JPH08333491A - Thermoplastic resin composition for high-speed molding - Google Patents

Thermoplastic resin composition for high-speed molding

Info

Publication number
JPH08333491A
JPH08333491A JP16150095A JP16150095A JPH08333491A JP H08333491 A JPH08333491 A JP H08333491A JP 16150095 A JP16150095 A JP 16150095A JP 16150095 A JP16150095 A JP 16150095A JP H08333491 A JPH08333491 A JP H08333491A
Authority
JP
Japan
Prior art keywords
mold
thermoplastic resin
weight
resin composition
foaming agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16150095A
Other languages
Japanese (ja)
Inventor
Tsunetoshi Shinada
恒利 品田
Satoru Kurono
悟 黒野
Haruo Inoue
晴夫 井上
Masaki Misumi
正毅 三隅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP16150095A priority Critical patent/JPH08333491A/en
Publication of JPH08333491A publication Critical patent/JPH08333491A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a thermoplastic resin compsn. which can reduce the cooling and solidifying time in high-speed molding for producing a high-precision molded item and thus can highten the molding cycle by compounding a thermoplastic resin. an inorg. filler, and a blowing agent each in a specified amt. CONSTITUTION: This compsn. is prepd. by compounding 65-95wt.% thermoplastic resin (e.g. PP) with 5-35wt.% inorg. filler (e.g. glass fiber) and a blowing agent (e. g. sodium dihydrogencitrate) in such a way that the amt. of the blowing agent compounded satisfies the conditions that the gauge pressure at the part corresponding to the center of gravity of the resulting molded item just after filling a mold in injection molding is 0. 5-20kg/cm<2> and that the relation: 5.0×10<-4> ×V>=Vg>=5.0×10<-2> ×V (wherein V is the vol. of the molded item; and Vg is that of the gas generated by blowing) is satisfied in the mold.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、射出成形方法を用いて
製造される高寸法精度成形物を、高速で成形する為の熱
可塑性樹脂組成物、成型方法およびそれにより得られる
成形物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoplastic resin composition for molding at high speed a molded article of high dimensional accuracy manufactured by an injection molding method, a molding method and a molded article obtained by the method. Is.

【0002】[0002]

【従来の技術】一般に熱可塑性樹脂は、寸法安定性、成
形性の良さから自動車部品、家電部品、OA機器部品、
家具部品等に広く用いられてきている。これらのなかで
も特に寸法精度の要求が厳しいOA機器シャーシ類、空
調機の回転羽根、車両機構部品等には、熱可塑性樹脂に
タルク、マイカ、炭酸カルシウム等の充填剤、チタン酸
カリウム、硫酸マグネシウム等のウイスカー類、ガラス
繊維、カーボン繊維等アスペクト比の大きい繊維類、そ
の他の無機フィラー類を配合した樹脂組成物が用いられ
ている。これらの熱可塑性樹脂組成物の欠点は、射出成
形において一回の成形工程に要する時間が長いことであ
る。
2. Description of the Related Art Generally, thermoplastic resins are used for automobile parts, home electric appliance parts, OA equipment parts, because of their good dimensional stability and moldability.
It has been widely used for furniture parts. Among them, for OA equipment chassis, which require particularly dimensional accuracy, rotary blades of air conditioners, vehicle mechanism parts, etc., thermoplastic resins such as talc, mica, fillers such as calcium carbonate, potassium titanate, and magnesium sulfate. Resin compositions containing whiskers, glass fibers, fibers having a large aspect ratio such as carbon fibers, and other inorganic fillers are used. The drawback of these thermoplastic resin compositions is that the time required for one molding step in injection molding is long.

【0003】一般に、一回の成形に要する時間を成形サ
イクルと言い、主に次の工程から成っている。先ず、成
形機に取り付けた金型を閉じる工程、次に可塑化された
熱可塑性樹脂組成物をこの金型へ射出充填する工程、続
いて金型内に充填された熱可塑性樹脂組成物が未だ固化
しないうちに金型末端まで充分押し込む保圧工程、金型
内に充填された熱可塑性樹脂組成物を冷却固化させる工
程、そして金型を開いて金型内の成形物を取り出す工程
から成り、これらの工程を順次実行する連続した操作で
量産化を図っている。この成形サイクルは、材料費用と
共に製造費用に大きな影響を与える。即ち、成形サイク
ルが長いと、単位時間に生産される成形物の数が少ない
にもかかわらず、成形機使用の電力、冷却水量が一定量
かかり、又成形に携わる工数当たりの人件費も必要なこ
とから、最終的な成形物一個当たりの製造費が著しく高
価となる。この為、成形サイクルの短縮は、熱可塑性樹
脂成形物を生産する者にとって最も重要な問題であり、
従来から以下の様な種々の手段が取られて来た。
Generally, the time required for one molding is called a molding cycle, which mainly consists of the following steps. First, the step of closing the mold attached to the molding machine, then the step of injection-filling the plasticized thermoplastic resin composition into this mold, and subsequently the thermoplastic resin composition filled in the mold A pressure-holding step of fully pushing to the end of the mold before solidification, a step of cooling and solidifying the thermoplastic resin composition filled in the mold, and a step of opening the mold and taking out a molded product in the mold, Mass production is achieved by a continuous operation in which these steps are sequentially executed. This molding cycle has a large impact on manufacturing costs as well as material costs. In other words, if the molding cycle is long, the number of moldings produced per unit time is small, but a certain amount of power and cooling water is required for the molding machine, and labor costs per man-hours involved in molding are also required. However, the manufacturing cost per final molded product becomes extremely high. Therefore, shortening the molding cycle is the most important issue for those who produce thermoplastic resin molded products,
Conventionally, various means such as the following have been taken.

【0004】射出成形機側からは、射出率の向上、可塑
化能力の向上、そして金型開閉速度の向上、更には、成
形物を取り出す際のエジェクトスピードの向上が図られ
てきており、金型側からは、ホットランナーシステムの
開発、ガスベント方法の検討、金型材質、冷却回路の最
適設計等が行われてきている。更に最近は、金型に関し
て供給樹脂のゲートカット方法の開発も行われるように
なってきている。しかし、成形材料側からは、従来から
射出充填時の速度を早めることを目的とした高流動化が
図られてきたのみであり、高速成形用材料と言えば、高
流動銘柄を示すほど一般化したものであった。
From the injection molding machine side, improvement of injection rate, improvement of plasticizing ability, improvement of mold opening / closing speed, and further improvement of eject speed at the time of taking out a molded product have been attempted. From the mold side, development of hot runner system, examination of gas venting method, optimum design of mold material, cooling circuit, etc. have been carried out. Furthermore, recently, a gate cutting method for a resin to be supplied has been developed for a mold. However, from the molding material side, only high fluidization has been attempted from the past with the aim of increasing the speed at injection filling, and speaking of high-speed molding materials, it has become more popular as high-fluidity brands are shown. It was something that was done.

【0005】これら高流動銘柄と言われる熱可塑性樹脂
組成物の流動性向上には、添加されている各種無機フィ
ラーの含有量、繊維の径、長さ等にも関係するが、基本
的にはマトリックスとなる熱可塑性樹脂の性質に負う所
が大きい。熱可塑性樹脂に於いて高流動銘柄を製造する
には、樹脂の分子量を重合段階で下げたり、過酸化物や
触媒を用い押出機で混練して分子量を下げたり、或いは
熱可塑性樹脂に流動パラフィンや金属石鹸、更には高級
脂肪酸、高級脂肪族アルコール、脂肪酸アミド、脂肪酸
エステル類等を添加し、混練押出機で配合したりする方
法が取られている。
The improvement of the fluidity of these high-fluidity thermoplastic resin compositions is related to the content of various inorganic fillers added, the diameter and length of the fiber, but basically, It depends largely on the properties of the thermoplastic resin that is the matrix. In order to produce a high-fluidity brand in a thermoplastic resin, the molecular weight of the resin can be lowered in the polymerization stage, kneading with an extruder using a peroxide or a catalyst to lower the molecular weight, or liquid paraffin can be added to the thermoplastic resin. A method of adding a metal soap, a higher fatty acid, a higher aliphatic alcohol, a fatty acid amide, a fatty acid ester, or the like and blending them with a kneading extruder is used.

【0006】この様にして高流動化された熱可塑性樹脂
組成物を用いた射出成形では、射出充填工程に於ける金
型への注入速度を速めることが出来るが、成形サイクル
に占める射出充填工程に要する時間は僅かなもので有
り、大半の時間は冷却工程に費やされている。この為、
製造費に直接関係する成形サイクルの短縮について、熱
可塑性樹脂側からの新たな開発が切に求められていた。
In injection molding using the thermoplastic resin composition highly fluidized in this manner, the injection speed into the mold in the injection filling process can be increased, but the injection filling process occupies the molding cycle. It takes only a short time and most of the time is spent in the cooling process. Therefore,
A new development from the thermoplastic resin side has been urgently required for shortening the molding cycle which is directly related to the manufacturing cost.

【0007】[0007]

【発明が解決しようとする課題】本発明は、射出成形時
の成形サイクル短縮を樹脂の流動性に求めず、金型内に
充填された樹脂の冷却固化までの時間短縮を目的として
開発された、全く新しい熱可塑性樹脂組成物を提供する
もので有る。即ち、金型内に充填された熱可塑性樹脂の
固化速度を促進する為の樹脂組成物の提供を課題とする
もので有る。
DISCLOSURE OF THE INVENTION The present invention was developed for the purpose of shortening the time for cooling and solidification of the resin filled in the mold without requiring the fluidity of the resin to shorten the molding cycle at the time of injection molding. , To provide a completely new thermoplastic resin composition. That is, it is an object to provide a resin composition for promoting the solidification rate of the thermoplastic resin filled in the mold.

【0008】[0008]

【課題を解決する為の手段】本発明者らは、金型内の樹
脂充填冷却固化挙動について鋭意研究を進め、以下の知
見を得た。射出成形によって金型に充填される可塑化さ
れた熱可塑性樹脂は、冷却が進むに従い金型キャビティ
ー形状に従った形で固化する。ここで熱可塑性樹脂は、
溶融状態から固体状態に相変化し、経時変化で外観が大
きく変化しない温度まで冷却されて金型から取り出され
る。金型から取り出すときの温度はガラス転移温度より
高い場合も低い場合もある。この際、各熱可塑性樹脂固
有の相変化に伴う比容の変化、固体状態への変化後の降
温による寸法収縮、更には降温経時変化に伴う結晶化の
進行の有無等により金型内に充填された熱可塑性樹脂は
全体に収縮する。この収縮により、冷却を促す為の金型
面と熱可塑性樹脂成形物の間が微妙に開き、僅かな空気
層による断熱層が金型面と成形物間に形成される。この
為、高温の熱可塑性樹脂成形物から低温の金型への伝熱
係数が著しく低下し、冷却取り出しまでに長時間を要す
ることとなる。
[Means for Solving the Problems] The inventors of the present invention have earnestly studied the resin filling cooling and solidifying behavior in a mold, and have obtained the following findings. The plasticized thermoplastic resin filled in the mold by injection molding solidifies in a shape according to the shape of the mold cavity as cooling progresses. Here, the thermoplastic resin is
It is taken out of the mold after being cooled to a temperature at which its phase changes from a molten state to a solid state and its appearance does not change significantly over time. The temperature at the time of taking out from the mold may be higher or lower than the glass transition temperature. At this time, the specific volume is changed by the phase change inherent to each thermoplastic resin, the dimensional shrinkage due to the temperature decrease after the change to the solid state, and the presence or absence of the progress of crystallization due to the time-dependent temperature decrease are filled in the mold. The thermoplastic resin thus shrinks entirely. Due to this shrinkage, a space between the mold surface for promoting cooling and the thermoplastic resin molded product is delicately opened, and a heat insulating layer with a slight air layer is formed between the mold surface and the molded product. For this reason, the heat transfer coefficient from the high temperature thermoplastic resin molded product to the low temperature mold is remarkably lowered, and it takes a long time to take it out by cooling.

【0009】本発明者らは上記知見に基づき、冷却固化
時でも出来るだけ成形物が金型に密着し、伝熱効率が低
下しない様な熱可塑性樹脂組成物についてさらに検討を
進め、本発明に到達した。
Based on the above findings, the present inventors have further studied a thermoplastic resin composition in which the molded product adheres to the mold as much as possible even when it is cooled and solidified, and the heat transfer efficiency is not lowered, and the present invention has been achieved. did.

【0010】すなわち本発明の第一は、熱可塑性樹脂6
5〜95重量%、無機フィラー5〜35重量%及び発泡
剤を含んでなり、該発泡剤の量は射出成形時に成型物の
重心に相当する部分における金型内充填直後の圧力がゲ
ージ圧力で0.5〜20kg/cm2となるように配合して成
る高速射出成形用樹脂組成物であり、第二は、熱可塑性
樹脂65〜95重量%、無機フィラー5〜35重量%及
び発泡剤を含んでなり、該発泡剤の量は、成形物の容積
Vに対し発泡により生じたガス体の容積VGが金型内で
以下の関係式を満足するように配合して成る高速射出成
形用樹脂組成物である。 VG=5.0×10-4×V〜5.0×10-2×V
That is, the first aspect of the present invention is that the thermoplastic resin 6
5 to 95% by weight, an inorganic filler 5 to 35% by weight, and a foaming agent are contained, and the amount of the foaming agent is the gauge pressure at the time of injection molding immediately after filling in a portion corresponding to the center of gravity of the molded article. A resin composition for high-speed injection molding, which is compounded so as to have a concentration of 0.5 to 20 kg / cm 2, and the second is a thermoplastic resin of 65 to 95% by weight, an inorganic filler of 5 to 35% by weight, and a foaming agent. For high-speed injection molding, wherein the amount of the foaming agent is such that the volume V G of the gas body generated by foaming with respect to the volume V of the molded product is blended so as to satisfy the following relational expression in the mold. It is a resin composition. V G = 5.0 × 10 −4 × V to 5.0 × 10 −2 × V

【0011】さらに本発明の第3は、上記第一または第
二の発明の樹脂組成物を金型内に射出し、金型内に樹脂
が完全に充填する前に射出を中止して、その後は発泡剤
の発砲により金型内に充填するようにすることを特徴と
する射出成形方法およびそれにより得られる成形物であ
る。
A third aspect of the present invention is to inject the resin composition according to the first or second aspect of the invention into a mold, stop the injection before the resin is completely filled in the mold, and thereafter Is an injection molding method characterized by filling the inside of a mold by blowing a foaming agent, and a molded product obtained thereby.

【0012】以下本発明を詳細に述べる。本発明の樹脂
組成物に用いられる熱可塑性樹脂としては特に制限がな
く、例えばポリスチレン樹脂、ABS樹脂、AS樹脂、
低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ポ
リプロピレン樹脂、塩化ビニール樹脂等の汎用樹脂、或
いはポリアミド樹脂、ポリカーボネート樹脂、PBT樹
脂、ポリアセタール樹脂等のエンジニアリング樹脂等が
挙げられる。また、これらの樹脂同志や各種エラストマ
ーとのポリマーアロイも含まれる。
The present invention will be described in detail below. The thermoplastic resin used in the resin composition of the present invention is not particularly limited, and examples thereof include polystyrene resin, ABS resin, AS resin,
Examples include general-purpose resins such as low-density polyethylene resin, high-density polyethylene resin, polypropylene resin, vinyl chloride resin, and engineering resins such as polyamide resin, polycarbonate resin, PBT resin, and polyacetal resin. Further, polymer alloys with these resins and various elastomers are also included.

【0013】熱可塑性樹脂の配合量は、65重量%以上
95重量%以下である。熱可塑性樹脂の配合量が65重
量%未満では、樹脂組成物とした時、他のフィラー類が
過剰な割合となり、樹脂組成物の流動性が低下し、金型
内への射出充填速度がかなり低下する。配合量が95重
量%越えると、熱可塑性樹脂そのものの比容変化、成形
物の温度低下に伴う収縮率、或いは結晶化に伴う寸法収
縮を解消する度合いが少なく、寸法精度を要する成形物
を得ることが難しい。従って、熱可塑性樹脂の配合量
は、65重量%以上95重量%以下で、75重量%以上
85重量%以下が好ましい。
The blending amount of the thermoplastic resin is 65% by weight or more and 95% by weight or less. If the blending amount of the thermoplastic resin is less than 65% by weight, when the resin composition is used, the other fillers are in an excessive proportion, the fluidity of the resin composition is lowered, and the injection filling speed into the mold is considerably high. descend. If the blending amount exceeds 95% by weight, a molded product that requires dimensional accuracy is less likely to eliminate the change in the specific volume of the thermoplastic resin itself, the shrinkage rate due to the temperature decrease of the molded product, or the dimensional shrinkage due to crystallization. Difficult to do. Therefore, the blending amount of the thermoplastic resin is 65% by weight or more and 95% by weight or less, preferably 75% by weight or more and 85% by weight or less.

【0014】本発明に用いられる無機フィラーとして
は、通常の熱可塑または熱硬化性樹脂に用いられる市販
の一般的なもので差し支えなく、例えばタルク、マイ
カ、炭酸カルシウム等の各種充填剤、チタン酸カリウ
ム、硫酸マグネシウム等の各種ウイスカー類、更にはガ
ラス繊維、カーボン繊維等アスペクト比の大きい繊維類
が含まれる。これら無機フィラーは、粒子径、繊維径、
繊維長、密度等について特に制限はない。これらは配合
する熱可塑性樹脂と親和性のある表面処理剤、例えばシ
ランカップリング剤等で処理されているものが好まし
い。
The inorganic filler to be used in the present invention may be a general commercially available one used for ordinary thermoplastic or thermosetting resins, for example, various fillers such as talc, mica, calcium carbonate, and titanic acid. Various whiskers such as potassium and magnesium sulfate, as well as fibers having a large aspect ratio such as glass fibers and carbon fibers are included. These inorganic fillers have a particle diameter, a fiber diameter,
The fiber length, density, etc. are not particularly limited. It is preferable that these are treated with a surface treatment agent having an affinity with the thermoplastic resin to be blended, for example, a silane coupling agent.

【0015】無機フィラーの配合量は5重量%以上35
重量%以下である。5重量%未満では、熱可塑性樹脂の
配合割合が多くなり、金型内での溶融状態から固化状態
への比容変化、成形物の温度変化に伴う収縮率、或いは
結晶化に伴う寸法収縮を解消する度合いが少なく、寸法
精度を要する成形物を得ることが難しい。一方、配合量
が35重量%越えると、熱可塑性樹脂組成物中のフィラ
ー割合が過剰となり、成形時の流動性が低下して金型内
への射出充填に大きな圧力が必要となるだけでなく充填
速度も低下する為好ましくない。従って、無機フィラー
の配合は、5重量%以上35重量%以下で、15重量%
以上25重量%以下が好ましい。
The blending amount of the inorganic filler is 5% by weight or more and 35
% By weight or less. If it is less than 5% by weight, the blending ratio of the thermoplastic resin increases, and the specific volume change from the molten state to the solidified state in the mold, the shrinkage rate due to the temperature change of the molded product, or the dimensional shrinkage due to crystallization. It is difficult to obtain a molded product that requires a dimensional accuracy with a small degree of elimination. On the other hand, if the blending amount exceeds 35% by weight, the proportion of the filler in the thermoplastic resin composition becomes excessive, the fluidity at the time of molding is lowered, and not only a large pressure is required for injection filling into the mold, but also It is not preferable because the filling speed also decreases. Therefore, the content of the inorganic filler is 5% by weight or more and 35% by weight or less, and 15% by weight or less.
It is preferably not less than 25% by weight.

【0016】本発明の最も特徴とするところは、従来の
射出成形とは異なり金型内での充填圧力を、熱可塑性樹
脂組成物に配合された発泡剤の発泡圧力を用いて得ると
いうことである。そのために、本発明においては樹脂組
成物に少量の発泡剤を配合する。
The most characteristic feature of the present invention is that, unlike the conventional injection molding, the filling pressure in the mold is obtained by using the foaming pressure of the foaming agent compounded in the thermoplastic resin composition. is there. Therefore, in the present invention, a small amount of a foaming agent is added to the resin composition.

【0017】本発明者らは、各種形状の金型の数カ所に
型内圧力センサーを設け、発泡剤を配合した樹脂の金型
内充填直後の圧力を測定した。その結果、成形物の重心
に相当する金型部分の充填直後の圧力が金型への樹脂の
密着度合いと密接に関連することを見出した。すなわ
ち、当該部分の金型内充填直後の圧力が0.5Kg/c
2未満となるような発泡剤量では、金型への熱可塑性
樹脂組成物の密着強度が弱く、成形物の寸法収縮率も大
きくなり寸法精度が低下すると共に、金型末端への樹脂
充填が不足する所謂ショートショットとなり易い。一
方、20.0Kg/cm2以上の充填直後の圧力となる
ような発泡剤量では、熱可塑性樹脂組成物に配合された
発泡剤量が過剰である為、成形時金型内での冷却に長時
間を要し、通常の冷却時間で金型から取り出したとき
は、成形物内部のガス圧力で成形物が変形する所謂後発
泡が生じ、寸法精度が得られなくなる。従って、発泡剤
の量を定める一つの方法は射出成形時に成形物の重心に
相当する部分における金型内充填直後の圧力がゲージ圧
力で0.5〜20kg/cm2となる様発泡剤を配合すること
であり、これにより成形物の金型への密着力が大幅に向
上し、冷却時間が著しく短縮される。好ましくは金型内
充填直後の圧力がゲージ圧力で2.0Kg/cm2以上
6.0Kg/cm2以下となる様配合することである。
The inventors of the present invention provided in-mold pressure sensors at several places of molds of various shapes and measured the pressure immediately after the resin containing the foaming agent was filled in the mold. As a result, they have found that the pressure immediately after filling of the mold part corresponding to the center of gravity of the molded product is closely related to the degree of adhesion of the resin to the mold. That is, the pressure of the portion immediately after being filled in the mold is 0.5 Kg / c.
When the amount of the foaming agent is less than m 2 , the adhesion strength of the thermoplastic resin composition to the mold is weak, the dimensional shrinkage of the molded product is large, and the dimensional accuracy is lowered, and the resin is filled into the end of the mold. It is easy to become a so-called short shot. On the other hand, when the amount of the foaming agent is such that the pressure immediately after filling is 20.0 Kg / cm 2 or more, the amount of the foaming agent blended in the thermoplastic resin composition is excessive, so that the cooling in the mold during molding is not possible. It takes a long time, and when it is taken out from the mold in a normal cooling time, so-called post-foaming occurs in which the molded product is deformed by the gas pressure inside the molded product, and the dimensional accuracy cannot be obtained. Therefore, one method of determining the amount of the foaming agent is to mix the foaming agent so that the pressure immediately after filling the mold at the portion corresponding to the center of gravity of the molded product during injection molding is 0.5 to 20 kg / cm 2 in gauge pressure. This significantly improves the adhesion of the molded product to the mold and significantly reduces the cooling time. Preferably, the composition is such that the pressure immediately after filling in the mold is 2.0 Kg / cm 2 or more and 6.0 Kg / cm 2 or less in gauge pressure.

【0018】発泡剤の量はまた次のようにして定めても
よい。すなわち、成形物の容積Vに対し発泡により生じ
たガス体の容積VGが金型内で以下の関係式を満足する
ように発泡剤を配合する。 VG=5.0×10-4×V〜5.0×10-2×V 具体的には、熱可塑性樹脂組成物の射出成形時、金型形
状とほぼ同等の成形物容積Vに対し、発泡剤の発泡によ
って生じたガス体の容積VGが金型内で0.05容量%
以上5.0容量%以下となるように定める。このガス体
容積は、各種熱可塑性樹脂に応じた可塑化温度域で所定
の金型内充填圧力下で維持さる。即ち、可塑化成形温度
域で金型内に充填される熱可塑性樹脂組成物は、発泡剤
の分解によって生ずる微細な空隙をその中に含み、それ
によるガス体の膨張力が可塑化された熱可塑性樹脂組成
物を金型に内側から密着させることで、冷却固化を促進
する。ガス体容積は、最終的には冷却された成形物中の
空隙容積に等しい。
The amount of foaming agent may also be determined as follows. That is, the foaming agent is blended so that the volume V G of the gas body generated by foaming with respect to the volume V of the molded product satisfies the following relational expression in the mold. V G = 5.0 × 10 −4 × V to 5.0 × 10 −2 × V Specifically, at the time of injection molding of the thermoplastic resin composition, for a molded product volume V that is almost the same as the mold shape, , The volume V G of the gas body generated by the foaming of the foaming agent is 0.05% by volume in the mold.
It is determined to be 5.0% by volume or less. This gas body volume is maintained under a predetermined filling pressure in the mold in a plasticizing temperature range corresponding to various thermoplastic resins. That is, the thermoplastic resin composition filled in the mold in the plasticization molding temperature range contains therein minute voids generated by the decomposition of the foaming agent, and the expansive force of the gas body caused by this is the plasticized heat. By adhering the plastic resin composition to the mold from the inside, cooling and solidification are promoted. The gas body volume is finally equal to the void volume in the cooled molding.

【0019】ここで射出成形時、金型形状に見合う成形
物の容積Vに対し、ガス体の容積VGが0.05容量%
未満となるような発泡剤の量では、可塑化された熱可塑
性樹脂組成物を金型に密着させる力が弱く、冷却固化に
よって成形物を構成する熱可塑性樹脂組成物の収縮に抗
することが出来ず、金型面と成形物間に空隙が出来、断
熱層が形成されることから冷却効率が低下し好ましくな
い。一方、可塑化成形時、成形物の容積Vに対しガス体
の容積VGが5.0容量%越えるような発泡剤の量で
は、金型内で可塑化状態の熱可塑性樹脂組成物中に於け
るガス体の圧力が大きくなり、冷却固化後、成形物内側
からの所謂後発泡による変形が生じ易い。この為、成形
時の冷却に長時間が必要となり好ましくない。従って、
可塑化成形時、成形物の容積Vに対し分解反応によるガ
ス体の容積VGは、0.05容量%以上5.0容量%以
下となるように発泡剤を配合する。好ましくは、0.5
容量%以上1.5容量%以下となる様配合する。
At the time of injection molding, the volume V G of the gas body is 0.05% by volume with respect to the volume V of the molded product corresponding to the shape of the mold.
When the amount of the foaming agent is less than the above, the force for adhering the plasticized thermoplastic resin composition to the mold is weak, and it is possible to resist shrinkage of the thermoplastic resin composition constituting the molded product by cooling and solidification. However, it is not possible to form a gap between the mold surface and the molded product, and a heat insulating layer is formed. On the other hand, at the time of plasticizing molding, if the amount of the foaming agent is such that the volume V G of the gas body exceeds 5.0% by volume with respect to the volume V of the molded product, the thermoplastic resin composition in the plasticized state in the mold is The pressure of the gas body becomes large, and after solidification by cooling, deformation due to so-called post-foaming from the inside of the molded product is likely to occur. Therefore, a long time is required for cooling during molding, which is not preferable. Therefore,
At the time of plasticizing, the foaming agent is mixed so that the volume V G of the gas body due to the decomposition reaction with respect to the volume V of the molded product is 0.05 volume% or more and 5.0 volume% or less. Preferably 0.5
It is blended so as to be from volume% to 1.5 volume%.

【0020】射出成形温度は樹脂の特性や、成形機等に
あわせて適宜設定すればよい。一般的には樹脂の可塑化
温度を目安として設定できる。可塑化温度は、具体的に
汎用樹脂のポリエチレン樹脂では、約160〜260
℃、ポリプロピレン樹脂では約180〜280℃、ポリ
スチレン樹脂では約190〜280℃、ABS樹脂、A
S樹脂では約190〜280℃等であり、エンジニアリ
ング樹脂のポリアミド樹脂では約250〜300℃、ポ
リカーボネート樹脂では約260〜300℃等である。
射出成形はかかる温度範囲で行うのが一般的であるが、
この範囲以外でも可能である。これら樹脂同志を組み合
わせたポリマーアロイでは、その組み合わせ樹脂の中間
領域の温度、又これら熱可塑性樹脂にガラス繊維を加え
た組成物では、上記可塑化温度より更に5〜10℃高め
の温度とするのが一般的である。
The injection molding temperature may be appropriately set according to the characteristics of the resin and the molding machine. Generally, the plasticizing temperature of the resin can be set as a guide. Specifically, the plasticizing temperature is about 160 to 260 for polyethylene resin which is a general-purpose resin.
℃, polypropylene resin about 180 ~ 280 ℃, polystyrene resin about 190 ~ 280 ℃, ABS resin, A
The S resin has a temperature of about 190 to 280 ° C., the engineering resin polyamide resin has a temperature of about 250 to 300 ° C., and the polycarbonate resin has a temperature of about 260 to 300 ° C.
Injection molding is generally performed in such a temperature range,
It is possible to set it outside this range. In the case of a polymer alloy in which these resins are combined, the temperature in the intermediate region of the combination resin is set, and in the composition in which glass fiber is added to these thermoplastic resins, the temperature is higher by 5 to 10 ° C. than the above plasticization temperature. Is common.

【0021】このようにして発泡剤の量は定められる
が、具体的には予め発泡剤の量を変えた樹脂組成物を何
種類か用いて試験的に射出成形を行い、上記の金型充填
直後の圧力条件またはガス体の容積条件を充たす量を定
めればよい。好ましくは上記の金型充填直後の圧力条件
とガス体の容積条件の両方を満足するように定めるのが
よい。具体的な量は樹脂の種類、発泡剤の種類、射出成
形条件、金型種類等により異なるが、一般的には0.2
〜0.8重量%であり、好ましくは0.4〜0.6重量
%でである本発明に用いられる発泡剤としては、特に制
限は無く、上記条件を満たすことができる様な化学発泡
剤であれば問題なく使用可能で有る。例えば、アゾジカ
ルボンアミド、アゾビスイソブチロニトリル、ジニトロ
ソペンタメチレンテトラミン等の発熱分解型発泡剤、或
いはクエン酸二水素ナトリウム等のポリカルボン酸塩
類、重炭酸ナトリウム、ホウ化水素ナトリウム等の吸熱
分解型発泡剤が挙げられるが、上記発泡剤に限るもので
はない。従って、発泡剤の分解によって熱可塑性樹脂組
成物中に発生するガス体は、N2、CO2、H2O、N
3、H2等、射出成形時に気体状態となるものであれば
特に制限なく使用できる。
Although the amount of the foaming agent is determined in this manner, specifically, injection molding is carried out on a trial basis by using several kinds of resin compositions in which the amount of the foaming agent is changed in advance, and the above mold filling is performed. The amount that satisfies the pressure condition immediately after or the volume condition of the gas body may be determined. It is preferable that the pressure is set so as to satisfy both the pressure condition immediately after the die filling and the volume condition of the gas body. The specific amount depends on the type of resin, type of foaming agent, injection molding conditions, type of mold, etc., but is generally 0.2.
The amount of the foaming agent used in the present invention is from 0.8 to 0.8% by weight, preferably from 0.4 to 0.6% by weight, and there is no particular limitation. If so, it can be used without problems. For example, an exothermic decomposition type foaming agent such as azodicarbonamide, azobisisobutyronitrile, dinitrosopentamethylenetetramine, or polycarboxylic acid salts such as sodium dihydrogen citrate, endothermic heat of sodium bicarbonate, sodium borohydride, etc. Examples include decomposable foaming agents, but the foaming agents are not limited to the above. Therefore, the gas bodies generated in the thermoplastic resin composition by the decomposition of the foaming agent are N 2 , CO 2 , H 2 O and N.
Any material such as H 3 and H 2 that is in a gas state during injection molding can be used without particular limitation.

【0022】又、本発明に用いられる化学発泡剤は、核
剤、発泡助剤、吸湿防止剤、他の添加剤を加え、発泡状
態の改良を図った様なものも用いることが出来る。この
中で特に本発明で推薦される発泡剤としては、本発明に
用いる熱可塑性樹脂の可塑化下限温度より10〜20℃
高い温度で分解反応を生じ、吸熱分解反応を呈するもの
が好ましい。熱可塑性樹脂の可塑化温度以下で分解反応
が生ずるものは、射出成形時既に分解反応によるガス体
が離散しており、ガス圧による金型への熱可塑性樹脂組
成物の密着効果はなく冷却効率の向上は望めず、分解温
度が著しく高いものは、成形時未だ分解反応が起こらな
いことからガス体の発生はなく、効果が得られない。
又、分解時発熱反応を伴うものは、発生するガス体が成
形物表面へ逃げ易く外観不良が生じ易いことから、分解
時吸熱反応を伴うものが推薦される。
As the chemical foaming agent used in the present invention, a chemical foaming agent which improves the foaming state by adding a nucleating agent, a foaming auxiliary agent, a moisture absorption inhibitor, and other additives can be used. Among them, the foaming agent particularly recommended in the present invention is 10 to 20 ° C. from the lower limit plasticization temperature of the thermoplastic resin used in the present invention.
Those that undergo a decomposition reaction at a high temperature and exhibit an endothermic decomposition reaction are preferable. In the case where the decomposition reaction occurs below the plasticizing temperature of the thermoplastic resin, the gas body due to the decomposition reaction has already been dispersed during injection molding, and there is no adhesion effect of the thermoplastic resin composition to the mold due to gas pressure and cooling efficiency However, if the decomposition temperature is remarkably high, the decomposition reaction does not occur during molding, so that no gas is generated and the effect cannot be obtained.
Further, those which are accompanied by an exothermic reaction at the time of decomposition are recommended because those which are accompanied by an endothermic reaction at the time of decomposition are apt to cause the generated gas body to escape to the surface of the molded product and cause a defective appearance.

【0023】本発明の熱可塑性樹脂組成物の製造方法と
しては、上記各組成物を直接、タンブラー、ヘンシェル
ミキサー等を用いて配合し、発泡剤の分解温度以下で一
軸又は二軸混練押出機、ニーダー・ルーダー等を用いて
ペレット化し製造することが出来る。この際、顔料、染
料等の着色剤、可塑剤、分散剤、離型剤、帯電防止剤、
難燃剤等の各種添加剤も配合することが可能である。
As the method for producing the thermoplastic resin composition of the present invention, the above compositions are directly blended using a tumbler, a Henschel mixer, etc., and a uniaxial or biaxial kneading extruder is used at a temperature not higher than the decomposition temperature of the foaming agent. It can be pelletized and manufactured using a kneader, ruder, or the like. At this time, pigments, colorants such as dyes, plasticizers, dispersants, release agents, antistatic agents,
Various additives such as flame retardants can also be added.

【0024】又、本発明の熱可塑性樹脂組成物の製造方
法は、上記に限らず、無機フィラー、発泡剤のみを混練
押出機の吐出段階で配合する、所謂サイドフィード押し
出し方法でペレット化したり、更にはこれらを別途マス
ターバッチペレットとし、熱可塑性樹脂にそれらの組成
物を直接配合したペレットブレンドの状態でも製造する
ことが出来る。
Further, the method for producing the thermoplastic resin composition of the present invention is not limited to the above, and it is pelletized by a so-called side-feed extrusion method in which only an inorganic filler and a foaming agent are blended at the discharge stage of a kneading extruder, Further, these can be separately manufactured as masterbatch pellets and can be manufactured in a pellet blend state in which the composition is directly blended with a thermoplastic resin.

【0025】このようにして得られた本発明の樹脂組成
物の好ましい成形法は、樹脂組成物を金型内に射出し、
金型内に樹脂が完全に充填する前に射出を中止して、そ
の後は発泡剤の発泡により金型内に充填するようにする
ことである。従来の射出成形においては前述の如く、金
型へ射出充填した後、金型内に充填された熱可塑性樹脂
組成物が未だ固化しないうちに金型末端まで充分押し込
む保圧工程が必須であった。これは、冷却工程中に樹脂
の収縮等によるヒケ防止や冷却効率の低下防止のためで
ある。しかしながら、保圧を十分にするためには型締め
圧力の大きい射出成形機を必要としコスト的に不利とな
るばかりでなく、成形物の離型性が悪化し、成形サイク
ルの短縮化にとって好ましくない。本発明においては樹
脂中に少量配合された発泡剤の発泡により、樹脂の射出
完了後に体積膨張があるため、このような保圧工程は不
要である。むしろ、金型内末端まで完全に樹脂が充填さ
れない状態、すなわちややショート・ショットの状態で
射出を中止して、その後は発泡による体積膨張によって
金型に樹脂を完全充填させる一方、射出ノズルを閉塞さ
せて樹脂の逆流を防ぐようにする成型方法が好ましい。
冷却過程では成形物は発泡による体積膨張により金型に
密着しているため、冷却効率が極めて高い。
A preferred method of molding the resin composition of the present invention thus obtained is to inject the resin composition into a mold,
The injection is stopped before the resin is completely filled in the mold, and thereafter the resin is filled by the foaming of the foaming agent. In the conventional injection molding, as described above, after the injection and filling into the mold, the pressure-holding step in which the thermoplastic resin composition filled in the mold is sufficiently pressed to the end of the mold before it is solidified is essential. . This is to prevent sink marks due to shrinkage of the resin during the cooling process and to prevent the cooling efficiency from decreasing. However, in order to maintain sufficient holding pressure, an injection molding machine with a large mold clamping pressure is required, which is not only a cost disadvantage, but also deteriorates the releasability of the molded product, which is not preferable for shortening the molding cycle. . In the present invention, such a pressure-holding step is unnecessary because the expansion of the foaming agent mixed in a small amount into the resin causes volume expansion after the completion of injection of the resin. Rather, the resin is not completely filled up to the inner end of the mold, that is, injection is stopped in the state of a short shot, and then the resin is completely filled in the mold by volume expansion due to foaming, while the injection nozzle is blocked. A molding method in which the resin is prevented from flowing back is preferable.
In the cooling process, the molded product is in close contact with the mold due to the volume expansion due to foaming, so the cooling efficiency is extremely high.

【0026】以上の如く本発明の熱可塑性樹脂組成物
は、射出成形方法で成形物を製造する場合、従来の材料
に比べ冷却固化による金型からの取り出しまでの時間を
著しく短縮させることが出来、生産性を大幅に向上させ
ることが出来る。
As described above, when the thermoplastic resin composition of the present invention is used to produce a molded product by an injection molding method, it is possible to remarkably shorten the time required for taking out from the mold by cooling and solidifying as compared with the conventional materials. , Productivity can be greatly improved.

【0027】[0027]

【実施例】以下に本発明を実施例で説明する。 実施例1 熱可塑性樹脂として、AS樹脂(ライタック A−20
0:三井東圧化学(株)製)87.5重量%、77.5
重量%、67.5重量%の各々に、無機フィラーとして
ガラス繊維(ECS03 T−340/P:日本電気硝
子(株)製)を各々10.0重量%、20.0重量%、
30.0重量%を配合し、二軸混練押出機(AS−3
0:ナカタニ機械(株)製)を用いて押出し、ガラス繊
維含有のAS樹脂組成物のペレットを製造した。
EXAMPLES The present invention will be described below with reference to examples. Example 1 AS resin (Lightac A-20
0: manufactured by Mitsui Toatsu Chemicals, Inc. 87.5% by weight, 77.5
%, 67.5% by weight, and glass fiber (ECS03 T-340 / P: manufactured by Nippon Electric Glass Co., Ltd.) as an inorganic filler in 10.0% by weight and 20.0% by weight, respectively.
30.0 wt% was compounded and the twin-screw kneading extruder (AS-3
0: Extruded using Nakatani Machine Co., Ltd. to produce glass fiber-containing AS resin composition pellets.

【0028】上記ガラス繊維入りAS樹脂組成物の各々
について、炭酸塩系の発泡剤M.B.(EB−207:
永和化成(株)製 20重量%マスターバッチ)を各々
2.5重量%ずつペレットブレンドで配合した。この様
にして配合した熱可塑性樹脂組成物を、実施例1−1、
1−2、1−3とする。
For each of the above glass fiber-containing AS resin compositions, a carbonate type foaming agent M. B. (EB-207:
20 wt% master batch manufactured by Eiwa Kasei Co., Ltd. was blended in a pellet blend of 2.5 wt% each. The thermoplastic resin composition thus blended was used in Example 1-1,
1-2 and 1-3.

【0029】次に、これら本発明の熱可塑性樹脂組成物
を評価する為に、各々の組成物を150tの型締力を有
する射出成形機(J−100EP:(株)日本製鋼所
製)を用い、長手方向の一方の端にフィルムゲートを有
する長さ150mm×幅50mm×肉厚2.5mmの平
板を成形した。この際、成形機の樹脂温度は220℃、
金型循環水温度は20℃に設定し、上記平型金型の中央
部分にプラスチック成形加工用水晶圧力変換器(615
7A:日本キスラー(株)製)を設置し、成形時の充填
直後の圧力を測定した。
Next, in order to evaluate these thermoplastic resin compositions of the present invention, an injection molding machine (J-100EP: manufactured by Japan Steel Works, Ltd.) having a mold clamping force of 150 t was used to evaluate each composition. Using, a flat plate having a length of 150 mm, a width of 50 mm, and a wall thickness of 2.5 mm having a film gate at one end in the longitudinal direction was formed. At this time, the resin temperature of the molding machine is 220 ° C,
The mold circulating water temperature is set to 20 ° C., and a crystal pressure transducer for plastic molding (615) is attached to the center of the flat mold.
7A: Nippon Kistler Co., Ltd. was installed and the pressure immediately after filling during molding was measured.

【0030】この様にして成形した平板を、冷却時間を
変えながら取り出し、幅100mm間隔の支点上に成形
物の中央部分が支点間の中央に一致し、平面部が上とな
る様に乗せ、24時間放置した。その後、成形物の中央
部分の肉厚が規定範囲として2.5mm±0.1mm以
内に入っていることを確認後、成形物平面上部の長手方
向の両端を結ぶ直線と、支点間で成形物がたわみ最も変
形している平面上の中央部分との間隔を、変形量として
測定した。そして、冷却時間が長くなるに従い変形量は
少なくなり、最終的に変形量が±0.1mm以内で収束
するまでの成形時の冷却時間を求めた。又、この時の成
形物平板の一部を切断し、電子比重計(ED−120
T:ミラージュ貿易(株)製)を用いて比重を測定し、
その値からガス体容積/成形物容積(VG/V)を求め
た。その結果を表−1に示す。
The flat plate thus formed was taken out while changing the cooling time, and the flat part was placed on the fulcrums with a width of 100 mm so that the central portion of the molded product coincided with the center of the fulcrums. It was left for 24 hours. Then, after confirming that the thickness of the central part of the molded product is within the specified range of 2.5 mm ± 0.1 mm, the molded product is formed between the fulcrum and the straight line connecting both longitudinal ends of the flat surface of the molded product. Bending was measured as the amount of deformation, which was the distance from the central portion on the plane where deformation was the most. Then, as the cooling time becomes longer, the deformation amount becomes smaller, and the cooling time at the time of molding until the deformation amount finally converges within ± 0.1 mm was obtained. In addition, a part of the flat plate of the molded product at this time is cut, and an electronic hydrometer (ED-120
T: Measure specific gravity using Mirage Trading Co., Ltd.
It was determined gas body volume / molding volume of (V G / V) from the value. The results are shown in Table-1.

【0031】比較例1 熱可塑性樹脂として、AS樹脂(ライタック A−20
0:三井東圧化学(株)製)90.0重量%、80.0
重量%、70.0重量%の各々に、無機フィラーとして
ガラス繊維(ECS03 T−340/P:日本電気硝
子(株)製)を各々10.0重量%、20.0重量%、
30.0重量%を配合し、二軸混練押出機(AS−3
0:ナカタニ機械(株)製)を用いて押出し、ガラス繊
維含有のAS樹脂組成物のペレットを製造した。この様
にして製造した熱可塑性樹脂組成物を、比較例2−1、
2−2、2−3とする。
Comparative Example 1 AS resin (Lytac A-20 was used as the thermoplastic resin.
0: Mitsui Toatsu Chemical Co., Ltd.) 90.0% by weight, 80.0
Glass fiber (ECS03 T-340 / P: manufactured by Nippon Electric Glass Co., Ltd.) as an inorganic filler is added to each of 10% by weight and 70.0% by weight, respectively, 10.0% by weight, 20.0% by weight,
30.0 wt% was compounded and the twin-screw kneading extruder (AS-3
0: Extruded using Nakatani Machine Co., Ltd. to produce glass fiber-containing AS resin composition pellets. The thermoplastic resin composition produced in this manner was used as Comparative Example 2-1.
2-2 and 2-3.

【0032】ここで製造した熱可塑性樹脂組成物につい
て、実施例1と同様に射出成形機を用いて平板成形物を
作製し、成形時の充填直後に十分保圧をかけてそのとき
の圧力を測定し、離型後のたわみ変形量が規定範囲に入
るまでの成形時の冷却時間、及びその成形物の比重を測
定した。その結果を表−1に示す。
With respect to the thermoplastic resin composition produced here, a flat plate molded article was prepared by using an injection molding machine in the same manner as in Example 1, and a sufficient holding pressure was applied immediately after filling at the time of molding to reduce the pressure at that time. After cooling, the cooling time at the time of molding until the flexural deformation amount after releasing falls within a specified range, and the specific gravity of the molded product were measured. The results are shown in Table-1.

【0033】比較例2 熱可塑性樹脂として、AS樹脂(ライタック A−20
0:三井東圧化学(株)製)97.5重量%、58.5
重量%の各々に、無機フィラーとしてガラス繊維(EC
S03 T−340/P:日本電気硝子(株)製)を各
々無添加および40.0重量%を配合し、二軸混練押出
機(AS−30:ナカタニ機械(株)製)を用いて押出
し、ガラス繊維なしおよびガラス繊維含有のAS樹脂組
成物のペレットを製造した。上記ガラス繊維なしおよび
ガラス繊維入りAS樹脂組成物の各々について、炭酸塩
系の発泡剤M.B.(EB−207:永和化成(株)
製)を各々2.5重量%ずつペレットブレンドで配合し
た。この様にして配合した熱可塑性樹脂組成物を、比較
例2−4、2−5とする。
Comparative Example 2 As a thermoplastic resin, AS resin (Lytac A-20
0: manufactured by Mitsui Toatsu Chemicals, Inc. 97.5% by weight, 58.5
Glass fiber (EC
S03 T-340 / P: manufactured by Nippon Electric Glass Co., Ltd., each containing no addition and 40.0% by weight, was extruded using a twin-screw kneading extruder (AS-30: manufactured by Nakatani Machinery Co., Ltd.). Pellets of AS resin composition without glass fiber and containing glass fiber were produced. For each of the above glass fiber-free and glass fiber-containing AS resin compositions, a carbonate-based foaming agent M. B. (EB-207: Eiwa Kasei Co., Ltd.
2.5 wt% each was blended in a pellet blend. The thermoplastic resin compositions thus blended are referred to as Comparative Examples 2-4 and 2-5.

【0034】又、熱可塑性樹脂として、AS樹脂(ライ
タック A−200:三井東圧化学(株)製)79.0
重量%、73.0重量%、の各々に、無機フィラーとし
てガラス繊維(ECS03 T−340/P:日本電気
硝子(株)製)を各々20.0重量%を配合し、実施例
1と同様に二軸混練押出機(AS−30:ナカタニ機械
(株)製)を用いて押出し、ガラス繊維含有のAS樹脂
組成物のペレットを製造した。このガラス繊維入りAS
樹脂組成物の各々に付いて、炭酸塩系の発泡剤M.B.
(EB−207:永和化成(株)製)を0.5重量%、
アゾ系発泡剤M.B.(EB−106:永和化成(株)
製))7.0重量%をペレットブレンドで配合した。こ
の様にして配合した熱可塑性樹脂組成物を、比較例2−
6、2−7とする。
Further, as the thermoplastic resin, AS resin (Lytac A-200: manufactured by Mitsui Toatsu Chemicals, Inc.) 79.0
20.0% by weight of glass fiber (ECS03 T-340 / P: manufactured by Nippon Electric Glass Co., Ltd.) as an inorganic filler was added to each of 7% by weight and 73.0% by weight, and the same as in Example 1. Was extruded using a twin-screw kneading extruder (AS-30: manufactured by Nakatani Kikai Co., Ltd.) to produce pellets of the glass fiber-containing AS resin composition. AS with this glass fiber
A carbonate-based foaming agent M. B.
(EB-207: manufactured by Eiwa Kasei Co., Ltd.) 0.5% by weight,
Azo-based foaming agent M. B. (EB-106: Eiwa Kasei Co., Ltd.
7.0% by weight was blended in a pellet blend. The thermoplastic resin composition thus blended was used in Comparative Example 2-
6 and 2-7.

【0035】ここで製造した熱可塑性樹脂組成物につい
て、実施例−1と同様に射出成形機を用いて平板成形物
を作製し、成形時の充填直後の圧力の測定、離型後のた
わみ変形量が規定範囲に入るまでの成形時の冷却時間、
及びその成形物の比重を測定した。その結果を表−1に
示す。
With respect to the thermoplastic resin composition produced here, a flat plate molded product was prepared by using an injection molding machine in the same manner as in Example 1, and the pressure immediately after filling at the time of molding was measured, and the flexural deformation after release was performed. Cooling time during molding until the amount falls within the specified range,
And the specific gravity of the molded product was measured. The results are shown in Table-1.

【0036】実施例2 熱可塑性樹脂として、ポリプロピレン樹脂(三井ノーブ
レン BJHH:三井東圧化学(株)製)87.5重量
%、77.5重量%、67.5重量%、77.5重量
%、82.5重量%の各々に、無機フィラーとしてガラ
ス繊維(ECS03 T−488/P:日本電気硝子
(株)製)を各々10.0重量%、20.0重量%、3
0.0重量%、タルク(脇田工業(株)製)を20.0
重量%、及び硫酸マグネシウムウィスカー(モスハイ
ジ:宇部興産(株)製)15.0重量%を配合し、二軸
混練押出機(AS−30:ナカタニ機械(株)製)を用
いて押出し、無機フィラー含有のポリプロピレン樹脂組
成物のペレットを製造した。
Example 2 As a thermoplastic resin, polypropylene resin (Mitsui Noblen BJHH: manufactured by Mitsui Toatsu Chemicals, Inc.) 87.5% by weight, 77.5% by weight, 67.5% by weight, 77.5% by weight , 82.5% by weight, and glass fiber (ECS03 T-488 / P: manufactured by Nippon Electric Glass Co., Ltd.) as an inorganic filler in 10.0% by weight, 20.0% by weight and 3%, respectively.
0.0% by weight, talc (Wakida Industry Co., Ltd.) 20.0
%, And magnesium sulfate whiskers (Mosheiji: manufactured by Ube Industries, Ltd.) of 15.0% by weight, extruded using a twin-screw kneading extruder (AS-30: manufactured by Nakatani Machinery Co., Ltd.), and an inorganic filler Pellets of the contained polypropylene resin composition were produced.

【0037】上記無機フィラー入りポリプロピレン樹脂
組成物の各々に付いて、ポリカルボン酸塩系の発泡剤
M.B.(Activex 536:J.M.Hube
r社(株)製 25重量%マスターバッチ)を各々2.
5重量%ずつペレットブレンドで配合した。この様にし
て配合した熱可塑性樹脂組成物を、実施例3−1、3−
2、3−3、3−4、3−5とする。次に、これら本発
明の熱可塑性樹脂組成物を評価する為に、各々の組成物
を実施例1と同様の成形機により同様の条件で同様の平
板を成形した。成形した平板は実施例1と同様にして評
価した。その結果を表−2に示す。
For each of the polypropylene resin compositions containing an inorganic filler, a polycarboxylic acid salt type foaming agent M. B. (Activex 536: JM Hube
25% by weight masterbatch manufactured by Company r).
5 wt% each was blended in a pellet blend. The thermoplastic resin composition thus blended was used in Examples 3-1 and 3-
2, 3-3, 3-4, 3-5. Next, in order to evaluate these thermoplastic resin compositions of the present invention, a similar flat plate was formed from each composition by the same molding machine as in Example 1 under the same conditions. The molded flat plate was evaluated in the same manner as in Example 1. The results are shown in Table-2.

【0038】比較例3 熱可塑性樹脂として、ポリプロピレン樹脂(三井ノーブ
レン BJHH:三井東圧化学(株)製)90.0重量
%、80.0重量%、70.0重量%、80.0重量
%、85.0重量%の各々に、無機フィラーとしてガラ
ス繊維(ECS03 T−488/P:日本電気硝
(株)製)を各々10.0重量%、20.0重量%、3
0.0重量%、タルク(脇田工業(株)製)を20.0
重量%、及び硫酸マグネシウムウィスカー(モスハイ
ジ:宇部興産(株)製)15.0重量%を配合し、二軸
混練押出機(AS−30:ナカタニ機械(株)製)を用
いて押出し、無機フィラー含有のポリプロピレン樹脂組
成物のペレットを製造した。この様にして配合した熱可
塑性樹脂組成物を、比較例4−1、4−2、4−3、4
−4、4−5とする。ここで製造した熱可塑性樹脂組成
物について、実施例2と同様に射出成形機を用いて平板
成形物を成形し、成形時の充填直後に充分保圧をかけそ
のときの圧力を測定し、離型後のたわみ変形量が規定範
囲に入るまでの成形時の冷却時間、及びその成形物の比
重を測定した。その結果を表−2に示す。
Comparative Example 3 As a thermoplastic resin, polypropylene resin (Mitsui Noblen BJHH: manufactured by Mitsui Toatsu Chemicals, Inc.) 90.0% by weight, 80.0% by weight, 70.0% by weight, 80.0% by weight , 85.0% by weight, glass fiber (ECS03 T-488 / P: manufactured by Nippon Denki Sangyo Co., Ltd.) as an inorganic filler in 10.0% by weight, 20.0% by weight, and 30.0% by weight, respectively.
0.0% by weight, talc (Wakida Industry Co., Ltd.) 20.0
%, And magnesium sulfate whiskers (Mosheiji: manufactured by Ube Industries, Ltd.) of 15.0% by weight, extruded using a twin-screw kneading extruder (AS-30: manufactured by Nakatani Machinery Co., Ltd.), and an inorganic filler Pellets of the contained polypropylene resin composition were produced. The thermoplastic resin composition thus blended was used as Comparative Examples 4-1, 4-2, 4-3, and 4.
-4 and 4-5. With respect to the thermoplastic resin composition produced here, a flat plate molded product was molded using an injection molding machine in the same manner as in Example 2, and sufficient pressure was applied immediately after filling during molding, and the pressure at that time was measured. The cooling time at the time of molding until the amount of flexural deformation after molding falls within a specified range, and the specific gravity of the molded product were measured. The results are shown in Table-2.

【0039】比較例4 熱可塑性樹脂として、ポリプロピレン樹脂(三井ノーブ
レン BJHH:三井東圧化学(株)製)97.5重量
%、58.5重量%の各々に、無機フィラーとしてガラ
ス繊維(ECS03 T−488/P:日本電気硝子
(株)製)を各々無添加および40.0重量%を配合
し、二軸混練押出機(AS−30:ナカタニ機械(株)
製)を用いて押出し、ガラス繊維なしおよびガラス繊維
含有のポリプロピレン樹脂組成物のペレットを製作し
た。上記ガラス繊維入りポリプロピレン樹脂組成物の各
々に付いて、ポリカルボン酸塩系の発泡剤M.B.(A
ctivex536:J.M.Huber社(株)製)
を各々2.5重量%ずつペレットブレンドで配合した。
この様にして配合した熱可塑性樹脂組成物を、比較例4
−6、4−7とする。
Comparative Example 4 Polypropylene resin (Mitsui Noblen BJHH: manufactured by Mitsui Toatsu Chemical Co., Ltd.) 97.5% by weight and 58.5% by weight as a thermoplastic resin, and glass fiber (ECS03 T as an inorganic filler) were used. -488 / P: manufactured by Nippon Electric Glass Co., Ltd., each containing no additive and 40.0% by weight, and a twin-screw kneading extruder (AS-30: Nakatani Machinery Co., Ltd.).
Extrusion was performed to produce pellets of polypropylene resin composition containing no glass fiber and containing glass fiber. For each of the glass fiber-containing polypropylene resin compositions, a polycarboxylic acid salt-based foaming agent M. B. (A
ctivex536: J. M. Huber Co., Ltd.)
Were blended in pellet blends at 2.5 wt% each.
The thermoplastic resin composition thus blended was used in Comparative Example 4
-6 and 4-7.

【0040】又、熱可塑性樹脂として、ポリプロピレン
樹脂(三井ノーブレン BJHH:三井東圧化学(株)
製)79.0重量%、73.0重量%の各々に、無機フ
ィラーとしてガラス繊維(ECS03 T−488/
P:日本電気硝子(株)製)を各々20.0重量%、2
0.0重量%を配合し、実施例1と同様に二軸混練押出
機(AS−30:ナカタニ機械(株)製)を用いて押出
し、ガラス繊維含有のポリプロピレン樹脂組成物のペレ
ットを製造した。このガラス繊維入りポリプロピレン樹
脂組成物の各々について、炭酸塩系の発泡剤M.B.
(EE−207:永和化成(株)製)を0.4重量%、
アゾ系発泡剤M.B.(EE−106:永和化成(株)
製))7.0重量%をペレットブレンドで配合した。こ
の様にして配合した熱可塑性樹脂組成物を、比較例4−
8、4−9とする。ここで製造した熱可塑性樹脂組成物
について、実施例2と同様に射出成形機を用いて平板成
形物を作製し、成形時の充填直後の圧力の測定、離型後
のたわみ変形量が規定範囲に入るまでの成形時の冷却時
間、及びその成形物の比重を測定した。その結果を表−
2に示す。
As the thermoplastic resin, polypropylene resin (Mitsui Noblen BJHH: Mitsui Toatsu Chemicals Co., Ltd.)
Glass fiber (ECS03 T-488 /) as an inorganic filler in each of 79.0% by weight and 73.0% by weight.
P: made by Nippon Electric Glass Co., Ltd. 20.0% by weight, 2
0.0 wt% was compounded and extruded using a twin-screw kneading extruder (AS-30: manufactured by Nakatani Machinery Co., Ltd.) in the same manner as in Example 1 to produce pellets of a glass fiber-containing polypropylene resin composition. . For each of the polypropylene resin compositions containing glass fiber, a carbonate type foaming agent M. B.
(EE-207: manufactured by Eiwa Kasei Co., Ltd.) 0.4% by weight,
Azo-based foaming agent M. B. (EE-106: Eiwa Kasei Co., Ltd.
7.0% by weight was blended in a pellet blend. The thermoplastic resin composition thus blended was used in Comparative Example 4-
8 and 4-9. With respect to the thermoplastic resin composition produced here, a flat plate molded article was prepared using an injection molding machine in the same manner as in Example 2, and the pressure immediately after filling during molding was measured, and the amount of flexural deformation after release was within a specified range. The cooling time at the time of molding and the specific gravity of the molded product were measured. Table of the results
It is shown in FIG.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【発明の効果】本発明の熱可塑性樹脂組成物は、特に寸
法精度が要求される各種成形物を射出成型によって製造
する場合、固化冷却時間を大幅に短縮することが出来、
生産性を著しく向上させ、製造費用を大幅に低減させる
ことが出来ることが、実施例より明らかである。従っ
て、本発明の熱可塑性樹脂組成物は、OA機器シャーシ
類、各種空調機の回転羽根、車両機構部品類、インパネ
構造部品、他に広く用いることが出来る。特に、成形物
の肉厚の厚いもの、剛性、寸法精度を要する無機フィラ
ーの含有量の多いものには有効で、従来の材料に比べ大
幅に成形サイクルの短縮を図ることが出来る。
EFFECTS OF THE INVENTION The thermoplastic resin composition of the present invention can significantly shorten the solidification cooling time when various moldings which require particularly dimensional accuracy are manufactured by injection molding.
It is apparent from the examples that the productivity can be significantly improved and the manufacturing cost can be significantly reduced. Therefore, the thermoplastic resin composition of the present invention can be widely used for OA equipment chassis, rotary blades of various air conditioners, vehicle mechanical parts, instrument panel structural parts, and the like. In particular, it is effective for a molded product having a large wall thickness and a large content of an inorganic filler that requires rigidity and dimensional accuracy, and the molding cycle can be significantly shortened compared to conventional materials.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三隅 正毅 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masatake Misumi 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Mitsui Toatsu Chemical Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂65〜95重量%、無機フ
ィラー5〜35重量%及び発泡剤を含んでなり、該発泡
剤の量は射出成形時に成型物の重心に相当する部分にお
ける金型内充填直後の圧力がゲージ圧力で0.5〜20
kg/cm2となるように配合して成る高速射出成形用樹脂組
成物。
1. A thermoplastic resin comprising 65 to 95% by weight, an inorganic filler 5 to 35% by weight, and a foaming agent, the amount of the foaming agent being within a mold in a portion corresponding to the center of gravity of the molded product during injection molding. The pressure immediately after filling is 0.5 to 20 in gauge pressure.
A resin composition for high-speed injection molding, which is compounded so as to be kg / cm 2 .
【請求項2】 熱可塑性樹脂65〜95重量%、無機フ
ィラー5〜35重量%及び発泡剤を含んでなり、該発泡
剤の量は、成形物の容積Vに対し発泡により生じたガス
体の容積VGが金型内で以下の関係式を満足するように
配合して成る高速射出成形用樹脂組成物。 VG=5.0×10-4×V〜5.0×10-2×V
2. A thermoplastic resin (65-95% by weight), an inorganic filler (5-35% by weight) and a foaming agent are contained, and the amount of the foaming agent depends on the volume V of the molded product of the gas body generated by foaming. A resin composition for high-speed injection molding, which is compounded so that the volume V G satisfies the following relational expression in a mold. V G = 5.0 × 10 −4 × V to 5.0 × 10 −2 × V
【請求項3】 請求項1または2の樹脂組成物を金型内
に射出し、金型内に樹脂が完全に充填する前に射出を中
止して、その後は発泡剤の発泡により金型内に充填する
ようにすることを特徴とする射出成形方法。
3. The resin composition according to claim 1 or 2 is injected into a mold, the injection is stopped before the resin is completely filled in the mold, and thereafter the inside of the mold is formed by foaming of a foaming agent. An injection molding method, characterized in that it is filled in
【請求項4】 請求項3の方法により得られる発泡倍率
が0.05から5%の成形物。
4. A molded product having an expansion ratio of 0.05 to 5% obtained by the method of claim 3.
JP16150095A 1995-06-05 1995-06-05 Thermoplastic resin composition for high-speed molding Pending JPH08333491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16150095A JPH08333491A (en) 1995-06-05 1995-06-05 Thermoplastic resin composition for high-speed molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16150095A JPH08333491A (en) 1995-06-05 1995-06-05 Thermoplastic resin composition for high-speed molding

Publications (1)

Publication Number Publication Date
JPH08333491A true JPH08333491A (en) 1996-12-17

Family

ID=15736256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16150095A Pending JPH08333491A (en) 1995-06-05 1995-06-05 Thermoplastic resin composition for high-speed molding

Country Status (1)

Country Link
JP (1) JPH08333491A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003101702A1 (en) * 2002-05-31 2003-12-11 Behr Gmbh & Co. Method for producing a heat exchanger box
JP2010198987A (en) * 2009-02-26 2010-09-09 Sumitomo Chemical Co Ltd Manufacturing method of power storage device, and power storage device
WO2019112004A1 (en) * 2017-12-06 2019-06-13 宇部興産株式会社 Foam and method for manufacturing foam
CN112724505A (en) * 2020-12-25 2021-04-30 海信(广东)空调有限公司 Composite foaming material for exhaust pipe of mobile air conditioner, exhaust pipe and mobile air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003101702A1 (en) * 2002-05-31 2003-12-11 Behr Gmbh & Co. Method for producing a heat exchanger box
JP2010198987A (en) * 2009-02-26 2010-09-09 Sumitomo Chemical Co Ltd Manufacturing method of power storage device, and power storage device
WO2019112004A1 (en) * 2017-12-06 2019-06-13 宇部興産株式会社 Foam and method for manufacturing foam
JPWO2019112004A1 (en) * 2017-12-06 2020-12-10 宇部興産株式会社 Foam and manufacturing method of foam
CN112724505A (en) * 2020-12-25 2021-04-30 海信(广东)空调有限公司 Composite foaming material for exhaust pipe of mobile air conditioner, exhaust pipe and mobile air conditioner

Similar Documents

Publication Publication Date Title
JP3218397B2 (en) Injection molding of thermoplastic resin
GB2033821A (en) Method for injection moulding a polyolefin containing inorganic filler
JP3374356B2 (en) Method for producing foam molded article and foam molded article
JPH08333491A (en) Thermoplastic resin composition for high-speed molding
JPS5835614B2 (en) Manufacturing method of polystyrene resin sheet foam
JP5280725B2 (en) Method for producing injection foam
JPH05318541A (en) Method for injection molding of plastic
JP2008142997A (en) Method for manufacturing injection-foamed article and molding obtained by the method
JP2010120335A (en) Method of manufacturing moisture-proof light-weighted resin molding
JP2000033627A (en) Manufacture of lightweight resin molding and lightweight resin molding
WO2021161586A1 (en) Molded body, and method for producing molded body
JPH062879B2 (en) Method for producing aromatic polysulfone resin molding material with improved releasability
JP3168290B2 (en) Method for producing starch pellets and method for producing molded starch
JPH0616935A (en) Polyphenylene sulfide resin composition
JPH0352953A (en) Polyamide resin composition
JPH1119961A (en) Manufacture of fiber-reinforced, thermoplastic resin light-weight molding
JPH06100722A (en) Method for expansion molding and molding thereof
JPS6367494B2 (en)
CN115181319B (en) Preparation method of polyphenyl ether foamable particles
JPH073065A (en) Expandable thermoplastic resin composition and production of foamed molded article
JP2003165135A (en) Method for injection molding thermoplastic resin
JP2000256461A5 (en)
JP2001260164A (en) High speed injection molding method
KR20140121048A (en) Thermoplastic elastomer resin composition and method for manufacturing the same
JP2016043661A (en) Foam molding method for thermoplastic resin and foam molded part