side current sensor 11B, and further converted to a one-side current value which is a digital signal by the one-side current A / D converter 12B. Converted to I1. Similarly, the second-side input current Iin-2 is converted to a second-side current value I2 via a second-side current sensor 21B and a second-side current A / D converter 22B, and the third-side input current Iin-3 is converted to a third-side current sensor. 31B is converted to a third-side current value I3 via a three-side current A / D converter 32B.
[0010]
The first-side voltage value V1 and the second-side voltage value V2 are input to an integrator 47A, and the respective signals are multiplied. The multiplied signal is subjected to removal of high-frequency components and white noise by a low-pass filter (hereinafter, referred to as LPF) 48A and an averaging device 49A, and a virtual power of V1 and V2 (hereinafter, referred to as an in-phase multiplication value between V1 and V2) 41. can get. Similarly, the first-side voltage value V1 and the third-side voltage value V3 are multiplied by an integrator 57A, and a virtual power (hereinafter, referred to as an in-phase multiplication value between V1 and V3) 51 of V1 and V3 is obtained through an LPF 58A and an averaging device 59A. Can be The 1-side voltage value V1 and the 1-side current value I1 are multiplied by an integrator 17A to obtain a 1-side power value W1 through an LPF 18A and an averaging device 19A. I2 is multiplied by an integrator 27A to obtain a second-side power value W2, and a third-side voltage value V3 and a third-side current value I3 are multiplied by an integrator 37A to obtain a third-side power value W3.
[0011]
Furthermore, this embodiment has Hilbert quadrature converters 15, 25, 35 and Hilbert in-phase converters 16, 26, 36, 46, 56 as means for shifting the phases of the two input signals by 90 °. , The one-side voltage value V1 passed through the Hilbert quadrature converter 15 and the second-side voltage value V2 passed through the Hilbert in-phase converter 46 are input to an integrator 47B, and the signal obtained by multiplication is input to an LPF 48B and an averaging device 49B. , A virtual reactive power (hereinafter referred to as a V1V2 quadrature multiplication value) 42 of V1 and V2 is obtained.
Similarly, the one-side voltage value V1 passing through the Hilbert quadrature phase converter 15 and the three-side voltage value V3 passing through the Hilbert in-phase converter 56 are input to the integrator 57B, and then V1 and V3 via the LPF 58B and the averaging device 59B. (Hereinafter, referred to as V1V3 quadrature phase multiplication value) 52 is obtained. Also, the one-side voltage value V1 passed through the Hilbert quadrature converter 15 and the one-side current value I1 passed through the Hilbert in-phase converter 16 are input to the integrator 17B, and are passed through the LPF 18B and the averaging unit 19B to the one-side reactive power. A value var1 is obtained, and a two-side voltage value V2 passing through the Hilbert quadrature converter 25 and a two-side current value I2 passing through the Hilbert in-phase converter 26 are input to an integrator 27B, and are passed through an LPF 28B and an averaging unit 29B. The side reactive power value var2 is obtained, and the three-side voltage value V3 passed through the Hilbert quadrature phase converter 35 and the three-side current value I3 passed through the Hilbert in-phase converter 36 are input to the integrator 37B, and the LPF 38B and the averaging device 39B , The three-side reactive power value var3 is obtained.
In this embodiment, an example has been described in which the Hilbert in-phase converters 46 and 56 are passed through the second-side voltage value V2 and the third-side voltage value V3 for easy understanding. By using the results of the Hilbert quadrature converters 25 and 35, which pass through the converter for the second-side voltage value V2 and the third-side voltage value V3 for the calculation of the reactive power, the same function is realized by further reducing the calculation amount. it can.
[0012]
In this power-related amount calculation device, white noise can be removed by passing through LPFs 18A to 58B and averaging devices 19A to 59B, and the n-th high frequency has a property that it is easy to carry current and difficult to carry voltage. Therefore, it can be cut by taking the product of the voltage value Vn and the current value In (or the voltage value Vm in the virtual case) in the integrators 17A to 57B. Calculation of power (including virtual power) and reactive power (including virtual reactive power) is possible.
[0013]
Next, a procedure for obtaining the phase angle will be described. FIG. 2 is a vector diagram for explaining the phase angles of voltage and current, FIG. 3 is an explanatory diagram for obtaining a phase angle from power and reactive power, and FIG. 4 is a diagram showing a phase angle from virtual power and virtual reactive power. FIG. 9 is an explanatory diagram in the case of obtaining.
[0014]
When calculating the phase angle between the voltage value V1 of the predetermined phase and other signals, for example, the voltage values V2, V3 or the current values I1, I2, I3 of the other phases, the above-described power-related amount calculation device has already calculated the phase angle. The phase angle between V1 and I1, the phase angle between V2 and I2, and the phase angle between V3 and I3 shown in FIG. 2 are calculated using the power Wn and the reactive power varn of each phase.
In this case, by substituting the power Wn and the reactive power var into (Equation 1), the phase angle θ between VnIn with reference to Vn can be obtained as shown in FIG.
However, since the phase angle θ between VnIn obtained by (Equation 1) is limited to the range of 0 ° ≦ θ ≦ 180 °, when the phase angle θ is 180 ° <θ <360 °, that is, when varn <0, Finds the phase angle by subtracting the result of the operation according to (Equation 1) from 360 °.
[0015]
(Equation 4)
Figure 2004301550
[0016]
The phase angle between V1 and V2 and the phase angle between V1 and V3 are the in-phase multiplied value between V1V2, the quadrature-phase multiplied value between V1V2, and the in-phase multiplied value between V1V3 calculated by the above-described power-related amount calculating device. , V1V3, the phase angle is calculated using the multiplication value. That is, by substituting the in-phase multiplication value between V1Vn and the quadrature phase multiplication value between V1Vn into (Equation 2), the phase angle θ between V1Vn with reference to V1 can be obtained as shown in FIG. However, since the phase angle θ between V1Vn obtained by (Equation 2) is limited to the range of 0 ° ≦ θ ≦ 180 °, when the phase angle θ is 180 ° <θ <360 °, ie, when varn <0, Calculates the phase angle by subtracting the result of the operation according to (Equation 2) from 360 °.
[0017]
(Equation 5)
Figure 2004301550
[0018]
Since FIG. 2 shows the relationship between the input voltage Vn and the input current In in the case of the three-phase four-wire system, the phase angle between V1V2, the phase angle between V1V3, and the phase angle between V1I1 are represented by (Equation 2). And the phase angle obtained by (Equation 1) can be used as it is. Further, the phase angle between V1I2 can be obtained by adding the phase angle between V1V2 and the phase angle between V2I2, and the phase angle between V1I3 can be obtained by subtracting the phase angle between V1V3 and the phase angle between V3I3. it can. Further, when the phase angle exceeds 360 °, the output range can be set to 0 to 360 ° by subtracting 360 °.
[0019]
Embodiment 2 FIG.
Next, a second embodiment of the present invention will be described. The voltage values V1, V2, V3 and the current values I1, I2, I3 are out of phase between the actual signal and the signal obtained by the A / D converter due to the type of sensor, for example, voltage transformer and CT, and the analog circuit characteristics of the board. Therefore, in this embodiment, the above-described phase shift is adjusted by performing the following processing.
[0020]
For example, the value output from the LPF 18A in the process of obtaining the one-side power W1 is W1in, the value input to the averaging unit 19A is W1out, and the value output from the LPF 18B in the process of obtaining the one-side reactive power var1 is var1in. The value input to the averager 19B is var1out, and the value between the LPFs 18A and 18B and the averagers 19A and 19B is given by
Figure 2004301550
By performing the above processing, the phase shift can be adjusted. φ is the phase shift angle, but if the phase shift angle φ based on the type of sensor and the analog characteristics of the board is determined in advance at the time of initial setting, and it is retained as the initial phase shift angle φ, the calculation can be easily performed. it can. By performing the same processing for the other phases, the phase shift can be adjusted for each phase. Similar processing can be performed on the in-phase multiplication value between V1Vn and the quadrature-phase multiplication value between V1Vn.
When the same sensor, for example, a resistance voltage dividing circuit, is used, there is no problem about the phase of each voltage value because there is almost no phase shift.
[0021]
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described. In this embodiment, in order to improve the accuracy of the phase angle obtained in the first embodiment, the arithmetic expression is changed according to the angle of the obtained phase angle. That is, in FIGS. 3 and 4, when the phase angle θ is in any of the regions of 45 ° ≦ θ ≦ 135 ° and 225 ° ≦ θ ≦ 315 °, that is, when | Wn | ≦ | varn | When the phase angle θ slightly changes, the change amount of Wn is larger than the change amount of varn.
(Equation 7)
Figure 2004301550
The one obtained with [Expression 8]
Figure 2004301550
The accuracy is better than that obtained by
[0022]
Conversely, when the phase angle θ is in any of the regions of 0 ° <θ <45 °, 135 ° <θ <225 °, and 315 ° <θ <360 °, that is, when | Wn |> | varn | Is that when the phase angle θ is slightly changed, the change amount of var is larger than the change amount of Wn.
(Equation 9)
Figure 2004301550
The one obtained in [Expression 10]
Figure 2004301550
The accuracy is better than that obtained by
[0023]
here,
[Equation 11]
Figure 2004301550
Is limited to the range of 0 ° ≦ θ ≦ 180 °, the phase angle θ is 180 ° <θ <360 °, that is, when varn (or the quadrature multiplication value between V1Vn) <0 Calculates the phase angle by subtracting the operation result from 360 °. Also,
(Equation 12)
Figure 2004301550
Is limited to the range of -90 ° ≦ θ ≦ 90 °, the phase angle θ is 90 ° <θ <270 °, that is, when Wn (or the in-phase multiplication value between V1Vn) <0 , 180 ° is added to the operation result to obtain a phase angle. Further, if the phase angle θ is 270 ° ≦ θ <360 °, that is, Wn (or the in-phase multiplication value between V1Vn) ≧ 0, the operation result is negative. In this case, 360 ° is added to the calculation result to determine the phase angle.
[0024]
Therefore, the phase angle θ between VnIn can be obtained by (Equation 3) and (Equation 4).
(Equation 13)
Figure 2004301550
[0025]
The calculation result of (Equation 3) is corrected by operating as shown in items b and c of Table 1, and the calculation result of (Equation 4) is corrected by operating as shown in items a and d of Table 1.
[Table 1]
Figure 2004301550
[0026]
Further, the phase angle θ between V1 and Vn can be obtained by using (Equation 5) and (Equation 6) in the same manner as the above-described phase angle between VnIn.
[Equation 14]
Figure 2004301550
[0027]
The calculation result of (Equation 5) is corrected by operating as shown in items f and g of Table 2, and the calculation result of (Equation 6) is corrected by operating as shown in items e and h of Table 2. In this table, “in-phase” indicates an in-phase multiplication value, and “quadrature” indicates a quadrature-phase multiplication value.
[Table 2]
Figure 2004301550
[0028]
FIG. 2 shows the relationship between the input voltage Vn and the input current In in the case of the three-phase four-wire system. Therefore, the phase angle between V1V2, the phase angle between V1V3, and the phase angle between V1I1 are represented by (Equation 2). And the phase angle obtained by (Equation 1) can be used as it is. Further, the phase angle between V1I2 can be obtained by adding the phase angle between V1V2 and the phase angle between V2I2, and the phase angle between V1I3 can be obtained by subtracting the phase angle between V1V3 and the phase angle between V3I3. it can. Further, when the phase angle exceeds 360 °, the output range can be set to 0 to 360 ° by subtracting 360 °.
[0029]
Embodiment 4 FIG.
Next, a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a block diagram showing a configuration of a power-related amount calculating device according to the fourth embodiment. In this figure, the same or corresponding parts as those in FIG. The difference from FIG. 1 is that the digital signal (1 side voltage value V1, 2 side voltage value V2, 3 side voltage value V3, 1 side current value I1, 2 side current value I2, 3 side current value I3) of FIG. On the other hand, an 8-point moving averager 13A, 13B, 23A, 23B, 33A, 33B takes a moving average of 8 points and inputs the signal to 1/4 resampling 14A, 14B, 24A, 24B, 34A, 34B. Thus, the input signal is passed only once in four times, and the amount of calculation of power (including virtual power) and reactive power (including virtual reactive power) is reduced to 1/4.
[0030]
In the first embodiment, the phase angle calculation is performed at all sampling points, whereas in the fourth embodiment, as described above, the amount of calculation can be reduced by thinning out the sampling interval, and the phase angle can be reduced. The load on the calculation can be reduced.
[0031]
【The invention's effect】
Since the power-related quantity and phase angle calculation device according to the present invention is configured as described above, the power and reactive power of each phase and the voltage value of each phase are calculated using the calculation routine without using the zero cross point. The phase angle can be obtained with high accuracy using the virtual power and the virtual reactive power calculated from. Further, even when a signal includes a noise signal other than the fundamental wave, the phase angle can be calculated with little influence of the noise signal.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a first embodiment of the present invention.
FIG. 2 is a vector diagram showing a relationship between phase differences between voltages and between currents and voltages in the first embodiment of the present invention.
FIG. 3 is an explanatory diagram in a case where a phase angle is obtained from power and reactive power in the first embodiment of the present invention.
FIG. 4 is an explanatory diagram in a case where a phase angle is obtained from virtual power and virtual reactive power in the first embodiment of the present invention.
FIG. 5 is a block diagram showing a configuration of a fourth embodiment of the present invention.
[Explanation of symbols]
11A, 11B, 21A, 21B, 31A, 31B Voltage sensor,
12A, 12B, 22A, 22B, 32A, 32B voltage A / D converter,
13A, 13B, 23A, 23B, 33A, 33B 8-point moving averager,
14A, 14B, 24A, 24B, 34A, 34B 1/4 resampling,
15, 25, 35 Hilbert quadrature phase converter,
16, 26, 36, 46, 56 Hilbert in-phase converter,
17A, 17B, 27A, 27B, 37A, 37B, 47A, 47B, 57A, 57B
18A, 18B, 28A, 28B, 38A, 38B, 48A, 48B, 58A, 58B low-pass filter,
19A, 19B, 29A, 29B, 39A, 39B, 49A, 49B, 59A, 59B arithmetic averager,
41 V1V2 in-phase multiplication value, 42 V1V2 quadrature-phase multiplication value,
51 In-phase multiplication value between V1V3, 52 Quadrature-phase multiplication value between V1V3.

Claims (7)

各相の電圧値および電流値にもとづいて各相の電力を演算する電力演算手段、上記電圧値および電流値を入力してそれぞれの間に90°の位相角を有する電圧出力および電流出力を得るヒルベルト変換手段、上記電圧出力および電流出力にもとづいて各相の無効電力を演算する無効電力演算手段、上記電力演算手段および無効電力演算手段の演算結果にもとづいて各相の電圧、電流間の位相角を演算する位相角演算手段を備えたことを特徴とする電力関連量および位相角演算装置。Power calculating means for calculating the power of each phase based on the voltage and current values of each phase, inputting the voltage and current values to obtain a voltage output and a current output having a 90 ° phase angle between each; Hilbert transforming means, reactive power calculating means for calculating reactive power of each phase based on the voltage output and current output, phase between voltage and current of each phase based on calculation results of the power calculating means and reactive power calculating means A power-related quantity and phase angle calculation device comprising phase angle calculation means for calculating an angle. 所定相と他相の電圧値にもとづいて両電圧間同相乗算値である仮想電力を演算する仮想電力演算手段、上記両電圧値を入力してそれぞれの間に90°の位相角を有する電圧出力を得るヒルベルト変換手段、上記両電圧出力にもとづいて両電圧間直交相乗算値である仮想無効電力を演算する仮想無効電力演算手段、上記仮想電力演算手段および仮想無効電力演算手段の演算結果にもとづいて両電圧間の位相角を演算する位相角演算手段を備えたことを特徴とする電力関連量および位相角演算装置。Virtual power calculating means for calculating a virtual power, which is a common-mode multiplication value between the two voltages, based on the voltage values of the predetermined phase and the other phases; a voltage having a phase angle of 90 ° between the two input voltage values; Hilbert transforming means for obtaining an output, virtual reactive power calculating means for calculating virtual reactive power which is a quadrature multiplication value between the two voltages based on the two voltage outputs, calculation results of the virtual power calculating means and virtual reactive power calculating means. A power-related quantity and phase angle calculation device comprising a phase angle calculation means for calculating a phase angle between both voltages based on the calculated value. 上記位相角は、電力(仮想電力を含む)をWn、無効電力(仮想無効電力を含む)をvarnとしたとき、
Figure 2004301550
によって演算することを特徴とする請求項1または請求項2記載の電力関連量および位相角演算装置。
When the power (including virtual power) is Wn and the reactive power (including virtual reactive power) is var,
Figure 2004301550
The power-related quantity and phase angle calculation device according to claim 1 or 2, wherein the calculation is performed by:
同相の電圧と電流の間の位相角および電圧間の位相角を用いて、所定相の電圧と他相の電流の間の位相角(V1I2間位相角、V1I3間位相角)を求めることを特徴とする請求項3記載の電力関連量および位相角演算装置。A phase angle between a voltage of a predetermined phase and a current of another phase (a phase angle between V1I2 and a phase angle between V1I3) is obtained by using a phase angle between a voltage and a current of the same phase and a phase angle between the voltages. The power-related quantity and phase angle calculation device according to claim 3. 上記位相角の演算時に、アナログ特性にもとづく位相ずれ角を予め演算して補正しておくことを特徴とする請求項3記載の電力関連量および位相角演算装置。4. The power-related quantity and phase angle calculation device according to claim 3, wherein a phase shift angle based on analog characteristics is calculated and corrected in advance when calculating the phase angle. 上記位相角θが45°≦θ≦135°または225°≦θ≦315°の場合には、
Figure 2004301550
によって演算し、その他の位相角の場合には、
Figure 2004301550
によって演算することを特徴とする請求項3記載の電力関連量および位相角演算装置。
When the phase angle θ is 45 ° ≦ θ ≦ 135 ° or 225 ° ≦ θ ≦ 315 °,
Figure 2004301550
And for other phase angles,
Figure 2004301550
The power-related quantity and phase angle calculation device according to claim 3, wherein the calculation is performed by:
上記各相の電圧値および電流値または所定相と他相の電圧値のサンプリング間隔を間引くことにより、電力(仮想電力を含む)および無効電力(仮想無効電力を含む)の演算量を削減することを特徴とする請求項1または請求項2記載の電力関連量および位相角演算装置。The amount of calculation of power (including virtual power) and reactive power (including virtual reactive power) is reduced by thinning out the sampling interval of the voltage value and current value of each phase or the voltage value of a predetermined phase and the voltage value of another phase. The power-related quantity and phase angle calculation device according to claim 1 or 2, wherein:
JP2003092019A 2003-03-28 2003-03-28 Operation device of power related quantity and phase angle Pending JP2004301550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092019A JP2004301550A (en) 2003-03-28 2003-03-28 Operation device of power related quantity and phase angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092019A JP2004301550A (en) 2003-03-28 2003-03-28 Operation device of power related quantity and phase angle

Publications (1)

Publication Number Publication Date
JP2004301550A true JP2004301550A (en) 2004-10-28

Family

ID=33405241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092019A Pending JP2004301550A (en) 2003-03-28 2003-03-28 Operation device of power related quantity and phase angle

Country Status (1)

Country Link
JP (1) JP2004301550A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173110A (en) * 2011-02-21 2012-09-10 Yokogawa Electric Corp Three-phase power measuring device
JP2014519040A (en) * 2011-06-09 2014-08-07 玉山 ▲ハオ▼ Apparatus and method for measuring and data acquisition of physical quantity of alternating current
KR101849727B1 (en) 2010-11-03 2018-05-31 지멘스 악티엔게젤샤프트 Measuring system for monitoring at least one phase of a system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101849727B1 (en) 2010-11-03 2018-05-31 지멘스 악티엔게젤샤프트 Measuring system for monitoring at least one phase of a system
JP2012173110A (en) * 2011-02-21 2012-09-10 Yokogawa Electric Corp Three-phase power measuring device
JP2014519040A (en) * 2011-06-09 2014-08-07 玉山 ▲ハオ▼ Apparatus and method for measuring and data acquisition of physical quantity of alternating current
JP2016153792A (en) * 2011-06-09 2016-08-25 玉山 ▲ハオ▼ Device and method for measuring physical amount of alternate current and recording data

Similar Documents

Publication Publication Date Title
JP3338159B2 (en) Amplitude / phase detector
JP2689343B2 (en) AC power measuring device
EP4310518A1 (en) Harmonic measurement method and apparatus, variable-frequency drive and storage medium
RU2463613C1 (en) Device for determination of power components within three-phase three-wire ac circuits
CN109358228B (en) Power grid voltage positive and negative sequence component real-time estimation method based on double enhanced phase-locked loops
US9194897B2 (en) Electronic watt-hour meter and electronic watt-hour measuring method
JP2003224928A (en) Digital directional relay
JP2004301550A (en) Operation device of power related quantity and phase angle
JP2003270277A (en) Instantaneous reactive power in ac circuit, method for calculating reactive power effective value and method for measuring instantaneous reactive power, reactive power effective value and phase difference
JP2005003530A (en) Phase detector
Abramovitch Low latency demodulation for atomic force microscopes, Part II: Efficient calculation of magnitude and phase
JP2000059995A (en) Compensating apparatus of higher-harmonic reactive power for power system
JP2013101016A (en) Unbalance rate detection device and unbalance rate detection method
JPH06245383A (en) Positive phase/negative phase component detector for three-phase electric amounts
KR20140052152A (en) Method of phase tracking of power system using lpn filter
US10585126B2 (en) Apparatus and method to measure AC power
WO2023139871A1 (en) Impedance measurement system and method
JP3256661B2 (en) AC amplitude detector
KR100635717B1 (en) Phase Locked Loop
Todoran et al. Determination of active and reactive power in multi-phase systems through analytical signals associated current and voltage signals
JPH0682494A (en) Current detection device
RU2223509C1 (en) Method measuring power of distortion in a c single-phase network
JPH1094157A (en) Digital protective relay
JPH033424A (en) Receiver
JPH073803Y2 (en) Compensation current detection circuit for power compensator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050406

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Effective date: 20070904

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20071017

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20090428

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090608

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20090630

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929