JPH0833360B2 - Method for determining crystallization temperature of high temperature melt - Google Patents

Method for determining crystallization temperature of high temperature melt

Info

Publication number
JPH0833360B2
JPH0833360B2 JP62048532A JP4853287A JPH0833360B2 JP H0833360 B2 JPH0833360 B2 JP H0833360B2 JP 62048532 A JP62048532 A JP 62048532A JP 4853287 A JP4853287 A JP 4853287A JP H0833360 B2 JPH0833360 B2 JP H0833360B2
Authority
JP
Japan
Prior art keywords
temperature
viscosity
melt
measured
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62048532A
Other languages
Japanese (ja)
Other versions
JPS63214653A (en
Inventor
将敏 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62048532A priority Critical patent/JPH0833360B2/en
Publication of JPS63214653A publication Critical patent/JPS63214653A/en
Publication of JPH0833360B2 publication Critical patent/JPH0833360B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は連続鋳造用パウダー等の高温隔体の結晶化温
度決定方法に関する。
The present invention relates to a method for determining the crystallization temperature of a high temperature partition such as powder for continuous casting.

〔従来技術〕 一般に連続鋳造用パウダーは鋳片における表面の介在
物欠陥,割れ等の鋳片品質に対しては勿論、鋳型内にお
ける溶鋼の凝固の進行、鋳型との摩擦力等連続鋳造プロ
セスの基本的因子にも大きな影響を及ぼすことが知られ
ており、特にその凝固点温度、更には粘性の大きな転換
点である結晶析の指標となる温度、即ち結晶化温度は重
要な管理項目となっている。
[Prior Art] In general, powder for continuous casting is used not only for the quality of the slab such as surface inclusion defects and cracks in the slab, but also for the progress of solidification of molten steel in the mold, frictional force with the mold It is known that it also has a great influence on the basic factors.In particular, the freezing point temperature, and further the temperature that is an index of crystallization that is a turning point of large viscosity, that is, the crystallization temperature is an important control item. There is.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところでこのような高温融体の凝固点温度は粘度−温
度測定データに基づき判定されている。
By the way, the freezing point temperature of such a high temperature melt is determined based on the viscosity-temperature measurement data.

しかし従来の粘度計は測定作業の殆どを手動的に行っ
ており、1回の測定に多くの時間を要し、しかも前記し
た凝固点温度の推定に際しては多数回の測定を短いサイ
クル時間で行う必要があり、作業に熟練を要し、なおか
つ十分な測定データを得るのが難しく、測定時間が長く
なることによる測定タイミングのずれに因って測定値が
ばらつき、また再現性も悪く、正確な凝固点温度の推定
値、更には結晶化温度(結晶析出の指標となる温度)の
推定値に対する十分な信頼性が得られないという問題が
あった。
However, the conventional viscometer does most of the measurement work manually, and it takes a lot of time for one measurement, and moreover, it is necessary to perform many measurements in a short cycle time when estimating the freezing point temperature. However, it is difficult to obtain sufficient measurement data, and the measured values vary due to the deviation of the measurement timing due to the long measurement time. There is a problem in that sufficient reliability cannot be obtained with respect to the estimated value of the temperature and further the estimated value of the crystallization temperature (the temperature which is an index of crystal precipitation).

本発明はかかる事情に鑑みなされたものであって、そ
の目的とするところは従来種々提案されている各種方式
の粘度計のうち、比較的測定作業時間が短くて済む振動
片方式の粘度計による粘度測定作業の自動化を図り、細
かいサイクルでの粘度測定を可能とし、これら測定デー
タに基づき結晶化温度の正確な推定を可能とした高温融
体の結晶化温度決定方法を提供するにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vibrating vibrometer of a vibrating bar method, which requires relatively short measurement work time, among various types of viscometers that have been conventionally proposed. An object of the present invention is to provide a method for determining the crystallization temperature of a high-temperature melt, which enables automation of viscosity measurement work, enables viscosity measurement in a fine cycle, and enables accurate estimation of the crystallization temperature based on these measurement data.

〔問題点を解決するための手段〕[Means for solving problems]

本発明にあっては、高温融体をその内部温度を均一に
維持しつつ予め定めた温度パターンに従って降温させ、
その過程で高温融体の粘度及びそのときの温度を測定し
て高温融体の凝固点を判定した後、得られた粘度−温度
データに基づき高温融体の溶融状態における粘度−温度
特性及び凝固点を含むそれよりも温度の高い領域での粘
度−温度特性が夫々略直線性を得られる温度範囲を設定
し、夫々の温度範囲についての粘度−温度特性の延長線
上の交点を求める過程を含む。
In the present invention, the high temperature melt is cooled according to a predetermined temperature pattern while maintaining its internal temperature uniform,
After determining the freezing point of the high temperature melt by measuring the viscosity of the high temperature melt and the temperature at that time in the process, the viscosity-temperature characteristic and the freezing point in the molten state of the high temperature melt are determined based on the obtained viscosity-temperature data. The process includes the steps of setting temperature ranges in which the viscosity-temperature characteristics in a region having a higher temperature than that including each obtain substantially linearity, and obtaining the intersections on the extension lines of the viscosity-temperature characteristics for the respective temperature ranges.

〔作用〕[Action]

本発明はこれによって、短いサイクルで多数回の粘度
測定が可能となり、これら粘度−温度データに基づく凝
固温度、更にはこれに基づく結晶化温度の推定値を高い
信頼性で得られる。
According to the present invention, the viscosity can be measured many times in a short cycle, and the solidification temperature based on the viscosity-temperature data, and further, the estimated value of the crystallization temperature based on the solidification temperature can be obtained with high reliability.

〔実施例〕〔Example〕

以下本発明方法をその実施例を示す図面に基づき具体
的に説明する。
Hereinafter, the method of the present invention will be specifically described with reference to the drawings showing an embodiment thereof.

第1図は本発明に係る高温融体の結晶化温度決定方法
の実施に用いる粘度自動測定装置の模式図であり、図中
1は加熱炉、2は粘度測定器、3は測定装置本体を示し
ている。
FIG. 1 is a schematic view of an automatic viscosity measuring apparatus used for carrying out the method for determining the crystallization temperature of a high temperature melt according to the present invention, in which 1 is a heating furnace, 2 is a viscosity meter, and 3 is a measuring apparatus body. Shows.

加熱炉1は電気炉等にて構成されており、上部壁中央
に開口部1aを備え、また内部には被粘度測定物を収容す
るルツボ11及び被粘度測定物を加熱溶融するヒータ12が
配設され、また炉外上部にはルツボ11に被粘度測定物を
供給する供給器13が設置されており、該供給器13内の被
粘度測定物を加熱炉1の炉壁に設けたガイド孔1bを通じ
てルツボ11内に投入し、ヒータ12にて所定温度に加熱溶
融せしめるようにしてある。
The heating furnace 1 is composed of an electric furnace or the like, has an opening 1a at the center of the upper wall, and has a crucible 11 for containing an object to be measured and a heater 12 for heating and melting the object to be measured. In addition, a feeder 13 for supplying an object to be measured with viscosity to the crucible 11 is installed on the outside of the furnace, and the object to be measured with viscosity inside the supplier 13 is provided in the furnace wall of the heating furnace 1. It is put into the crucible 11 through 1b and heated and melted to a predetermined temperature by the heater 12.

ヒータ12の制御は測定装置本体3の演算制御部31から
の制御信号に基づき動作する炉コントローラ14にて行わ
れ、その結果は炉内温度検出プローブ15a,被粘度測定物
の温度検出プローブ15bの検出温度をマルチ温度計32,演
算制御部31を通じて炉コントローラ14にフィードバック
されるようにしてある。また供給器13からの被粘度測定
物の切出量も測定装置本体3のシーケンサ33を通じて演
算制御部31にて調節される。
The heater 12 is controlled by the furnace controller 14 which operates based on the control signal from the arithmetic and control unit 31 of the measuring apparatus main body 3, and the result is obtained by the furnace temperature detection probe 15a and the temperature detection probe 15b of the viscosity object to be measured. The detected temperature is fed back to the furnace controller 14 through the multi-thermometer 32 and the arithmetic and control unit 31. Further, the cut-out amount of the viscosity-measured object from the feeder 13 is also adjusted by the arithmetic control unit 31 through the sequencer 33 of the measuring device main body 3.

粘度測定器2はコーン型のスピーカ等にて構成される
加振源21に上端部を連繋させたシャフト22を水冷ジャケ
ットを備えた熱遮蔽板23を貫通して垂下させ、その下端
部に振動片24を設けると共に、シャフト22の上端部近傍
に振動片24の振幅を検出する変位計25を臨ませて構成さ
れており、図示しない昇降手段にて図面に示す如く振動
片24が加熱炉1の外部に引き上げられた位置と、振動片
24が開口部1aを通してルツボ11内の被粘度測定物内に浸
漬する位置との間を昇降移動せしめられるようになって
いる。
The viscometer 2 has a shaft 22 having an upper end connected to a vibration source 21 composed of a cone type speaker and the like, hangs down a heat shield plate 23 having a water cooling jacket, and vibrates at the lower end. The vibrating piece 24 is provided with a displacement gauge 25 for detecting the amplitude of the vibrating piece 24 in the vicinity of the upper end of the shaft 22. The position raised outside the
24 is moved up and down through the opening 1a to a position where it is immersed in the viscosity measured object in the crucible 11.

加振源21は電磁石、又は駆動コイル等の電気的手段に
て振動板を振動し、その振動をシャフト22を通じて振動
片24に伝達するよう構成されており、その振動数,振幅
は測定装置本体3の演算制御部31から発振器35、パワー
アンプ36を通じて加振源21に対して設定されるようにし
てある。振動数としては主に振動系の共振振動数が用い
られ、振幅もそのときの振幅が用いられる。
The vibration source 21 is configured to vibrate the vibrating plate by an electric means such as an electromagnet or a drive coil, and transmit the vibration to the vibrating piece 24 through the shaft 22. The frequency and amplitude of the vibrating plate are measured. The calculation control unit 31 of No. 3 sets the vibration source 21 through the oscillator 35 and the power amplifier 36. The resonance frequency of the vibration system is mainly used as the frequency, and the amplitude at that time is also used as the amplitude.

変位計25はシャフト22を通じて振動片24の振幅を検出
するよう配設してあり、その検出信号はコントローラ26
及び測定装置本体3のマルチメータ34を通じて演算制御
部31に取込まれる。
The displacement meter 25 is arranged so as to detect the amplitude of the vibrating piece 24 through the shaft 22, and the detection signal is detected by the controller 26.
Also, it is taken into the arithmetic and control unit 31 through the multimeter 34 of the measuring device body 3.

16は標準粘度液であって、粘度測定開始に先立って振
動片24をこれに浸漬し、そのときの温度,振幅を検出
し、粘度測定器2自体の特性を定めるのに用いられる。
Reference numeral 16 is a standard viscosity liquid, which is used to determine the characteristics of the viscosity measuring device 2 itself by immersing the vibrating piece 24 therein before starting the viscosity measurement, detecting the temperature and amplitude at that time.

そして測定装置本体3の演算制御部31は前述の如くシ
ーケンサ33を介して供給器13に被粘度測定物の切出量調
節のための信号を出力し、また温度検出用のプローブ15
a,15bを通じて加熱炉1の内部温度及びルツボ11内の溶
融状態にある被粘度測定物の温度を取り込み、被粘度測
定物の温度を粘度測定温度に降温設定すべく炉コントロ
ーラ14を通じて制御信号を出力し、更に発振器35、パワ
ーアンプ36を介して加振源21に所定信号数の加振を行
い、そのときの空気中、或いは被粘度測定物、標準粘度
液中等での振動片24の振幅を変位計25の検出値として取
り込み、粘度の算出を行うようになっている。
Then, the arithmetic and control unit 31 of the measuring device body 3 outputs a signal for adjusting the cut-out amount of the viscosity-measurable object to the feeder 13 via the sequencer 33 as described above, and also the probe 15 for temperature detection.
The internal temperature of the heating furnace 1 and the temperature of the melted viscosity measured object in the crucible 11 are taken in through a and 15b, and a control signal is sent through the furnace controller 14 to set the temperature of the viscosity measured object to the viscosity measurement temperature. Then, the vibration source 21 is oscillated by a predetermined number of signals via the oscillator 35 and the power amplifier 36, and the amplitude of the vibrating piece 24 in the air at that time, in the viscosity measured object, in the standard viscosity liquid, etc. Is taken in as the detection value of the displacement meter 25, and the viscosity is calculated.

演算制御部31による粘度ηの算出は変位計25で検出し
た、例えば共振振動数のもとでの被粘度測定物内での振
動片24の振動振幅E等に基づき、下記(1)式に従って
行われる。
The calculation of the viscosity η by the calculation control unit 31 is based on, for example, the vibration amplitude E of the vibrating piece 24 in the measured object under the resonance frequency detected by the displacement meter 25, according to the following equation (1). Done.

但し、ρ:被粘度測定物の密度 RM:粘度計固有の機械的インピーダンスの抵抗分 fa:空気中での共振周波数 f:被粘度測定物中での共振周波数 S:振動片の両面の面積 なお(1)式中のRM 2/πfaS2は装置定数であり、 これをKとし、 また は減衰因子であるからこれをΛとすれば前記(1)式
は(2)式の如くに書き直せる。
However, [rho: the density of the viscosity measured R M: resistance of the viscometer inherent mechanical impedance fa: resonance frequency f in the air: the resonance frequency S in the viscosity measured in: area of both surfaces of the vibrating element Note that R M 2 / πfaS 2 in the equation (1) is a device constant, and this is K, and Is an attenuation factor, so if this is set to Λ 0 , the above equation (1) can be rewritten as equation (2).

ρη=KΛ …(2) 空気中での共振周波数fa,空気中での振動振幅Eaは測
定開始前に大気中で振動片に異なる周波数の振動を与
え、振動が最大となる周波数を共振周波数fa、そのとき
の振幅をEaとして定めておく。またK,nについては測定
開始前に2種以上の標準粘度液中に振動片を浸漬し、振
動片に異なる周波数の振動を与え、振幅が最大となる周
波数をf,そのときの振幅をEと定め、これらと標準粘度
液の密度ρ、粘度等に基づき予め求めておく。
ρη = KΛ 0 (2) Resonance frequency fa in air and vibration amplitude Ea in air give vibrations of different frequencies to the vibrating piece in the atmosphere before the start of measurement, and the frequency at which the vibration becomes maximum is the resonance frequency. fa, and the amplitude at that time is defined as Ea. Regarding K and n, before starting the measurement, dip the vibrating piece in two or more kinds of standard viscosity liquids and give the vibrating piece vibrations of different frequencies. The frequency at which the maximum amplitude is f is f, and the amplitude at that time is E And the standard viscosity liquid density ρ, viscosity, etc., are obtained in advance.

演算制御部31で求めた被粘度測定物温度及び粘度はそ
の都度、CRT,プリンタにて表示,記録される。
The temperature and viscosity of the object to be measured, which are obtained by the arithmetic control unit 31, are displayed and recorded by the CRT and the printer each time.

次に粘度測定の手順の一例を第2,3図に示す温度パタ
ーンに従って説明する。第2図は被粘度測定物の温度パ
ターンであり、横軸に時間を、また縦軸に温度をとって
示してある。
Next, an example of the procedure for measuring the viscosity will be described according to the temperature patterns shown in FIGS. FIG. 2 is a temperature pattern of the viscosity-measured object, where the horizontal axis represents time and the vertical axis represents temperature.

被粘度測定物に対する第2図に示す如き温度パターン
の設定制御はルツボ11内の被粘度測定物中に差し込まれ
たプローブ15bを通じて直接その温度を検出し、これを
予め定めた温度パターンに沿うよう演算制御部31から炉
コントローラ14を通じて設定制御してもよいが、被粘度
測定物の温度の応答性は遅く、しかも内部温度が均一化
するまでには長い時間を要する。従って通常は被粘度測
定物とこれを所定温度に設定維持するうえで必要な炉内
温度及び設定時間との関係を予め求めておき被粘度測定
物を所定の温度パターンに沿わせるべく温度制御するう
えで必要な炉温制御パターンを定め、これに沿って炉温
制御をすることにより、被粘度測定物温度を第2図に示
す如き温度パターンに沿わせるのが望ましいが、以下の
説明は第2図に示す被粘度測定物の温度パターンについ
て行うこととする。
The setting control of the temperature pattern as shown in FIG. 2 for the viscosity measured object is to detect the temperature directly through the probe 15b inserted into the viscosity measured object in the crucible 11 and to make it follow a predetermined temperature pattern. Although the setting control may be performed from the arithmetic control unit 31 through the furnace controller 14, the temperature response of the viscosity-measurable object is slow, and it takes a long time until the internal temperature becomes uniform. Therefore, normally, the relationship between the object to be measured and the furnace temperature and set time required to set and maintain the object to be measured is obtained in advance and the temperature of the object to be measured is controlled so that it follows a predetermined temperature pattern. It is desirable to set the required furnace temperature control pattern above and to control the furnace temperature accordingly, so that the temperature of the viscosity-measurable object can be made to follow the temperature pattern as shown in FIG. 2, but the following explanation will be given. The temperature pattern of the viscosity measured object shown in FIG.

先ず格機器の調整、供給器13、ルツボ11内への被粘度
測定物の供給等の測定前段取りを行った後、演算制御
部31から炉コントローラ14に制御信号を出力し、被粘度
測定物を加熱溶融すると共に、この融体の温度を粘度測
定を行うべき温度のうちの最も高い温度TM(又はより高
い温度)まで加熱し、その温度TM加熱維持して内部温度
の均一化を図る。一定時間経過すると振動片24をその共
振振動数で加振しつつ粘度測定器2を下降し、融体のレ
ベルを測定し 次いで空気中における振動片24の振動測定を行い 振動片24を融体中に所定深さまで浸漬し、そのまま1回
目の粘度測定を行う 被粘度測定温度をTMに維持したまま一定の時間を隔てて
2回目の粘度測定を行い その後は粘度測定を行うべき温度まで段階的に降温しつ
つ、所定回数の粘度測定を行う 予測される被粘度測定物の凝固点温度よりも若干高い
温度TNにまで降温すると、その後は一定の勾配で連続的
な降温を行いつつ、先の粘度測定サイクルよりも短いサ
イクルで小刻みに粘度測定を行う そして振動片の振幅が予め定めた設定値以下に減衰し
たとき被粘度測定物の凝固と判断し、各機器を停止させ
て測定作業を終了する。
First of all, after adjusting the equipment and supplying the measured material into the crucible 11 and the feeder 13, the control unit 31 outputs a control signal to the furnace controller 14 to measure the measured material. The temperature of this melt is heated to the highest temperature T M (or higher temperature) of the temperatures at which viscosity measurement should be performed, and that temperature T M is kept heated to homogenize the internal temperature. Try. After a certain period of time, the vibrating piece 24 is vibrated at its resonance frequency and the viscosity measuring device 2 is lowered to measure the melt level. Next, the vibration of the vibrating piece 24 in air is measured. The vibrating piece 24 is immersed in the melt to a predetermined depth, and the first viscosity measurement is performed as it is. Perform the second viscosity measurement with a certain time interval while maintaining the viscosity measurement temperature at T M. After that, measure the viscosity a predetermined number of times while gradually lowering the temperature to the temperature at which the viscosity should be measured. When the temperature is decreased to a temperature T N that is slightly higher than the predicted freezing point of the viscosity-measuring object, the temperature is continuously decreased with a constant gradient, and then the viscosity is measured in small cycles in a cycle shorter than the previous viscosity measurement cycle. I do When the amplitude of the vibrating piece is attenuated to a predetermined value or less, it is determined that the viscosity measurement target is solidified, and each device is stopped to complete the measurement work.

その後再び炉コントローラ14を介して被粘度測定物を
加熱溶融せしめ、被粘度測定物中に取り込まれていた振
動片24を抜き出し、また温度測定用のプローブ15bの
抜き出しを行い、後処理を終了し、被粘度測定物をそ
のまま放冷せしめる。
After that, the viscosity measured object is again heated and melted through the furnace controller 14, the vibrating piece 24 taken in the viscosity measured object is extracted, and the probe 15b for temperature measurement is extracted, and the post-processing is completed. Allow the object to be measured to cool as it is.

以下各作業について具体的に説明する。 Each work will be specifically described below.

A.測定前段取り作業 主として各種機器の点検の外、供給器13、ルツボ11内
への被粘度測定物の供給等であって手動処理される。ル
ツボ11内への被粘度測定物の供給量はこれが溶融したと
きルツボ11内で粘度測定に支障を生じないレベルが確保
し得るよう定める。
A. Pre-measurement setup work Mainly for inspection of various equipment, supply of viscosity-measurable material into the feeder 13 and the crucible 11, and the like. The supply amount of the viscosity-measurable object into the crucible 11 is determined so that a level at which the viscosity measurement is not hindered in the crucible 11 when melted can be secured.

B1.融体レベルの測定 振動片24を共振周波数で振動させつつ、昇降手段を作
動してこれを下降したとき、振動片24下端が融体表面と
接触すると振幅が急激に変化するから、そのときの変位
計25の出力信号を読み取り、昇降手段の位置に基づき振
動片24位置をレベル位置と判断する。
B 1 .Measurement of melt level When vibrating the vibrating piece 24 at the resonance frequency and operating the elevating means to lower the vibrating piece 24, the amplitude suddenly changes when the lower end of the vibrating piece 24 comes into contact with the melt surface. The output signal of the displacement meter 25 at that time is read, and the position of the vibrating piece 24 is determined to be the level position based on the position of the elevating means.

なお、このレベル判定はルツボ11内への被粘度測定物
の投入量及びルツボ11の内容量、更に被粘度測定物の密
度に基づき算出することとしてもよい。
Note that this level determination may be calculated based on the amount of the substance to be measured to be put into the crucible 11, the internal volume of the crucible 11, and the density of the substance to be measured.

B2.空気中での振動片の振幅測定 粘度測定器2の昇降手段を駆動し、振動片24を加熱炉
1内で融体表面の推定位置から一定高さまで引上げ、空
気中で振動せしめてそのときの振幅を変位計25にて検出
し、検出信号はコントローラ26を経てマルチメータ34に
入力し、渦電流を距離に変換して演算制御部31に取り込
み、その振幅を記憶すると共に、CRT,プリンタ37を通じ
て表示、並びに記録する。
B 2 .Amplitude measurement of vibrating piece in air Driving the lifting means of the viscometer 2 to raise the vibrating piece 24 from the estimated position on the surface of the melt to a certain height in the heating furnace 1, and vibrate in air. The amplitude at that time is detected by the displacement meter 25, the detection signal is input to the multimeter 34 via the controller 26, the eddy current is converted into a distance and taken into the arithmetic control unit 31, and the amplitude is stored and the CRT is also stored. Then, it is displayed and recorded through the printer 37.

C1.振動片の浸漬、及び1回目の粘度測定 先に検出したルツボ11内における被粘度測定物のレベ
ルから振動片24の降下量を決定して、振動片24を融体中
に所定深さまで浸漬する。振動片24を所定位置まで融体
中に浸漬し終えると直ちに第1回目測定を行う。
C 1. Immersion of the vibrating piece, and the first viscosity measurement Determine the descending amount of the vibrating piece 24 from the level of the viscosity measured object in the crucible 11 detected earlier, and place the vibrating piece 24 at the predetermined depth in the melt. Immerse yourself. As soon as the vibrating piece 24 is completely immersed in the melt up to a predetermined position, the first measurement is performed.

即ち、温度測定用プローブ15bにて融体温度を検出
し、これをマルチ温度計32を通じて演算制御部31に読み
込むと同時に、変位計25の出力をコントローラ26,マル
チメータ34を介して振幅として演算制御部31に読み込
み、前記(1)式に従って粘度を算出する。
That is, the temperature of the melt is detected by the temperature measuring probe 15b, and this is read into the calculation control unit 31 through the multi-thermometer 32, and at the same time, the output of the displacement meter 25 is calculated as the amplitude through the controller 26 and the multimeter 34. The value is read into the control unit 31 and the viscosity is calculated according to the equation (1).

その後は周波数を変え、その都度振幅を読み込み、平
均振幅を算出し、粘度を測定する。
After that, the frequency is changed, the amplitude is read each time, the average amplitude is calculated, and the viscosity is measured.

C2.2回目の粘度測定 1回目の粘度測定終了後もそのまま融体温度を一定に
維持しつつ一定時間経過すると、再度その温度及び振幅
を読み込み、粘度を求める前述の作業を反復して2回目
の粘度測定を行う。
When the C 2 .2 nd viscosity measured first as melt temperature even after the viscosity measurement end of a certain time has elapsed while maintaining constant, reads the temperature and amplitude again by repeating the operations described above to obtain the viscosity 2 Perform the second viscosity measurement.

C3〜Cn.3〜n回目の粘度測定 その後は炉温を所定の勾配で下降するよう炉コントロ
ーラ14を制御し、一定時間後再び炉コントローラ14を制
御してそのときの温度を一定時間維持させて融体温度の
均一化を図り、3回目の粘度測定を行う。
C 3 ~ C n .3 ~ nth viscosity measurement After that, the furnace controller 14 is controlled so as to decrease the furnace temperature at a predetermined gradient, and after a certain time, the furnace controller 14 is controlled again to keep the temperature at that time for a certain time. The temperature of the melt is maintained to be uniform, and the viscosity is measured for the third time.

その後は上記した融体温度を所定勾配で降温する都度
一定時間の温度維持を反復して、n回の粘度測定を行
う。
After that, each time the melt temperature is lowered with a predetermined gradient, the temperature is maintained for a certain period of time repeatedly, and the viscosity is measured n times.

D1〜Dn.小刻み測定 必要な回数の粘度測定が終了するとその後は炉温を予
め定めた所定の勾配で降温させつつ短いサイクルで小刻
みに粘度測定を反復する。
D 1 to D n .Small-scale measurement After the required number of times of viscosity measurement is completed, the viscosity is repeatedly measured in short cycles while lowering the furnace temperature at a predetermined gradient.

粘度測定作業自体は前述した場合と実質的に同じであ
る。
The viscosity measuring operation itself is substantially the same as that described above.

E.凝固点判定 そして、変位計25の出力である振動片24の共振振動数
での振幅値の絶対値が予め定めた設定値以下となったと
き、また振動片24の振幅が先に測定してある空気中での
振動片24の共振振動数での振幅値に対する比が設定値K
よりも低くなったとき、換言すれば下記(3)式が成立
したとき融体は凝固したと判定する。
E. Freezing point determination Then, when the absolute value of the amplitude value at the resonance frequency of the vibrating piece 24, which is the output of the displacement meter 25, becomes less than or equal to a predetermined set value, the amplitude of the vibrating piece 24 is measured first. The ratio to the amplitude value at the resonance frequency of the resonator element 24 in the air is set value K.
When it becomes lower than that, in other words, when the following expression (3) is satisfied, it is determined that the melt has solidified.

但しK:13〜1/10程度 F,G.終了処理 凝固点判定後は被粘度測定物を再加熱し、これを溶融
状態に戻して、これに取り込まれていた振動片24,プロ
ーブ15bを抜き出し、昇降手段によって粘度測定器2を
引き上げ、振動片24を炉外にまで引出す。
However, K: About 13 to 1/10 F, G. Finishing process After the freezing point is judged, the viscosity measured object is reheated, returned to the molten state, and the vibrating piece 24 and probe 15b taken in this are extracted. The lifting and lowering means pulls up the viscosity measuring device 2 and pulls the vibrating piece 24 out of the furnace.

次に上述した如き手順で求めた粘度−温度データに基
づく結晶化温度の決定過程の手順につき説明する。
Next, the procedure of the crystallization temperature determination process based on the viscosity-temperature data obtained by the above-described procedure will be described.

a.凝固温度の決定 前述した過程で求めた被粘度測定物の粘度−温度デー
タ中の共振周波数における振幅測定値、又は共振周波数
とこの共振周波数における振幅測定値とに基づき、前記
(1)式より算出された粘度η、logη,ρη,或いはl
ogρηが予め定めた設定値K1を外れたときの温度を凝固
温度とする。これを具体的に示すと前記粘度−温度デー
タを、横軸に被粘度測定物の絶対温度の逆数(1/T)
を、また縦軸に前記した例えばlogρηをとって示すと
第3図に示す如くになるが、logηとして前記した
(3)式に示した如きKに対応するK1を設定値として与
え、logρηの値がK1を越えたときの横軸の値ta℃を凝
固点温度とする。
a. Determination of solidification temperature Based on the amplitude measurement value at the resonance frequency in the viscosity-temperature data of the viscosity-measuring object obtained in the above process, or the resonance frequency and the amplitude measurement value at this resonance frequency, the above equation (1) is used. Calculated viscosity η, log η, ρ η, or l
The temperature when ogρη deviates from the preset value K 1 is defined as the solidification temperature. To show this concretely, the viscosity-temperature data is represented by the reciprocal of the absolute temperature (1 / T) of the object to be measured on the horizontal axis.
3, and the above-mentioned logρη is plotted on the vertical axis, which is as shown in FIG. 3. However, as logη, K 1 corresponding to K as shown in the equation (3) is given as a set value, and logρη The value on the horizontal axis when the value of exceeds K 1 is ta ℃ and is the freezing point temperature.

なお横軸には1/Tをとって示したが、これに代えて温
度tをとってもよく、また縦軸にはlogρηをとった
が、これに限らず前述したη,logη,ρηをとっても実
質的に同じである。
Although 1 / T is shown on the horizontal axis, the temperature t may be used instead of this, and logρη is taken on the vertical axis, but the present invention is not limited to this, and η, logη, ρη described above are substantially taken. Are the same.

b.溶融時の粘度−温度特性の決定 第4図は第3図に示すグラフと同様に横軸に被粘度測
定物の絶対温度Tの逆数1/Tを、また縦軸にlogρηをと
って示してあり、前記a項で決定した融体の凝固点温度
ta℃を基準にして、融体温度を最初に粘度測定を行った
温度から降温する過程で得た溶融状態での粘度−温度特
性が略直線状を維持する間の温度範囲(凝固点に近づく
に従って生じる粘度−温度特性が曲線状の関係となる領
域を出来るだけ含まない範囲)を特定するための設定温
度Ta℃を定め、凝固点温度ta+設定温度Taの和の温度よ
りも高い温度範囲について、粘度η,logη,ρη,logρ
ηと被粘度測定物温度t(℃)、又は被粘度測定物の絶
対温度Tの逆数1/Tとの関係を例えば最小二乗法を用い
て直線近似し、これを溶融時の粘度−温度特性と定め、
横軸をx,縦軸をyとしてその直線式y=A1x+B1を決定
する。
b. Determination of viscosity-temperature characteristics during melting In Fig. 4, the reciprocal 1 / T of the absolute temperature T of the viscosity object to be measured is plotted on the horizontal axis and log ρ η on the vertical axis as in the graph shown in Fig. 3. And the freezing point temperature of the melt determined in the a term
Based on ta ° C, the temperature range during which the melt-temperature viscosity-temperature characteristic obtained in the process of lowering the melt temperature from the temperature at which the viscosity was first measured remains approximately linear (as the freezing point approaches, A set temperature Ta ° C is set to specify a range in which the resulting viscosity-temperature characteristic does not include a region having a curved relationship as much as possible, and the viscosity is measured in a temperature range higher than the sum of the freezing point temperature ta + the set temperature Ta. η, logη, ρη, logρ
The relationship between η and the temperature t (° C.) of the viscosity-measurable object or the reciprocal 1 / T of the absolute temperature T of the viscosity-measurable object is linearly approximated using, for example, the least square method, and the viscosity-temperature characteristic at the time of melting ,
The linear equation y = A 1 x + B 1 is determined with the horizontal axis as x and the vertical axis as y.

c.凝固点温度を含み、且つこれよりも高い温度範囲での
粘度−温度特性の決定 第5図は第3,4図に示すグラフと同様に横軸に被粘度
測定物の絶対温度Tの逆数1/Tを、また縦軸にlogρηを
とって示してあり、前記a項で決定した融体の凝固点温
度ta℃を基準にしてこれを含み、且つこれよりも前の、
換言すれば被粘度測定物温度のより高い範囲での粘度−
温度特性が略直線状を維持する温度範囲(被粘度測定物
温度の更に高い範囲で生じる粘度−温度特性が曲線状の
関係となる領域を出来るだけ含まない範囲)を特定する
ための設定温度Tb℃を定め、凝固温度ta+設定温度Tbの
和の温度よりも低い温度範囲について、粘度η,logη,
ρη,logρηと被粘度測定物温度t(℃)、又は被粘度
測定物の絶対温度Tの逆数1/Tとの関係を例えば最小二
乗法を用いて直線近似し、これを凝固点を含み、且つこ
れよりも高い温度範囲での粘度−温度特性と定め、横軸
をx,縦軸をyとしてその直線式y=A2x+B2を決定す
る。
c. Determination of viscosity-temperature characteristics in the temperature range including and including the freezing point temperature. In Fig. 5, the horizontal axis is the reciprocal of the absolute temperature T of the viscosity-measurable object, as in the graphs shown in Figs. 1 / T is also shown by taking logρη on the vertical axis, and includes 1 / T on the basis of the melting point temperature ta ° C of the melt determined in the above item a, and before this.
In other words, the viscosity in the higher temperature range
Set temperature Tb for specifying the temperature range in which the temperature characteristic maintains a substantially linear shape (the range that does not include the region where the viscosity-temperature characteristic that occurs in the higher range of the temperature of the viscosity object to be measured has a curved relationship as much as possible) ℃, the viscosity η, log η, in the temperature range lower than the temperature of the sum of solidification temperature ta + set temperature Tb
The relationship between ρ η, log ρ η and the temperature t (° C.) of the viscosity-measurable object or the reciprocal 1 / T of the absolute temperature T of the viscosity-measurable object is linearly approximated by using, for example, the least square method, and this is included in the freezing point, and The viscosity-temperature characteristic in a temperature range higher than this is defined, and the linear expression y = A 2 x + B 2 is determined with x on the horizontal axis and y on the vertical axis.

d.結晶化温度の決定 第6図は前記した結晶化温度の決定態様を示すグラフ
であり、第3〜5図に示すグラフと同様に横軸に被粘度
測定物の絶対温度の逆数1/Tを、また縦軸にlogρηをと
って示してある。前記b項で求めた被粘度測定物が溶融
時の粘度−温度特性を示す直線式y=A1x+B1と、前記
c項で求めた被粘度測定物の凝固点温度を含み、且つこ
れよりも高い温度範囲における粘度、温度特性を示す直
線式y=A2x+B2との交点Qのx座標の値tbを結晶化温
度とする。
d. Determination of Crystallization Temperature FIG. 6 is a graph showing the manner of determining the crystallization temperature described above. As with the graphs shown in FIGS. 3 to 5, the horizontal axis represents the reciprocal 1 / absolute temperature of the object to be measured. T is shown, and the vertical axis is logρη. The viscosity of the viscosity-measured object determined in the above item b includes a linear equation y = A 1 x + B 1 indicating the viscosity-temperature characteristic and the freezing point temperature of the viscosity-measured object determined in the above item c, and The value t b of the x coordinate of the intersection Q with the linear equation y = A 2 x + B 2 showing the viscosity and temperature characteristics in the high temperature range is taken as the crystallization temperature.

なお上述の説明は両温度範囲についての粘度−温度特
性をいずれも直線近似した場合について説明したが、必
ずしも直線近似する必要はなく、特性傾向を損なわない
範囲であれば曲線であってもよい。
In the above description, the case where the viscosity-temperature characteristics for both temperature ranges are linearly approximated has been described, but it is not always necessary to perform linear approximation, and a curved line may be used as long as the characteristic tendency is not impaired.

次に本発明の他の実施例について説明する。 Next, another embodiment of the present invention will be described.

被粘度測定物の粘度−温度特性は第3図に示した如く
凝固点温度ta℃を含み、且つこれよりも高い温度範囲及
び被粘度測定物が溶融状態にある温度範囲ではいずれも
直線的な関係にあるが、その中間の温度範囲では逆に曲
線的な関係にあり、しかもこの曲線的な関係にある温度
範囲に結晶化温度の存在が推定されることに着目した方
法であって具体的には次の如く行う。
As shown in FIG. 3, the viscosity-temperature characteristic of the viscosity-measurable object includes the freezing point temperature ta ° C., and in the temperature range higher than this and the temperature range in which the viscosity-measurable object is in a molten state, there is a linear relationship. However, it is a method that focuses on the fact that there is a curvilinear relationship in the middle temperature range and that the existence of the crystallization temperature is estimated in the temperature range having this curvilinear relationship. Is performed as follows.

被粘度測定物の融体温度を降温する過程で求めた粘度
−温度関係データを、特に共振周波数における振動片の
振幅測定値、又は共振周波数及びそれにおける振幅測定
値から(1)式に従って求めた粘度η,logη,ρη,log
ρηの温度を指標とする2点間の変化率(温度微分した
温度変化率)、即ちd(logρη)/d(1/T)が予め定め
た設定値を一定以上越えたときの横軸の値tc℃を結晶化
温度と決定する。
The viscosity-temperature relationship data obtained in the process of lowering the melt temperature of the object to be measured was obtained according to the equation (1) from the amplitude measurement value of the resonator element at the resonance frequency, or the resonance frequency and the amplitude measurement value at the resonance frequency. Viscosity η, log η, ρη, log
The rate of change between two points with the temperature of ρη as the index (temperature change rate differentiated by temperature), that is, the horizontal axis when d (logρη) / d (1 / T) exceeds a preset value by a certain amount or more The value tc ° C. is determined as the crystallization temperature.

具体的には変化率d(logρη)/d(1/T)が設定値を
越えた回数が連続してN個以上となったとき、その中の
N−i番目の変化率を求めた時の温度tc℃を結晶化温度
とする。
Specifically, when the number of times the rate of change d (logρη) / d (1 / T) exceeds the set value is N or more consecutively, and when the N-ith rate of change is obtained. The temperature of tc ° C is defined as the crystallization temperature.

例えば第7図においては、logρηの2点より計算さ
れる温度微分値が例えば7回以上設定値を越えたときの
7番目−2番目の温度、即ち5番目の温度tcを結晶化温
度とした場合を示す。
For example, in FIG. 7, the 7th-2nd temperature when the temperature differential value calculated from the two points of log ρη exceeds the set value 7 times or more, that is, the 5th temperature tc is taken as the crystallization temperature. Indicate the case.

何番目の変化率を求めるときの温度を結晶化温度とす
るかは特に限定するものではなく、被粘度測定物の材質
等に応じて適宜定めればよい。
The crystallization temperature is used as the crystallization temperature at which the rate of change is determined, and may be appropriately determined according to the material of the viscosity-measuring object.

また上述の方法では粘度−温度関係データの2点間の
変化率を求める場合につき説明したが、何らこれに限る
ものではなく、例えば5点についてその中間の3点目に
おける変化率を求めてもよくこの場合はd(logρη)/
d(1/T)は下記(4)式の如くに与えられる。
Further, in the above method, the case where the rate of change between two points of the viscosity-temperature relationship data is obtained has been described, but the present invention is not limited to this, and for example, even if the rate of change at the third point in the middle of five points is obtained. Well in this case d (logρη) /
d (1 / T) is given by the following equation (4).

但しh:粘度測定サイクル y0〜y4:測定logρηの値 なお上記のグラフは縦軸にlogρηをとった場合につ
き説明したが、これに代えてη,logη,ρηをとり、ま
た横軸は絶対温度Tの逆数1/Tに代えてt℃を用いても
よい。
However h: Viscosity measurement cycle y 0 ~y 4: The value noted above graph of measurement logρη is has been explained when taking logρη on the vertical axis, eta Alternatively, log [eta, take Roita, also the horizontal axis Instead of the reciprocal 1 / T of the absolute temperature T, t ° C. may be used.

〔効果〕〔effect〕

以上の如く本発明方法にあっては、高温融体の結晶化
温度をより正確に行うことが出来て定量的な管理指標を
高い信頼性で得られることとなり、連続鋳造鋳片の製造
等に際してより高い品質管理を行い得ることとなるなど
本発明は優れた効果を奏するものである。
As described above, in the method of the present invention, the crystallization temperature of the high temperature melt can be more accurately obtained, and a quantitative control index can be obtained with high reliability. The present invention has excellent effects such that higher quality control can be performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明装置のブロック図、第2図は被粘度測定
物に設定すべき温度パターン、第3〜6図は高温融体の
結晶化温度を求める過程を示すグラフ、第7図は本発明
方法における結晶化温度を求める他の方法を示すグラフ
である。 1……加熱炉、2……粘度測定器、3……測定装置本
体、11……ルツボ、12……ヒータ、13……供給器、14…
…炉コントローラ、15a,15b……温度検出用プローブ、1
6……標準粘度液、21……加振源、22……シャフト、24
……振動片、25……変位計、31……演算制御部
FIG. 1 is a block diagram of the device of the present invention, FIG. 2 is a temperature pattern to be set for an object to be viscosity measured, FIGS. 3 to 6 are graphs showing a process of obtaining a crystallization temperature of a high temperature melt, and FIG. 6 is a graph showing another method for obtaining the crystallization temperature in the method of the present invention. 1 ... Heating furnace, 2 ... Viscosity measuring device, 3 ... Measuring device main body, 11 ... Crucible, 12 ... Heater, 13 ... Feeder, 14 ...
… Furnace controller, 15a, 15b …… Temperature detection probe, 1
6 …… Standard viscosity liquid, 21 …… Excitation source, 22 …… Shaft, 24
...... Vibrating element, 25 ...... Displacement meter, 31 ...... Computation control unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高温融体をその内部温度を均一に維持しつ
つ予め定めた温度パターンに従って降温させ、その過程
で高温融体の粘度及びそのときの温度を測定して高温融
体の凝固点を判定した後、得られた粘度−温度データに
基づき高温融体の溶融状態における粘度−温度特性及び
凝固点を含むそれよりも温度の高い領域での粘度−温度
特性が夫々略直線性を得られる温度範囲を設定し、夫々
の温度範囲についての粘度−温度特性の延長線上の交点
を求める過程を含む高温融体の結晶化温度決定方法。
1. A high temperature melt is cooled according to a predetermined temperature pattern while maintaining its internal temperature uniform, and in the process, the viscosity of the high temperature melt and the temperature at that time are measured to determine the freezing point of the high temperature melt. After the judgment, the temperature at which the viscosity-temperature characteristic in the molten state of the high-temperature melt and the viscosity-temperature characteristic in the higher temperature region including the freezing point based on the obtained viscosity-temperature data are each approximately linear. A method for determining a crystallization temperature of a high temperature melt, which comprises a step of setting a range and obtaining an intersection point on an extension line of a viscosity-temperature characteristic for each temperature range.
JP62048532A 1987-03-02 1987-03-02 Method for determining crystallization temperature of high temperature melt Expired - Lifetime JPH0833360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62048532A JPH0833360B2 (en) 1987-03-02 1987-03-02 Method for determining crystallization temperature of high temperature melt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62048532A JPH0833360B2 (en) 1987-03-02 1987-03-02 Method for determining crystallization temperature of high temperature melt

Publications (2)

Publication Number Publication Date
JPS63214653A JPS63214653A (en) 1988-09-07
JPH0833360B2 true JPH0833360B2 (en) 1996-03-29

Family

ID=12805974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62048532A Expired - Lifetime JPH0833360B2 (en) 1987-03-02 1987-03-02 Method for determining crystallization temperature of high temperature melt

Country Status (1)

Country Link
JP (1) JPH0833360B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637005B2 (en) * 1992-02-21 1997-08-06 新日本製鐵株式会社 Evaluation method of powder for continuous casting of medium carbon steel
JP2637004B2 (en) * 1992-02-21 1997-08-06 新日本製鐵株式会社 Evaluation method of powder for continuous casting of low carbon steel
WO2001077624A2 (en) 2000-04-05 2001-10-18 The Charles Stark Draper Laboratory, Inc. Apparatus and method for measuring the mass of a substance
CN104165898A (en) * 2014-08-21 2014-11-26 共慧冶金设备科技(苏州)有限公司 Large-temperature-gradient Bridgman furnace
CN116908051B (en) * 2023-06-21 2023-12-29 广州市嘉雁粘合剂有限公司 Hot melt adhesive flow property detection method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FIFTH INTERNATIONAL IRON AND STEEL CONGRESS PROCEEDINGS OF THE 69TH STEELMAKING CONFERENCE=1986 *
FIFTH INTERNATIONALIRON AND STEEL CONGRESS PROCEEDINGS OF THE 69TH STEELMAKING CONFERFNCE=1986 *

Also Published As

Publication number Publication date
JPS63214653A (en) 1988-09-07

Similar Documents

Publication Publication Date Title
WO1991013324A1 (en) Liquid level detecting apparatus and liquid level detecting method
EP1510813A2 (en) Method and apparatus for measuring quenchant properties of coolants
CN104391179A (en) Conductivity test device and method for molten glass
JP6515853B2 (en) Method of manufacturing single crystal and apparatus therefor
JPH0833360B2 (en) Method for determining crystallization temperature of high temperature melt
US3667296A (en) Method and apparatus for determining the surface level of molten material in a mold
JP2508058B2 (en) High-temperature melt viscosity automatic measurement device
JP2006214842A (en) Liquid physical property value measuring instrument and liquid physical property value measuring method
JP4752366B2 (en) Multi-frequency eddy current mold powder melt thickness measurement method
JPS5915837A (en) Viscosity measuring apparatus for high temperature fluid
AU2007301495B2 (en) An apparatus and method for determining the percentage of carbon equivalent, carbon and silicon in liquid ferrous metal
JPH03202748A (en) Vibrating-reed type viscosity measuring method
JP2015190829A (en) Method, program, and device for determining yield value of fluid
JPH0540056A (en) Automatic calibration method of eddy current type molten metal level indicator for continuous casting mold
JP4022824B2 (en) Method and apparatus for measuring phase transformation amount during phase transformation of substance
Yaroslavkina et al. Acoustic emission system for studying the effect of AlTi5Bl modifier on the crystallization of aluminum
JPH0996601A (en) Method for evaluating wettability of solid metal, ceramic to molten glass
JPH1123504A (en) Method for measuring water content per unit volume of and water-cement ratio of fresh concrete
Balogun et al. A Fiber Optic Distributed Temperature Mapping Technique to Characterize Shell Solidification in Peritectic Grade Steels
Satunkin et al. Determination of physical constants of the melt and the parameters of the control object concerning crystal growth from the melt
JPS63212843A (en) Method for vibrating vibration piece of viscometer
JPH04284956A (en) Method for continuously casting steel
JPH04262841A (en) Instrument and method for measuring flow speed on surface of molten steel in continuous casting mold
JPH03123839A (en) Method for immersing vibrating piece of vibrating viscometer
KR20220079483A (en) Method and measuring instrument for measurement of the casting level in a mould