JPS6367494B2 - - Google Patents

Info

Publication number
JPS6367494B2
JPS6367494B2 JP56108833A JP10883381A JPS6367494B2 JP S6367494 B2 JPS6367494 B2 JP S6367494B2 JP 56108833 A JP56108833 A JP 56108833A JP 10883381 A JP10883381 A JP 10883381A JP S6367494 B2 JPS6367494 B2 JP S6367494B2
Authority
JP
Japan
Prior art keywords
carbonate
crystalline olefin
olefin resin
molded product
oxyacid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56108833A
Other languages
Japanese (ja)
Other versions
JPS5811533A (en
Inventor
Shoji Aoki
Masami Matsuoka
Takeshi Nagaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP10883381A priority Critical patent/JPS5811533A/en
Publication of JPS5811533A publication Critical patent/JPS5811533A/en
Publication of JPS6367494B2 publication Critical patent/JPS6367494B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔〕 発明の目的 本発明は結晶性オレフイン系樹脂組成物に関す
る。さらにくわしくは、(A)結晶性オレフイン系樹
脂、(B)オキシ酸および(C)無機炭酸塩からなる結晶
性オレフイン系樹脂組成物に関するものであり、
その目的は寸法安定性のすぐれた結晶性オレフイ
ン系樹脂成形物を提供することである。 〔〕 発明の背景 結晶性オレフイン系樹脂、すなわち高密度ポリ
エチレン、中密度ポリエチレン、鎖状低密度ポリ
エチレンおよび高圧法低密度ポリエチレンなど
は、結晶性が高く、機械的性質、化学的性質、熱
的性質、電気的性質および加工性のごとき諸特性
がすぐれているため、多方面にわたつて使用され
ている。しかし、溶融状態から成形物を得る過程
で結晶化をともなつて固化することにより、密度
の変化が非晶性のオレフイン系樹脂に比べて非常
に大きくなる。その結果、特に射出成形において
は金型に対する仕上がり寸法が小さくなつたり、
肉厚成形物についてはひけが生じたり、収縮率の
異方性によるそりが生じたりするという欠点があ
る。 従来、これらの欠点を改良する方法として、特
殊な金型を用いて成形物を得る方法、無機物を高
充填する方法、核剤を添加する方法、特殊な成形
条件で成形する方法、通常の化学発泡剤を添加す
る方法などが行なわれている。 しかしながら、特殊な金型を用いる方法では、
成形物のデザインが制限されたり、無機物を高充
填する方法では、物性の低下および成形性の表面
光沢の低下などがみられたり、核剤を添加する方
法では、改良効果は充分ではなく、特殊な成形条
件で成形する方法では、成形サイクルが長くなつ
てたり、また通常の化学発泡剤を添加する方法で
は、成形物の表面にも発泡が生じたり、さらに成
形物の肌荒れがみられたりするなどの問題を(欠
点)かかえていた。 以上のことから、本発明者らは、これらの欠点
を有さず、特に寸法安定性のすぐれた結晶性オレ
フイン系樹脂の成形物を得ることについて、種々
探索し結果、 (A) 結晶性オレフイン系樹脂、 (B) 強晶性オレフイン系樹脂100重量部に、0.01
〜30重量部のオキシ酸を混合することによつて
得られるオキシ酸含有結晶性オレフイン系樹脂
混合物 および (C) 結晶性オレフイン系樹脂100重量部に0.01〜
30重量部の無機炭酸塩を混合することによつて
得られる無機炭酸塩含有結晶性オレフイン系樹
脂混合物 からなる組成分であり、該組成物中の前記オキシ
酸含有結晶性オレフイン系樹脂混合物および無機
炭酸塩含有結晶性オレフイン系樹脂混合物のう
ち、いずれかの配合割合が0.5〜99重量%である
結晶性オレフイン系樹脂組成物が、前記のごとき
諸問題を有さず、かつ寸法安定性のすぐれた成形
物を製造することができる組成物であることを見
出し、以前に提案した。 〔〕 発明の構成 上記と同様に、本発明者らは、前記の欠点を有
さず、特に寸法安定性のすぐれた結晶性オレフイ
ン系樹脂の成形物を得ることについて、さらに探
索した結果、 (A) 結晶性オレフイン系樹脂 (B) オキシ酸 および (C) 無機炭酸塩 からなる組成物であり、全組成物中に占めるオキ
シ酸と無機炭酸塩との配合割合は合計量として
0.01〜40重量%であり、かつ該オキシ酸に対する
無機炭酸塩の配合割合が当量として1:0.1ない
し1:10であることを特徴とする結晶性オレフイ
ン系樹脂組成物が、 上記と同様に前記のごとき諸問題(欠点)を有
さず、かつ寸法安定性のすぐれた成形物を製造す
ることができる組成物であることを見出し、本発
明に到達した。 〔〕 発明の効果 本発明によつて得られる組成物の成形物は、寸
法安定性がすぐれているばかりでなく、下記のご
とき特徴(効果)を有する。 (1) 表面状態が良好であるため、外観が美麗であ
る。 (2) 組成物の成形性がすぐれているから、種々の
形状の成形物を得ることができる。 (3) 組成物の成形性(加工性)がすぐれているた
め、成形サイクルが短くても成形物を得ること
ができる。 (4) 諸物性の低下がほとんどみられない。 (5) 成形物のヒゲおよびソリがほとんどみられな
い。 (6) 成形物の内部が発泡しているため、軽量であ
る。 以上のことは、本発明の樹脂ペレツト混合物
(組成物)をオレフイン系樹脂について一般に行
なわれている成形温度(120〜350℃)において加
熱成形した場合、得られる成形物の内部のみが均
一に発泡するため、収縮率が小さく、いわゆるそ
り、ひけがなく、しかも成形物の表面状態が良好
であることによることである。 通常使用されている化学発泡剤(たとえば、ア
ゾジカルボンアミド系発泡剤)を用いて発泡体を
製造する場合、得られる発泡体は、収縮率、ひ
け、そりなどについて改良効果はみられるが、発
泡剤が熱分解してガスを発生するさいに多量の分
解熱を発生する。その結果、溶融温度の粘度が低
くなることによつて成形物の表面に分解ガスが抜
け易くなり、そのため表面の肌荒れを生じるが、
本発明の組成物においては、発泡剤であるオキシ
酸と無機炭酸塩とが加熱成形時に溶融樹脂内部で
反応し、ガスが発生し、そのさいの反応熱が小さ
いので溶融樹脂の粘度がさらに低下せず、成形物
の表面へのガスの抜けが少なく、成形物の内部の
みが発泡し、表面スキン層が形成され、表面が美
麗な成形物が得られると推察される。 本発明の組成物は前記のごとき欠点を有さず、
かつ種々の効果を有していることにより多方面に
わたつて使用することができる。代表的な用途を
以下に示す。 (1) 取手、柄などの肉厚の射出成形物 (2) リブが多く通常の結晶性オレフイン系樹脂で
はヒケが問題となる射出成形物 (3) 厚板などの押出成形物 〔〕 発明の具体的説明 (A) 結晶性オレフイン系樹脂 本発明において用いられる結晶性オレフイン
系樹脂の一般的なものとしては、エチレンまた
は炭素数が多くとも12個のα−オレフインを単
独重合または共重合することによつて得られる
ものがあげられる。これらの結晶性オレフイン
系樹脂の代表的なものとしては、高密度ポリエ
チレン、中密度ポリエチレン、鎖状低密度ポリ
エチレン、高圧法低密度ポリエチレン、アイソ
タクチツクポリプロピレン、シンジオタクチツ
クポリプロピレン、プロピレン−エチレンラン
ダム共重合体、プロピレン−エチレンブロツク
共重合体、ポリ(ブテン−1)およびポリ(4
−メチルペンテン−1)があげられる。 該結晶性オレフイン系樹脂のうち、高密度ポ
リエチレンおよび中密度ポリエチレンはいわゆ
るチーグラー触媒またはフイリツプス触媒を用
いてエチレン単独重合またはエチレンと前記α
−オレフインとを共重合(α−オレフインの共
重合割合は一般には多くとも15重量%)するこ
とによつて得られるものである。これらのポリ
エチレンの分子量は一般には1万ないし100万
であり、特に2万ないし50万が好ましい。ま
た、密度0.935〜0.980g/cm3である。さらに高
圧法低密度ポリエチレンはいわゆるフリーラジ
カル触媒を用いてエチレン単独重合またはエチ
レンとビニル化合物(共重合割合10重量%以
下)とを共重合することによつて得られるもの
であり、それらの密度は一般には0.900〜0.935
g/cm3である。また、分子量は通常1万〜50万
であり、とりわけ2〜20万のものが望ましい。 その他の結晶性オレフイン系樹脂はいわゆる
チーグラー・ナツタ触媒を用いて、得られるも
のである。これらの結晶性オレフイン系樹脂の
うち、鎖状低密度ポリエチレンはエチレンと5
〜35重量%の前記α−オレフインとを共重合す
ることによつて得られるものであり、その密度
は通常0.900〜0.935g/cm3である。また、アイ
ソタクチツクポリプロピレン、シンジオタクチ
ツクポリプロピレン、プロピレン−エチレンラ
ンダム共重合体およびプロピレン−エチレンブ
ロツク共重合体はプロピレンを単独重合または
プロピレンと多くとも20重量%のエチレンとを
共重合することによつて得られるものである。
これらの結晶性オレフイン系樹脂の分子量は、
通常1万ないし50万であり、とりわけ2万〜40
万が望ましい。ポリ(ブテン−1)およびポリ
(4−メチルペンテン−1)はブテン−1また
は4−メチルペンテン−1を単独重合すること
によつて得られるものである。 本発明を実施するにあたり、高密度ポリエチ
レン、中密度ポリエチレン、鎖状低密度ポリエ
チレン、アイソタクチツクポリプロピレン、シ
ンジオタクチツクポリプロピレン、プロピレン
−エチレンランダム共重合体およびプロピレン
−エチレンブロツク共重合体が好適である。本
発明の結晶性オレフイン系樹脂組成物を製造す
るにあたり、これらの結晶性オレフイン系樹脂
は一種のみを使用してもよく、さらに二種以上
を併用してもよい。 さらに、これらの結晶性オレフイン系樹脂が
本来有しているすぐれた樹脂特性をそこなわな
い程度の非晶性の樹脂および/またはゴム状物
を少量ブレンドしたものであつてもよい。一般
には、これらの非晶性の樹脂およびゴム状物の
占める配合割合は多くとも40重量%である。 (B) オキシ酸 また、本発明において使われるオキシ酸は、
全炭素数が2〜30個を有し、かつヒドロキシ基
を1〜10個を有する脂肪族、脂環族および芳香
族の飽和または不飽和のオキシ酸が一般的であ
る。また、そのカルボン酸基も通常1ないし10
個を有するものである。これらのオキシ酸のう
ち、とりわけ全炭素数が2〜10個であり、ヒド
ロキシル基を1〜3個を有し、かつカルボキシ
ル基を1〜4個有するものが好適である。好適
なオキシ酸の代表例としては、グリコール酸、
乳酸、ヒドロアクリル酸、α−オキシ酪酸、グ
リセリン酸、タルトロン酸、りんご酸、酒石
酸、クエン酸、オキシ安息香酸、没食子酸、マ
ンデル酸およびトロパ酸があげられる。本発明
の結晶性オレフイン系樹脂組成物を製造するに
あたり、該オキシ酸は一種のみを使用してもよ
く、二種以上併用してもよい。 (C) 無機炭酸塩 さらに、本発明において使用される無機炭酸
塩はアンモニウムまたはA族、B族、A
族、B族、B族もしくは族の金属の炭酸
塩である。この無機炭酸塩の代表例としては、
炭酸アンモニウム、炭酸水素アンモニウム、炭
酸リチウム、炭酸水素リチウム、炭酸ナトリウ
ム、炭酸水素ナトリウム、炭酸ナトリウムカリ
ウム、炭酸カリウム、炭酸セシウム、炭酸銅
(1)、炭酸銀、炭酸ベリリウム、炭酸マグネシウ
ム、炭酸水素マグネシウムカリウム、炭酸マグ
ネシウムカリウム、水酸化炭酸マグネシウム、
炭酸カルシウム、炭酸ストロンチウム、炭酸バ
リウム、炭酸亜鉛、炭酸セリウム、炭酸タリウ
ム、炭酸塩()、炭酸クロム、炭酸マンガン、
炭酸鉄(FeCO3)、炭酸鉄(FeCO3・H2O)、
炭酸コバルトおよび炭酸ニツケルがあげられ
る。本発明の結晶性オレフイン系樹脂組成物を
製造するにあたり、該無機炭酸塩は一種のみを
使用してもよく、二種以上併用してもよい。 (D) 配合割合 本発明の結晶性オレフイン系樹脂組成物を製
造するにあたり、該組成物中に占めるオキシ酸
および無機炭酸塩の配合割合は合計量として
0.02〜10.0重量%である。該組成物中に占める
オキシ酸および無機炭酸塩の配合割合が合計量
として0.02重量%であれば、本発明の効果を充
分に発揮することができない。一方、10.0重量
%を超えて配合したとしても、さらに本発明の
効果を向上することが期待できないばかりでな
く、結晶性オレフイン系樹脂が本来有する良好
な性質がそこなわれる。 また、オキシ酸に対する無機炭酸塩の配合割
合当量として、オキシ酸1に対して0.9〜1.1で
ある。オキシ酸1当量に対して無機炭酸塩の配
合割合が0.9当量未満では、オキシ酸に対する
無機炭酸塩の配合量が充分でないため、両者の
反応が充分に行なわれないために良好な発泡状
態を有する成形物が得られない。一方、1.1当
量を超えれば、無機炭酸塩に対するオキシ酸の
配合量が充分でないため、前記と同様な理由に
よつて良好な発泡状態を有する成形物が得られ
ない。 (E) 混合方法 本発明の結晶性オレフイン系樹脂組成物は、
結晶性オレフイン系樹脂、オキシ酸および無機
炭酸塩を均一に混合することによつて製造する
ことができる。混合方法としては、オレフイン
系樹脂の業界において一般に用いられているヘ
ンシエルミキサーおよびリボンミキサーのごと
き混合機を用いてドライブレンドしてもよく、
バンバリーミキサー、ニーダー、ロールミルお
よびスクリユー式押出機のごとき混合機を使用
して溶融混練することによつて得ることができ
るが、一般には押出機を用いて溶融混練する方
法が望ましい。このさい、あらかじめドライブ
レンドし、得られる組成物(混合物)を溶融混
練することによつて均一状の組成物を得ること
ができる。この場合、一般には溶融混練した
後、ペレツト状物に成形することによつて得ら
れる。 この組成物を製造するさい、全配合成分を同
時に混合してもよく、配合成分の一部を混合
し、この混合物に残りの配合成分を逐次添加し
ながら混合してもよい。また、結晶性オレフイ
ン系樹脂の一部とオキシ酸および無機炭酸塩の
一部または全部といわゆるマスターバツチを製
造し、このマスターバツチに残りの配合成分を
添加・混合してもよい。これらの混合時におい
て、オキシ酸および無機炭酸塩が熱分解しない
温度以下で実施しなければならないことは当然
である。 本発明の結晶性オレフイン系樹脂組成物を製
造するさいに結晶性オレフイン系樹脂の分野に
おいて一般に用いられている酸素および熱に対
する安定剤、金属劣化防止剤、発泡用造核剤、
充填剤、滑材ならびに難燃化剤をさらに添加し
てもよい。 (F) 成形方法など 成形方法としては、押出成形法、射出成形法
およびプレス成形法があげられる。さらに、ス
タンピング法、押出シートを用いてのプレス成
形法、真空成形法などの成形法のごとき結晶性
オレフイン系樹脂の分野において一般に使われ
ている成形法も適用してよい。 本発明の結晶性オレフイン系樹脂組成物を製
造するために溶融混練する場合でも、成形の場
合でも、いずれも使用する結晶性オレフイン系
樹脂の融点以上で実施しなければならないこと
はもちろんであるが、これらが熱劣化を生じな
い温度以下で実施しなければならない。以上の
ことから、溶融混練温度および成形温度は、一
般には120〜350℃であり。混練温度は低い方が
好ましく、さらに成形温度は比較的高い方が望
ましい。特に200〜300℃が好ましい。さらに、
本発明の組成物を成形するために120℃以下で
行なつた場合、オキシ酸と無機炭酸塩とが反応
しないことがあるため、良好な成形物を得るこ
とができない。一方、350℃以上で溶融混練ま
たは成形すると、結晶性オレフイン系樹脂が熱
劣化したり、オキシ酸と無機炭酸塩とが急激に
反応したり、オキシ酸および無機炭酸塩がそれ
ぞれ熱分解することがある。その結果、組成物
および成形物が着色したり、樹脂物性が低下す
るばかりでなく、350℃以上で成形した場合、
成形温度と常温との温度差が大きいため成形物
の寸法変化、ひけ、そりなどが生じて悪影響を
及ぼすことになる。 本発明の組成物は、前記したごとく、加工性
がすぐれているため、前記の成形法によつて
種々の形状物に成形されて多方面に使用するこ
とができるが、とりわけ肉厚成形物およびリブ
が多い成形物を製造するときに有望である。 〔〕 実施例および比較例 以下、実施例によつて本発明をさらにくわしく
説明する。 なお、実施例および比較例において、メルト・
インデツクス(以下「M.I.」と云う)はJIS K−
6760にしたがい、温度が190℃および荷重が2.16
Kgの条件で測定した。また、メルト・フロー・イ
ンデツクス(以下「MFI」と云う)はJIS K−
6758にしたがい、温度が230℃および荷重が2.16
Kgの条件で測定した。 さらに、寸法安定性試験は、結晶性プロピレン
系樹脂の場合では、230℃の温度で、また結晶性
エチレン系樹脂の場合では230℃の温度で、それ
ぞれ金型寸法が6.50mmを用いて射出成形した。得
られた各成形物の厚みを実測して評価した。 実施例 1 アイソタクチツクプロピレン単独重合体
(MFI8.0g/10分、以下「PP」と云う)粉末100
重量部、0.1重量部のクエン酸粉末および0.1重量
部の無水炭酸ナトリウム粉末をヘンシエルミキサ
ーを用いて3分間混合した。得られた混合物を射
出成形して成形物を製造した。この成形物の厚み
は6.48mmであり、寸法安定性がすぐれているのみ
ならず、成形物の内部のみが発泡し、表面スキン
層が形成され、ひけ、およびそりなどが認めるこ
とができない表面状態が良好であり、即ち外観が
美麗であつた。 実施例 2〜5 実施例1において使つたPP100重量部および第
1表に示すオキシ酸および無機炭酸塩をそれぞれ
0.1重量部を実施例1と同様に混合物を作成した。
得られた各混合物を射出成形し、成形物を製造し
た。それぞれの成形物の厚みを第1表に示す。な
お、得られた各成形物は、すべてヒケおよびソリ
などを認めることができず、表面がすぐれてお
り、すなわち外観が美麗であつた。 実施例 6〜8 実施例1において使用したPPのかわりに、密
度が0.961g/cm3である高密度ポリエチレン(M.
I.8.0g/10分、以下「HDPE」と云う)、密度が
0.923g/cm3である結晶性直鎖低密度ポリエチレ
ン(M.I.4.0g/10分、ブテン−含有量17.2重量
%、以下「L−LDPE」と云う)および結晶性プ
ロピレン−エチレンブロツク共重合体(MFI8.0
g/10分、エチレン含有量8.5重量%、以下「ブ
ロツク共重合体」と云う)をそれぞれ100重量部
を用いたほかは、実施例1と同様に混合を行な
い、混合物を製造した。得られたそれぞれの混合
物を用いて射出成形を行なつた。得られた各成形
物は実施例1と同様にソリおよびヒケがほとんど
認めることができず、表面状態が良好であつた。 得られた成形物の厚みを第2表に示す。
[] Object of the Invention The present invention relates to a crystalline olefin resin composition. More specifically, it relates to a crystalline olefin resin composition comprising (A) a crystalline olefin resin, (B) an oxyacid, and (C) an inorganic carbonate;
The purpose is to provide a crystalline olefin resin molded product with excellent dimensional stability. [] Background of the Invention Crystalline olefin resins, such as high-density polyethylene, medium-density polyethylene, chain low-density polyethylene, and high-pressure processed low-density polyethylene, have high crystallinity and have poor mechanical, chemical, and thermal properties. , it has excellent properties such as electrical properties and workability, so it is used in a wide variety of fields. However, in the process of obtaining a molded article from a molten state, it undergoes crystallization and solidification, resulting in a much larger change in density than in an amorphous olefin resin. As a result, especially in injection molding, the finished dimensions of the mold become smaller,
Thick molded products have drawbacks such as sink marks and warpage due to anisotropy of shrinkage rate. Conventionally, methods to improve these drawbacks include methods for obtaining molded products using special molds, methods for highly filling inorganic materials, methods for adding nucleating agents, methods for molding under special molding conditions, and methods for molding using ordinary chemistry. Methods such as adding a foaming agent are used. However, with the method using a special mold,
The design of the molded product is limited, the method of high filling with inorganic substances causes deterioration of physical properties and the surface gloss of moldability, and the method of adding a nucleating agent does not have sufficient improvement effect, and special If the molding process is carried out under different molding conditions, the molding cycle becomes longer, and if a conventional chemical blowing agent is added, foaming may occur on the surface of the molded product, and the surface of the molded product may become rough. It had problems such as (disadvantages). Based on the above, the present inventors have conducted various searches to obtain molded products of crystalline olefin resin that do not have these drawbacks and have particularly excellent dimensional stability.As a result, (A) Crystalline olefin resin (B) 100 parts by weight of strong crystalline olefin resin, 0.01
Oxy acid-containing crystalline olefin resin mixture obtained by mixing ~30 parts by weight of oxy acid and (C) 0.01 to 100 parts by weight of crystalline olefin resin
It is a composition consisting of an inorganic carbonate-containing crystalline olefin resin mixture obtained by mixing 30 parts by weight of an inorganic carbonate, and the oxy-acid-containing crystalline olefin resin mixture and inorganic Among carbonate-containing crystalline olefin resin mixtures, crystalline olefin resin compositions in which the blending ratio of any one of them is 0.5 to 99% by weight do not have the above-mentioned problems and have excellent dimensional stability. We have previously proposed a composition that allows the production of molded articles. [] Structure of the Invention Similarly to the above, the present inventors have further explored the possibility of obtaining a molded product of crystalline olefin resin that does not have the above-mentioned drawbacks and has particularly excellent dimensional stability. It is a composition consisting of A) crystalline olefin resin (B) oxyacid and (C) inorganic carbonate, and the proportion of oxyacid and inorganic carbonate in the total composition is calculated as the total amount.
0.01 to 40% by weight, and the ratio of the inorganic carbonate to the oxyacid is 1:0.1 to 1:10 as an equivalent equivalent, The inventors have discovered that the composition does not have the following problems (defects) and can produce molded articles with excellent dimensional stability, and have arrived at the present invention. [] Effects of the Invention The molded product of the composition obtained by the present invention not only has excellent dimensional stability, but also has the following characteristics (effects). (1) The surface is in good condition, so the appearance is beautiful. (2) Since the composition has excellent moldability, molded products of various shapes can be obtained. (3) Since the composition has excellent moldability (processability), molded products can be obtained even with a short molding cycle. (4) There is almost no deterioration in physical properties. (5) Almost no whiskers or warpage can be seen on the molded product. (6) Since the inside of the molded product is foamed, it is lightweight. The above shows that when the resin pellet mixture (composition) of the present invention is heat-molded at the molding temperature generally used for olefin resins (120 to 350°C), only the inside of the resulting molded product foams uniformly. Therefore, the shrinkage rate is small, there is no so-called warpage or sink marks, and the surface condition of the molded product is good. When producing foams using commonly used chemical blowing agents (for example, azodicarbonamide foaming agents), the resulting foams show improvement effects in terms of shrinkage, sink marks, warpage, etc. When the agent thermally decomposes and generates gas, a large amount of decomposition heat is generated. As a result, the viscosity at the melting temperature decreases, making it easier for decomposed gas to escape to the surface of the molded product, causing surface roughness.
In the composition of the present invention, the oxyacid and the inorganic carbonate, which are blowing agents, react inside the molten resin during heat molding, generating gas, and since the heat of reaction is small, the viscosity of the molten resin is further reduced. It is inferred that this results in less gas leaking to the surface of the molded product, that only the inside of the molded product foams, a surface skin layer is formed, and that a molded product with a beautiful surface can be obtained. The composition of the present invention does not have the above-mentioned drawbacks,
Moreover, since it has various effects, it can be used in a wide variety of fields. Typical uses are shown below. (1) Thick injection molded products such as handles and handles (2) Injection molded products that have many ribs and cause sink marks with ordinary crystalline olefin resin (3) Extrusion molded products such as thick plates Specific Description (A) Crystalline Olefin Resin Generally, the crystalline olefin resin used in the present invention is homopolymerized or copolymerized with ethylene or α-olefin having at most 12 carbon atoms. Here are the things you can get by. Typical examples of these crystalline olefin resins include high-density polyethylene, medium-density polyethylene, chain low-density polyethylene, high-pressure low-density polyethylene, isotactic polypropylene, syndiotactic polypropylene, and propylene-ethylene random polyethylene. Polymers, propylene-ethylene block copolymers, poly(butene-1) and poly(4)
-methylpentene-1). Among the crystalline olefin resins, high-density polyethylene and medium-density polyethylene are produced by ethylene homopolymerization using a so-called Ziegler catalyst or a Phillips catalyst, or by polymerizing ethylene with the α
- olefin (the copolymerization ratio of α-olefin is generally at most 15% by weight). The molecular weight of these polyethylenes is generally 10,000 to 1,000,000, and preferably 20,000 to 500,000. Further, the density is 0.935 to 0.980 g/cm 3 . Furthermore, high-pressure low-density polyethylene is obtained by homopolymerizing ethylene or copolymerizing ethylene and a vinyl compound (copolymerization ratio of 10% by weight or less) using a so-called free radical catalyst. Generally 0.900 to 0.935
g/ cm3 . Further, the molecular weight is usually 10,000 to 500,000, and particularly preferably 20,000 to 200,000. Other crystalline olefin resins are those obtained using a so-called Ziegler-Natsuta catalyst. Among these crystalline olefin resins, chain low density polyethylene has ethylene and 5
It is obtained by copolymerizing ~35% by weight of the above α-olefin, and its density is usually 0.900~0.935g/cm 3 . Isotactic polypropylene, syndiotactic polypropylene, propylene-ethylene random copolymers and propylene-ethylene block copolymers are prepared by homopolymerizing propylene or copolymerizing propylene with at most 20% by weight of ethylene. It is something that can be obtained.
The molecular weight of these crystalline olefin resins is
Usually 10,000 to 500,000, especially 20,000 to 40
10,000 is desirable. Poly(butene-1) and poly(4-methylpentene-1) are obtained by homopolymerizing butene-1 or 4-methylpentene-1. In carrying out the present invention, high density polyethylene, medium density polyethylene, linear low density polyethylene, isotactic polypropylene, syndiotactic polypropylene, propylene-ethylene random copolymer and propylene-ethylene block copolymer are suitable. . In producing the crystalline olefin resin composition of the present invention, only one type of these crystalline olefin resins may be used, or two or more types may be used in combination. Furthermore, a small amount of amorphous resin and/or rubber-like material may be blended to the extent that the excellent resin properties originally possessed by these crystalline olefin resins are not impaired. Generally, the proportion of these amorphous resins and rubbery substances is at most 40% by weight. (B) Oxyacid The oxyacid used in the present invention is
Aliphatic, alicyclic and aromatic saturated or unsaturated oxyacids having a total carbon number of 2 to 30 and 1 to 10 hydroxy groups are common. In addition, the carboxylic acid group is usually 1 to 10
It has individuality. Among these oxyacids, those having a total carbon number of 2 to 10, 1 to 3 hydroxyl groups, and 1 to 4 carboxyl groups are particularly preferred. Representative examples of suitable oxyacids include glycolic acid,
Mention may be made of lactic acid, hydroacrylic acid, alpha-oxybutyric acid, glyceric acid, tartronic acid, malic acid, tartaric acid, citric acid, oxybenzoic acid, gallic acid, mandelic acid and tropic acid. In producing the crystalline olefin resin composition of the present invention, only one type of oxyacid may be used, or two or more types may be used in combination. (C) Inorganic carbonate Furthermore, the inorganic carbonate used in the present invention is ammonium or A group, B group, A
carbonates of Group B, Group B, or Group metals. Typical examples of this inorganic carbonate are:
Ammonium carbonate, ammonium hydrogen carbonate, lithium carbonate, lithium hydrogen carbonate, sodium carbonate, sodium hydrogen carbonate, sodium potassium carbonate, potassium carbonate, cesium carbonate, copper carbonate
(1), silver carbonate, beryllium carbonate, magnesium carbonate, potassium magnesium hydrogen carbonate, potassium magnesium carbonate, magnesium carbonate hydroxide,
Calcium carbonate, strontium carbonate, barium carbonate, zinc carbonate, cerium carbonate, thallium carbonate, carbonate (), chromium carbonate, manganese carbonate,
Iron carbonate (FeCO 3 ), iron carbonate (FeCO 3 H 2 O),
Examples include cobalt carbonate and nickel carbonate. In producing the crystalline olefin resin composition of the present invention, one kind of the inorganic carbonate may be used, or two or more kinds may be used in combination. (D) Blending ratio When producing the crystalline olefin resin composition of the present invention, the blending ratio of oxyacid and inorganic carbonate in the composition is determined as the total amount.
It is 0.02-10.0% by weight. If the total proportion of the oxyacid and inorganic carbonate in the composition is 0.02% by weight, the effects of the present invention cannot be fully exhibited. On the other hand, even if it is blended in an amount exceeding 10.0% by weight, not only is it not possible to further improve the effects of the present invention, but also the good properties inherent to the crystalline olefin resin are impaired. Further, the ratio equivalent of the inorganic carbonate to the oxyacid is 0.9 to 1.1 per 1 of the oxyacid. If the ratio of inorganic carbonate to 1 equivalent of oxyacid is less than 0.9 equivalents, the amount of inorganic carbonate to oxyacid is not sufficient, and the reaction between the two will not take place sufficiently, resulting in a good foaming state. A molded product cannot be obtained. On the other hand, if the amount exceeds 1.1 equivalent, the amount of oxyacid blended with respect to the inorganic carbonate is insufficient, and a molded product having a good foamed state cannot be obtained for the same reason as above. (E) Mixing method The crystalline olefin resin composition of the present invention is
It can be produced by uniformly mixing a crystalline olefinic resin, an oxyacid, and an inorganic carbonate. As a mixing method, dry blending may be performed using a mixer such as a Henschel mixer or a ribbon mixer that is commonly used in the olefin resin industry.
It can be obtained by melt-kneading using a mixer such as a Banbury mixer, kneader, roll mill, or screw extruder, but melt-kneading using an extruder is generally preferred. At this time, a uniform composition can be obtained by dry blending in advance and melt-kneading the resulting composition (mixture). In this case, it is generally obtained by melt-kneading and then forming into pellets. When producing this composition, all the ingredients may be mixed at the same time, or some of the ingredients may be mixed and the remaining ingredients may be sequentially added to the mixture while mixing. Alternatively, a so-called masterbatch may be prepared with part of the crystalline olefin resin and part or all of the oxyacid and inorganic carbonate, and the remaining ingredients may be added to and mixed with this masterbatch. It goes without saying that these must be mixed at a temperature below which the oxyacid and inorganic carbonate do not decompose thermally. When producing the crystalline olefin resin composition of the present invention, stabilizers against oxygen and heat, metal deterioration inhibitors, nucleating agents for foaming, which are commonly used in the field of crystalline olefin resins,
Fillers, lubricants and flame retardants may also be added. (F) Molding method, etc. Molding methods include extrusion molding, injection molding, and press molding. Furthermore, molding methods commonly used in the field of crystalline olefin resins, such as stamping, press molding using an extruded sheet, and vacuum forming, may also be applied. It goes without saying that both melt-kneading and molding to produce the crystalline olefin resin composition of the present invention must be carried out at a temperature equal to or higher than the melting point of the crystalline olefin resin used. , these must be carried out at temperatures below which thermal deterioration does not occur. From the above, the melt-kneading temperature and molding temperature are generally 120 to 350°C. The kneading temperature is preferably low, and the molding temperature is preferably relatively high. Particularly preferred is 200 to 300°C. moreover,
If the composition of the present invention is molded at 120° C. or lower, the oxyacid and the inorganic carbonate may not react, making it impossible to obtain a good molded product. On the other hand, if melt-kneaded or molded at temperatures above 350°C, the crystalline olefin resin may undergo thermal deterioration, the oxyacid and inorganic carbonate may react rapidly, or the oxyacid and inorganic carbonate may undergo thermal decomposition. be. As a result, not only the composition and molded product become colored and the physical properties of the resin deteriorate, but also when molded at 350°C or higher,
Due to the large temperature difference between the molding temperature and the room temperature, dimensional changes, sink marks, warpage, etc. of the molded product occur, resulting in adverse effects. As mentioned above, the composition of the present invention has excellent processability, so it can be molded into various shapes by the above-mentioned molding method and used in many ways, but it is especially suitable for thick molded products and It is promising when producing molded products with many ribs. [] Examples and Comparative Examples The present invention will be explained in more detail below using Examples. In addition, in the examples and comparative examples, melt
The index (hereinafter referred to as "MI") is JIS K-
According to 6760, temperature is 190℃ and load is 2.16
Measured under Kg conditions. In addition, the melt flow index (hereinafter referred to as "MFI") is based on JIS K-
According to 6758, temperature is 230℃ and load is 2.16
Measured under Kg conditions. Furthermore, dimensional stability tests were carried out using injection molding with a mold size of 6.50 mm at a temperature of 230°C for crystalline propylene-based resins and 230°C for crystalline ethylene-based resins. did. The thickness of each obtained molded product was actually measured and evaluated. Example 1 Isotactic propylene homopolymer (MFI 8.0 g/10 min, hereinafter referred to as "PP") powder 100
Part by weight, 0.1 part by weight of citric acid powder and 0.1 part by weight of anhydrous sodium carbonate powder were mixed for 3 minutes using a Henschel mixer. The resulting mixture was injection molded to produce a molded product. The thickness of this molded product is 6.48 mm, and it not only has excellent dimensional stability, but also has a surface condition in which only the inside of the molded product is foamed, a surface skin layer is formed, and no sink marks or warpage can be observed. The appearance was good, that is, the appearance was beautiful. Examples 2 to 5 100 parts by weight of PP used in Example 1 and the oxyacid and inorganic carbonate shown in Table 1 were added, respectively.
A mixture was prepared in the same manner as in Example 1 using 0.1 part by weight.
Each of the obtained mixtures was injection molded to produce molded products. Table 1 shows the thickness of each molded product. It should be noted that all of the molded products obtained had excellent surfaces, with no sink marks or warpage, that is, beautiful appearance. Examples 6 to 8 Instead of the PP used in Example 1, high - density polyethylene (M.
I.8.0g/10min, hereinafter referred to as "HDPE"), density is
Crystalline linear low-density polyethylene (MI 4.0 g/10 min, butene content 17.2% by weight, hereinafter referred to as "L-LDPE") with a density of 0.923 g/cm 3 and crystalline propylene-ethylene block copolymer ( MFI8.0
A mixture was produced in the same manner as in Example 1, except that 100 parts by weight of each block copolymer (100 g/10 min, ethylene content 8.5% by weight, hereinafter referred to as "block copolymer") was used. Injection molding was performed using each of the obtained mixtures. As in Example 1, each molded product obtained had almost no warpage or sink marks, and had a good surface condition. Table 2 shows the thickness of the molded product obtained.

【表】【table】

【表】 実施例 9〜11 実施例1において使つたPP100重量部ならびに
第3表にそれぞれの配合量を示すクエン酸粉末お
よび無水炭酸ナトリウム粉末を実施例1と同様に
混合した。得られた各混合物を実施例1と同様に
射出成形して成形物を製造した。それぞれの成形
物の厚みを第3表に示す。なお、得られた各成形
物は、すべてヒケおよびソリなどを認めることが
できず、表面がすぐれており、すなわち美麗であ
つた。
[Table] Examples 9 to 11 100 parts by weight of PP used in Example 1, as well as citric acid powder and anhydrous sodium carbonate powder whose respective blending amounts are shown in Table 3, were mixed in the same manner as in Example 1. Each of the obtained mixtures was injection molded in the same manner as in Example 1 to produce molded products. Table 3 shows the thickness of each molded product. It should be noted that all of the molded products obtained had excellent surfaces, with no sink marks or warpage observed, that is, they were beautiful.

【表】 比較例 1 実施例1において使用したPPのみを用いて実
施例1と同様に射出成形を行なつたところ、ヒケ
が大きい射出成形物が得られた。この射出成形物
の厚みは5.30mmであつた。 比較例 2 実施例1において使用したPP100重量部に0.2
重量部のアゾジカルボンアミドを実施例1と同様
に混合を行なつた。得られた混合物を実施例1と
同様に射出成形を行なつたところ、発泡し、ヒケ
およびソリは認められなかつたが、表面肌の荒れ
た成形物が得られた。この成形物の厚みは6.45mm
であつた。
[Table] Comparative Example 1 When injection molding was carried out in the same manner as in Example 1 using only the PP used in Example 1, an injection molded product with large sink marks was obtained. The thickness of this injection molded product was 5.30 mm. Comparative Example 2 0.2 to 100 parts by weight of PP used in Example 1
Parts by weight of azodicarbonamide were mixed in the same manner as in Example 1. When the resulting mixture was injection molded in the same manner as in Example 1, it foamed, and although no sink marks or warpage was observed, a molded product with a rough surface was obtained. The thickness of this molded product is 6.45mm
It was hot.

Claims (1)

【特許請求の範囲】 1 (A) 結晶性オレフイン系樹脂、 (B) オキシ酸 および (C) 無機炭酸塩 からなる組成物であり、全組成物中に占めるオキ
シ酸と無機炭酸塩との配合割合は合計量として
0.02〜10.0重量%であり、かつ該オキシ酸に対す
る無機炭酸塩の配合割合が当量として1:0.9な
いし1:1.1であることを特徴とする結晶性オレ
フイン系樹脂組成物。
[Claims] 1. A composition comprising (A) a crystalline olefin resin, (B) an oxyacid, and (C) an inorganic carbonate, where the oxyacid and the inorganic carbonate account for the entire composition. Percentage is as total amount
1. A crystalline olefin resin composition characterized in that the amount of the inorganic carbonate is 0.02 to 10.0% by weight, and the ratio of the inorganic carbonate to the oxyacid is 1:0.9 to 1:1.1 as an equivalent.
JP10883381A 1981-07-14 1981-07-14 Crystalline olefin resin composition Granted JPS5811533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10883381A JPS5811533A (en) 1981-07-14 1981-07-14 Crystalline olefin resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10883381A JPS5811533A (en) 1981-07-14 1981-07-14 Crystalline olefin resin composition

Publications (2)

Publication Number Publication Date
JPS5811533A JPS5811533A (en) 1983-01-22
JPS6367494B2 true JPS6367494B2 (en) 1988-12-26

Family

ID=14494702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10883381A Granted JPS5811533A (en) 1981-07-14 1981-07-14 Crystalline olefin resin composition

Country Status (1)

Country Link
JP (1) JPS5811533A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114828U (en) * 1989-02-28 1990-09-13
DK0513569T3 (en) * 1991-05-15 1999-06-23 Basf Ag Electric medium and high voltage cable with a cable sheath with high resistance to formation and growth of water trees
JPH062026U (en) * 1992-06-15 1994-01-14 株式会社クボタ air conditioner
US5854304A (en) * 1994-12-14 1998-12-29 Epi Environmental Products Inc. Degradable/compostable concentrates, process for making degradable/compostable packaging materials and the products thereof
US8779045B2 (en) 2009-10-15 2014-07-15 Milliken & Company Thermoplastic polymer composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50101442A (en) * 1974-01-14 1975-08-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50101442A (en) * 1974-01-14 1975-08-12

Also Published As

Publication number Publication date
JPS5811533A (en) 1983-01-22

Similar Documents

Publication Publication Date Title
JP3548632B2 (en) Polypropylene resin composition, foam and production method thereof
JPH0238100B2 (en)
JPH0328237A (en) Manufacture of ethylene- trifluorinated chloride copolymer foam
US4632942A (en) Resin composition for masterbatch of foaming agent
US6334970B1 (en) Method for producing foamed resin article
CN106232881B (en) Polymer foam
JPS6367494B2 (en)
JP3510069B2 (en) Polypropylene resin foam and method for producing the same
JPH0231107B2 (en)
JP7537873B2 (en) Foam material containing polyphenylene sulfide polymer (PPS)
JPH09183871A (en) Polyolefin resin composition and film or sheet made from the same
JP3508448B2 (en) Polypropylene resin composition for profile extrusion molding
JPS5998112A (en) Polypropylene for expansion molding
JPH0672197B2 (en) Polyolefin resin composition
JPS62106937A (en) Polyolefin resin composition for foam
JP3269856B2 (en) Foam sheet
JPH073065A (en) Expandable thermoplastic resin composition and production of foamed molded article
JPH0423898B2 (en)
JPS58152036A (en) Polyethylene type resin composition
JPH05202247A (en) Resin composition for vacuum forming
JPS62263244A (en) Propylene polymer composition
JP2003213029A (en) Crosslinked polyethylene-based resin foamed material and method for producing the same
JPH03250040A (en) Polyolefin resin composition and its injection molding
JP2000178390A (en) Polypropylene composition for blow holding and molded item made thereof
JPS63196634A (en) Propylene polymer composition