JP2010120335A - Method of manufacturing moisture-proof light-weighted resin molding - Google Patents
Method of manufacturing moisture-proof light-weighted resin molding Download PDFInfo
- Publication number
- JP2010120335A JP2010120335A JP2008297987A JP2008297987A JP2010120335A JP 2010120335 A JP2010120335 A JP 2010120335A JP 2008297987 A JP2008297987 A JP 2008297987A JP 2008297987 A JP2008297987 A JP 2008297987A JP 2010120335 A JP2010120335 A JP 2010120335A
- Authority
- JP
- Japan
- Prior art keywords
- foaming agent
- moisture
- thermoplastic resin
- resistant lightweight
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
本発明は、射出成形機に取り付けた金型キャビティ内に、少なくとも2種の発泡剤を用いて熱可塑性樹脂組成物を射出することにより、耐湿性軽量樹脂成形体を製造する方法に関する。さらに詳しくは、水中または多湿環境下においても外観が悪化しない外装用の耐湿性軽量樹脂成形体の製造方法に関する。 The present invention relates to a method for producing a moisture-resistant lightweight resin molding by injecting a thermoplastic resin composition into a mold cavity attached to an injection molding machine using at least two kinds of foaming agents. More specifically, the present invention relates to a method for producing a moisture-resistant lightweight resin molded article for exterior use that does not deteriorate in appearance even in water or in a humid environment.
射出成形は、複雑な形状の高精度な製品を一工程で成形でき、しかも短いサイクルで連続的に生産できる非常に生産性の高い成形方法であり、自動車、電子・電気機器、精密機械、事務機、建材、日用品などの広範な分野で利用されている、優れた成形方法のひとつである。 Injection molding is a highly productive molding method that can form high-precision products with complex shapes in a single process and can be produced continuously in a short cycle. Automotive, electronic / electric equipment, precision machinery, office work It is one of the excellent molding methods used in a wide range of fields such as machines, building materials, and daily necessities.
上記射出成形において、熱可塑性樹脂に発泡剤を混錬・溶解した発泡性の熱可塑性樹脂組成物を、(1)金型キャビティ内にキャビティ容積よりも少なく充填し発泡力で成形体を成形する方法、(2)金型キャビティ内に充填後、内部の熱可塑性樹脂組成物を排出し発泡させる方法、(3)金型キャビティ内に充填後、冷却により体積収縮分発泡させるヒケ防止の方法、(4)金型キャビティ内に充填後、金型キャビティを移動させることにより発泡させる方法など、種々の射出発泡成形方法が知られている。これらの射出発泡成形は射出発泡成形体のヒケ防止や保温断熱、軽量化の有効な手段であり、肘掛やグリップ類、食器類、事務機器、家電部品などに使用されている。 In the above injection molding, a foamable thermoplastic resin composition in which a foaming agent is kneaded and dissolved in a thermoplastic resin is filled with less than the cavity volume in the mold cavity, and a molded body is molded with foaming force. A method, (2) a method of discharging and foaming an internal thermoplastic resin composition after filling into a mold cavity, and (3) a method of preventing sinking by foaming by volume shrinkage after filling into a mold cavity, (4) Various injection foam molding methods are known, such as foaming by filling the mold cavity and then moving the mold cavity. These injection foam moldings are effective means for preventing sinking, heat insulation, and weight reduction of injection foam moldings, and are used for armrests, grips, tableware, office equipment, home appliance parts, and the like.
ところで近年、射出発泡成形体は、自動車業界における二酸化炭素排出抑制ニーズや燃費向上ニーズを背景とした軽量化要請によって自動車内装部品、たとえばドアトリムやバックサイドトリムにも使われ始めている(たとえば、特許文献1〜6参照)。 By the way, in recent years, injection foam molded articles have begun to be used for automobile interior parts such as door trims and backside trims in response to the demand for weight reduction against the need for carbon dioxide emission suppression and fuel efficiency improvement in the automobile industry (for example, patent documents). 1-6).
しかしながら、自動車関連分野におけるプロピレン系樹脂の射出発泡成形体は、内装部品として使用されることがほとんどであり、バンパーおよびモールなどの外装部品にはほとんど使用されていない。また、過去の公知文献においても、具体的に実施例に開示された外装用のプロピレン系樹脂の射出発泡成形体は見当たらない。 However, injection-molded foams of propylene-based resins in the field related to automobiles are mostly used as interior parts, and are hardly used for exterior parts such as bumpers and moldings. Also, in the past publicly known literature, there is no specific injection-molded molded article of exterior propylene-based resin disclosed in the examples.
その理由は、自動車内装部品を製造する方法と同じ射出発泡成形方法で自動車外装部品を製造した場合には、塗装をしない成形体はもちろんのこと、塗装を実施した成形体においても表面に曇りなどのスワールマークが発生する場合があるからである。 The reason is that when automobile exterior parts are manufactured by the same injection foam molding method as that used to manufacture automobile interior parts, not only the molded body that is not painted, but also the molded body that has been painted is cloudy on the surface. This is because the swirl mark may occur.
また、発泡剤として有機系化学発泡剤を用いた場合は、元来スワールマークが大量に発生する性質を持つ。さらには、十分な発泡を得るために多量の有機系化学発泡剤を添加すると金型のキャビティ面が腐蝕したり、発泡剤残渣がキャビティ面に付着する。結果として腐食または残渣が付着したキャビティ表面が成形体に転写されることにより外観が悪化することがある。加えて、有機系化学発泡剤を、成形体が十分に発泡する量を添加すると、成形を行う時に発生するガスの異臭により成形環境の悪化も懸念されている。 In addition, when an organic chemical foaming agent is used as the foaming agent, swirl marks are inherently generated in large quantities. Furthermore, when a large amount of an organic chemical foaming agent is added to obtain sufficient foaming, the cavity surface of the mold is corroded or a foaming agent residue adheres to the cavity surface. As a result, the appearance of the cavity may be deteriorated by transferring the cavity surface to which the corrosion or residue is adhered to the molded body. In addition, if the amount of the organic chemical foaming agent is sufficiently foamed, there is a concern that the molding environment may be deteriorated due to a gas odor generated during molding.
一方、発泡剤として無機系化学発泡剤を用いた場合は、金型への汚染が少なく、スワールマーク自体も有機系化学発泡剤に比べ少なく外観的には有利である。しかしながら、十分な発泡を得るためには、やはり無機系化学発泡剤を多量に用いなければならない。このため、スワールマークの発生を無視できないばかりか、水中または高湿環境下ではブリスタ(膨れ)が発生するという問題がある。すなわち、塗装をしない成形体はもちろんのこと、塗装を実施した成形体においても塗装面を浮き上がらせるほどのブリスタが発生し、
成形体の表面外観を著しく損なうという問題がある。この問題を回避するため無機系化学発泡剤の量を減じた場合は、発泡性が悪くなってしまい、所定の発泡倍率だけでなく希望する成形体の形状に成形すること自体が困難であった。
On the other hand, when an inorganic chemical foaming agent is used as the foaming agent, the mold is less contaminated and the swirl mark itself is less than the organic chemical foaming agent, which is advantageous in appearance. However, in order to obtain sufficient foaming, it is necessary to use a large amount of an inorganic chemical foaming agent. For this reason, not only the occurrence of swirl marks cannot be ignored, but there is a problem that blisters (blowing) occur in water or in a high humidity environment. In other words, not only the molded body that is not painted, but also the molded body that has been painted, blisters are generated so as to lift the painted surface,
There is a problem that the surface appearance of the molded body is remarkably impaired. In order to avoid this problem, when the amount of the inorganic chemical foaming agent is reduced, the foaming property is deteriorated, and it is difficult to form not only a predetermined expansion ratio but also a desired shape of the molded body. .
このような化学発泡剤に対して、化学発泡剤を使用せず物理発泡剤のみを使用して発泡成形を行う方法がある。しかしながら、この方法では、発泡セルが肥大化する傾向にあり、その結果、成形体表面に凹凸が生じ成形体の外観が悪化するという問題があった。また、発泡倍率も十分に上げることができなかった。この問題に対しては、超臨界状態の物理発泡剤を熱可塑性樹脂組成物に含有させ発泡成形することで発泡セルを小さくする方法もあるが、この方法を用いると、成形体表面に多量のスワールマークやディンプル、凹みなどが発生し、一般的に外観が悪化する傾向にあった。このため、良好な外観が求められる成形体の成形方法としては使用することができなかった。 For such a chemical foaming agent, there is a method of performing foam molding using only a physical foaming agent without using a chemical foaming agent. However, this method has a problem that foam cells tend to be enlarged, and as a result, irregularities are formed on the surface of the molded body and the appearance of the molded body is deteriorated. Further, the expansion ratio could not be sufficiently increased. To solve this problem, there is a method in which a foamed cell is made smaller by including a physical foaming agent in a supercritical state in a thermoplastic resin composition and foam-molding. Swirl marks, dimples, dents and the like were generated, and the appearance generally tended to deteriorate. For this reason, it could not be used as a molding method of a molded body that requires a good appearance.
また、特許文献4および特許文献5には、射出発泡成形方法において、化学発泡剤と物理発泡剤とを併用して外観良好な発泡性製品を得ることが提案されており、化学発泡剤として、クエン酸などのポリカルボン酸からなる有機系発泡剤と炭酸水素ナトリウムなどの無機系発泡剤とを併用することが好ましいと記載されている。 Patent Document 4 and Patent Document 5 propose that in an injection foam molding method, a chemical foaming agent and a physical foaming agent are used in combination to obtain a foam product having a good appearance. As a chemical foaming agent, It is described that it is preferable to use an organic foaming agent composed of a polycarboxylic acid such as citric acid and an inorganic foaming agent such as sodium hydrogen carbonate in combination.
しかしながら、化学発泡剤として、有機系発泡剤と無機系発泡剤とを併用した場合は、得られる発泡体を高湿度下に置いておくと成形体の表面にブリスタが生じることが判った。このように、従来、水中または高湿環境下で高外観を必要とする発泡成形体を得ることは非常に困難であった。 However, it has been found that when an organic foaming agent and an inorganic foaming agent are used in combination as chemical foaming agents, blisters are formed on the surface of the molded product when the resulting foam is placed under high humidity. Thus, conventionally, it has been very difficult to obtain a foamed molded product that requires a high appearance under water or in a high humidity environment.
また、軽量化にともない、成形品の厚みは薄肉化傾向が強くなり、成形時の樹脂温度としては220℃以上が要求される。このような場合、有機系発泡剤が分解してしまい、有機系発泡剤のみでは、成形時に発泡不良などが生じることがあった。
本発明が解決しようとする課題は、水中または高湿環境下においても使用可能な高外観な耐湿性軽量樹脂成形体の製造方法を提供するものである。 The problem to be solved by the present invention is to provide a method for producing a moisture-resistant lightweight resin molded body having a high appearance that can be used in water or in a high humidity environment.
本発明者らは上記課題を解決するために鋭意検討し、熱可塑性樹脂組成物に、水中または高湿環境化において水分とほとんど反応しない有機系発泡剤の必要最低量を無機系発泡核剤とともに含有させ、かつ物理発泡剤を併用し,射出成形することにより上記課題を解決できることを見出した。 The present inventors have intensively studied to solve the above-mentioned problems, and in the thermoplastic resin composition, the necessary minimum amount of an organic foaming agent that hardly reacts with water in water or in a high-humidity environment together with an inorganic foam nucleating agent. It has been found that the above-mentioned problems can be solved by containing and using a physical foaming agent together and injection molding.
すなわち、本発明の耐湿性軽量樹脂製形態の製造方法は、二段圧縮スクリュを有する射出成形機を用いて、熱可塑性樹脂100重量部と、有機系発泡剤のみからなる化学発泡剤0.001〜0.5重量部と、無機系発泡核剤0.1〜1.0重量部とを含む熱可塑性樹脂組成物を溶融する工程と、該溶融状態の熱可塑性樹脂組成物に物理発泡剤を該射出成形機のシリンダ途中から供給する工程と、射出発泡成形する工程とを含むことを特徴とする。 That is, the manufacturing method of the moisture-resistant lightweight resin form of the present invention uses a chemical foaming agent 0.001 consisting of 100 parts by weight of a thermoplastic resin and an organic foaming agent using an injection molding machine having a two-stage compression screw. A step of melting a thermoplastic resin composition comprising -0.5 parts by weight and 0.1-1.0 part by weight of an inorganic foam nucleating agent; and a physical foaming agent in the molten thermoplastic resin composition It includes a step of supplying from the middle of a cylinder of the injection molding machine and a step of injection foam molding.
前記無機系発泡核剤はシリカであることが好ましい。前記物理発泡剤は、気体状態の物理発泡剤であることが好ましい。前記有機系発泡剤は、アゾジカルボンアミドであることが好ましい。 The inorganic foam nucleating agent is preferably silica. The physical foaming agent is preferably a gaseous physical foaming agent. The organic foaming agent is preferably azodicarbonamide.
前記物理発泡剤は、前記熱可塑性樹脂組成物に対して0.1〜2.0重量%の量で供給することが好ましい。
前記耐湿性軽量樹脂成形体は、密度が0.4〜0.8g/cm3の範囲にある耐湿性軽
量ポリプロピレン樹脂成形体であることが好ましい。
The physical foaming agent is preferably supplied in an amount of 0.1 to 2.0% by weight with respect to the thermoplastic resin composition.
The moisture-resistant lightweight resin molded product is preferably a moisture-resistant lightweight polypropylene resin molded product having a density in the range of 0.4 to 0.8 g / cm 3 .
前記耐湿軽量樹脂製形体が自動車外装材であることが好ましい。 It is preferable that the moisture-resistant lightweight resin shaped body is an automobile exterior material.
本発明の製造方法により得られる耐湿性軽量樹脂成形体は、スキン層が平滑であり、かつ水中または多湿環境下においても外観が悪化しない発泡成形体であり、外装部品、たとえば屋外で使用される機会のある自動車外装材への展開が可能である。 The moisture-resistant lightweight resin molded article obtained by the production method of the present invention is a foam molded article having a smooth skin layer and an appearance that does not deteriorate even in water or in a humid environment, and is used in exterior parts such as outdoors. It can be applied to automotive exterior materials with opportunities.
以下本発明の耐湿性軽量樹脂成形体の製造方法について具体的に説明する。
本発明の耐湿性軽量樹脂成形体の製造方法は、二段圧縮スクリュを有する射出成形機を用いた耐湿性軽量樹脂成形体の製造方法であって、熱可塑性樹脂100重量部と、有機系発泡剤のみからなる化学発泡剤0.001〜0.5重量部と、無機系発泡核剤0.1〜1.0重量部とを含む熱可塑性樹脂組成物を溶融する工程と、該溶融状態の熱可塑性樹脂組成物に物理発泡剤を射出成形機のシリンダ途中から供給する工程と、射出発泡成形する工程とを含むことを特徴とする。
Hereinafter, the manufacturing method of the moisture-resistant lightweight resin molding of this invention is demonstrated concretely.
The method for producing a moisture-resistant lightweight resin molded article of the present invention is a method for producing a moisture-resistant lightweight resin molded article using an injection molding machine having a two-stage compression screw, comprising 100 parts by weight of a thermoplastic resin, and an organic foam. A step of melting a thermoplastic resin composition containing 0.001 to 0.5 parts by weight of a chemical foaming agent consisting of only an agent and 0.1 to 1.0 parts by weight of an inorganic foam nucleating agent; It includes a step of supplying a physical foaming agent to a thermoplastic resin composition from the middle of a cylinder of an injection molding machine, and a step of injection foam molding.
なお本発明においては、耐湿性軽量樹脂成形体とは、成形体比重を成形体原料(すなわち熱可塑性樹脂組成物)本来の比重に比べ約10〜50%軽くした成形体であり、加えて高湿環境下や水中に長時間おいた場合に表面にブリスタを生じない成形体として定義される。 In the present invention, the moisture-resistant lightweight resin molded product is a molded product in which the specific gravity of the molded product is about 10 to 50% lighter than the original specific gravity of the molded product raw material (that is, the thermoplastic resin composition). It is defined as a compact that does not produce blisters on the surface when left in a wet environment or in water for a long time.
以下、本発明で原料として用いられる熱可塑性樹脂組成物について説明した後、本発明の耐湿性軽量樹脂成形体の製造方法について詳細に説明する。 Hereinafter, after describing the thermoplastic resin composition used as a raw material in the present invention, the method for producing the moisture-resistant lightweight resin molded body of the present invention will be described in detail.
<熱可塑性樹脂>
本発明の耐湿性軽量樹脂成形体の製造方法に用いる熱可塑性樹脂は、通常の射出成形が可能な熱可塑性樹脂であれば特に制限されず、種々公知の熱可塑性樹脂を用いることができる。具体的には、たとえば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ1−ブテン、ポリメチルペンテンなどのポリオレフィン樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン・2,6−ナフタレート、ポリカーボネートなどのポリエステル樹脂;ナイロン6、ナイロン66、ナイロン11、ナイロン12などのポリアミド樹脂;ポリオキシメチレン、ポリフェニレンエーテルなどのポリエーテル類;ポリ塩化ビニル;ポリスチレン、ABS、AESなどのスチレン系樹脂;エチレン・酢酸ビニル共重合体、エチレン・アクリル酸エステル共重合体、エチレン・メタクリル酸エステル共重合体、アイオノマー共重合体などのエチレン・不飽和カルボン酸(エステル)共重合体などが挙げられる。
<Thermoplastic resin>
The thermoplastic resin used in the method for producing the moisture-resistant lightweight resin molded body of the present invention is not particularly limited as long as it is a thermoplastic resin that can be subjected to normal injection molding, and various known thermoplastic resins can be used. Specifically, for example, polyolefin resins such as polyethylene resin, polypropylene resin, poly 1-butene, polymethylpentene; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene 2,6-naphthalate, polycarbonate; nylon 6, Polyamide resins such as nylon 66, nylon 11 and nylon 12; polyethers such as polyoxymethylene and polyphenylene ether; polyvinyl chloride; styrenic resins such as polystyrene, ABS and AES; ethylene / vinyl acetate copolymer; Examples thereof include ethylene / unsaturated carboxylic acid (ester) copolymers such as acrylic acid ester copolymers, ethylene / methacrylic acid ester copolymers, and ionomer copolymers.
これら熱可塑性樹脂の中ではポリオレフィン樹脂が好ましく、コストパフォーマンス、機械的強度、成形性の観点からポリエチレン樹脂およびポリプロピレン樹脂がさらに好ましく、ポリプロピレン樹脂が特に好ましい。 Of these thermoplastic resins, polyolefin resins are preferred, polyethylene resins and polypropylene resins are more preferred, and polypropylene resins are particularly preferred from the viewpoints of cost performance, mechanical strength, and moldability.
ポリエチレン樹脂としては、高圧法低密度ポリエチレン(HP−LDPE)、線状低密度ポリエチレン(LLDPE)、中密度ポリエチレン(MDPE)、または高密度ポリエチレン(HDPE)のいずれも好ましく使用できる。 As the polyethylene resin, any of high pressure method low density polyethylene (HP-LDPE), linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), or high density polyethylene (HDPE) can be preferably used.
また、ポリプロピレン樹脂としては、プロピレンの単独重合体、プロピレンと少量のエチレン、1−ブテンなどのα−オレフィンとのランダム共重合体、プロピレンの単独重合体またはランダム共重合体と、非晶性または低結晶性のエチレン・プロピレン共重合体(製造条件によっては少量のポリエチレンを含有)とからなるブロック共重合体のいずれも好ましく使用できる。特に、ポリプロピレン樹脂を原料として用いて発泡成形することにより、外観がより良好で、かつ良好な発泡セルを有し、しかも軽量で剛性により優れたポリプロピレン樹脂成形体からなる耐湿性軽量樹脂成形体を容易に効率よく製造することができる。 Further, as the polypropylene resin, a homopolymer of propylene, a random copolymer of propylene and a small amount of ethylene, an α-olefin such as 1-butene, a homopolymer of propylene or a random copolymer, and amorphous or Any block copolymer comprising a low crystalline ethylene / propylene copolymer (containing a small amount of polyethylene depending on the production conditions) can be preferably used. In particular, by foam molding using a polypropylene resin as a raw material, a moisture-resistant lightweight resin molded body comprising a polypropylene resin molded body having a better appearance and having excellent foamed cells, and being light and rigid. It can be manufactured easily and efficiently.
<化学発泡剤>
本発明の耐湿性軽量樹脂成形体の製造方法に用いる化学発泡剤は、有機系発泡剤のみからなる。
<Chemical foaming agent>
The chemical foaming agent used in the method for producing the moisture-resistant lightweight resin molded article of the present invention consists only of an organic foaming agent.
本発明で使用される有機系発泡剤は、特に限定されないが、以下のものを挙げることができる。
(a)N−ニトロソ化合物:N,N’−ジニトロソテレフタルアミド、N,N’−ジニトロソペンタメチレンテトラミン、
(b)アゾ化合物:アゾジカルボンアミド(H2NOCN=NCONH2)、アゾビスイソブチロニトリル、アゾシクロヘキシルニトリル、アゾジアミノベンゼン、バリウムアゾジカルボキシレート、
(c)スルフォニルヒドラジド化合物:ベンゼンスルフォニルヒドラジド、トルエンスルフォニルヒドラジド、p,p’−オキシビス(ベンゼンスルフォニルヒドラジド)、ジフェニルスルフォン−3,3’−ジスルフォニルヒドラジド、
(d)アジド化合物:カルシウムアジド、4,4’−ジフェニルジスルフォニルアジド、p−トルエンスルフォニルアジド、
(e)ポリカルボン酸:シュウ酸、クエン酸、フマル酸、リンゴ酸、酒石酸、シクロヘキサン1,2ジカルボン酸、ショウノウ酸、エチレンジアミン四酢酸、トリエチレンテトラミン六酢酸、ニトリロ酸。
Although the organic foaming agent used by this invention is not specifically limited, The following can be mentioned.
(A) N-nitroso compound: N, N′-dinitrosoterephthalamide, N, N′-dinitrosopentamethylenetetramine,
(B) azo compounds: azodicarbonamide (H 2 NOCN = NCONH 2) , azobisisobutyronitrile, azo cyclohexyl nitrile, azo-diaminobenzene, barium azodicarboxylate,
(C) Sulphonyl hydrazide compound: benzene sulfonyl hydrazide, toluene sulfonyl hydrazide, p, p′-oxybis (benzene sulfonyl hydrazide), diphenyl sulphone-3,3′-disulfonyl hydrazide,
(D) Azide compound: calcium azide, 4,4′-diphenyldisulfonyl azide, p-toluenesulfonyl azide,
(E) Polycarboxylic acid: oxalic acid, citric acid, fumaric acid, malic acid, tartaric acid, cyclohexane 1,2 dicarboxylic acid, camphoric acid, ethylenediaminetetraacetic acid, triethylenetetramine hexaacetic acid, nitrilolic acid.
これら有機系発泡剤の中では、特にアゾジカルボンアミド(ADCA)やクエン酸を使用することが好ましい。また、これら有機系発泡剤は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Among these organic foaming agents, it is particularly preferable to use azodicarbonamide (ADCA) or citric acid. Moreover, these organic foaming agents may be used individually by 1 type, and may be used in combination of 2 or more type.
すなわち、本発明においては、化学発泡剤として、無機系発泡剤を用いることなく、有機系発泡剤のみで用いる。その結果得られる耐湿性軽量樹脂成形体は、水中または高湿環境下でブリスタが発生するという問題はほとんど生じない。その理由として本発明者らは、化学発泡剤として水分と反応し易い無機系発泡剤を用いないため、成形体表面にスワールマークが発生することが抑制されているためであると考えている。 That is, in the present invention, as the chemical foaming agent, only the organic foaming agent is used without using the inorganic foaming agent. As a result, the resulting moisture-resistant light-weight resin molded article hardly has the problem that blisters occur in water or in a high-humidity environment. The reason for this is that the present inventors do not use an inorganic foaming agent that easily reacts with moisture as the chemical foaming agent, and thus suppresses the occurrence of swirl marks on the surface of the molded body.
上記有機系発泡剤は、得られる耐湿性軽量樹脂成形体が内包するセル径を均一化する機能を果たす。すなわち、物理発泡剤のみを用いる発泡成形方法においては、熱可塑性樹脂に溶解した物理発泡剤はミクロ的に不均一な部分が発生するセル生成核となり易いが、物理発泡剤を用いる前に予め熱可塑性樹脂に有機系発泡剤を使用すると、発泡成形体が内包するセル径を均一化することができる。すなわち有機系発泡剤は発泡核剤として作用している。 The organic foaming agent functions to make the cell diameter contained in the moisture-resistant lightweight resin molded body obtained uniform. That is, in the foam molding method using only the physical foaming agent, the physical foaming agent dissolved in the thermoplastic resin is likely to be a cell generation nucleus in which a microscopically uneven portion is generated. When an organic foaming agent is used for the plastic resin, the cell diameter contained in the foamed molded product can be made uniform. That is, the organic foaming agent acts as a foam nucleating agent.
上記有機系発泡剤は、熱可塑性樹脂100重量部に対して0.001〜0.5重量部、好ましくは0.03〜0.5重量部、さらに好ましくは0.05〜0.5重量部用いられる。有機系発泡剤の量が前記範囲にあると、得られる耐湿性軽量樹脂成形体の発泡セルの気泡形成を著しく向上させることができ、異臭の発生や金型汚染等の問題が生じることがない。 The organic foaming agent is 0.001 to 0.5 parts by weight, preferably 0.03 to 0.5 parts by weight, more preferably 0.05 to 0.5 parts by weight, based on 100 parts by weight of the thermoplastic resin. Used. When the amount of the organic foaming agent is within the above range, the formation of bubbles in the foamed cells of the resulting moisture-resistant lightweight resin molded product can be remarkably improved, and problems such as generation of off-flavors and mold contamination do not occur. .
<無機系発泡核剤>
本発明で使用される無機系発泡核剤は、発泡成形体が内包するセル径を均一化することができる。
<Inorganic foam nucleating agent>
The inorganic foam nucleating agent used in the present invention can make the cell diameter contained in the foamed molded article uniform.
無機系発泡核剤としてはシリカ、炭酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、マイカ、クレー、ワラスナイト、アルミナ、酸化鉄、酸化チタン、マグネシア、カーボンブラック、グラファイトなどが挙げられる。これら無機系発泡核剤は1種単独で使用してもよく、2種以上を組み合せて使用してもよい。
無機系発泡核剤としてはシリカが好ましく用いられる。
Examples of the inorganic foam nucleating agent include silica, calcium carbonate, magnesium carbonate, aluminum hydroxide, magnesium hydroxide, barium sulfate, mica, clay, wollastonite, alumina, iron oxide, titanium oxide, magnesia, carbon black, and graphite. . These inorganic foam nucleating agents may be used alone or in combination of two or more.
Silica is preferably used as the inorganic foam nucleating agent.
上記無機系発泡核剤は、熱可塑性樹脂100重量部に対し、0.1〜1.0重量部、好ましくは0.1〜0.7重量部用いられる。無機系発泡核剤の量が、前記範囲内であると、比重が大きくなることがなく、またコストアップになることもなく、発泡成形体が内包するセル径を均一化することができる。 The inorganic foam nucleating agent is used in an amount of 0.1 to 1.0 part by weight, preferably 0.1 to 0.7 part by weight, based on 100 parts by weight of the thermoplastic resin. When the amount of the inorganic foam nucleating agent is within the above range, the specific gravity is not increased and the cell diameter contained in the foamed molded product can be made uniform without increasing the cost.
上記無機系発泡核剤の平均粒径としては0.5μ〜10μmのものが好ましい。また、上記無機系発泡核剤を疎水性に表面処理したものは更に樹脂中への分散性に優れているため、好ましい。 The average particle diameter of the inorganic foam nucleating agent is preferably 0.5 μm to 10 μm. In addition, it is preferable that the inorganic foam nucleating agent is subjected to a hydrophobic surface treatment because it is further excellent in dispersibility in the resin.
<その他添加剤など>
本発明で使用される熱可塑性樹脂組成物には、上記成分に加え、本発明の目的を損なわない範囲で、耐湿性軽量樹脂成形体の用途に応じて、予め種々公知のゴム・エラストマー、無機充填剤、添加剤などを加えていてもよい。
<Other additives>
The thermoplastic resin composition used in the present invention includes various known rubbers / elastomers and inorganics in advance in accordance with the intended use of the moisture-resistant lightweight resin molded body, in addition to the above components, within a range that does not impair the purpose of the present invention. Fillers, additives and the like may be added.
ゴム・エラストマーとしては、具体的には、ポリブチレン、ポリイソブチレン、ポリブタジエン、天然ゴム、熱可塑性ポリウレタン、ポリイソプレン、スチレン−ブタジエンゴム、エチレン−プロピレンゴム、エチレン−ブテンゴム、エチレン−オクテンゴム、エチレン−プロピレン−ジエンゴム、クロロプレンゴムなどが挙げられる。 Specific examples of the rubber / elastomer include polybutylene, polyisobutylene, polybutadiene, natural rubber, thermoplastic polyurethane, polyisoprene, styrene-butadiene rubber, ethylene-propylene rubber, ethylene-butene rubber, ethylene-octene rubber, ethylene-propylene- Examples include diene rubber and chloroprene rubber.
無機充填剤としては、タルク、シリカ、マイカ、炭酸カルシウム、ガラス繊維、ガラスビーズ、硫酸バリウム、水酸化マグネシウム、ワラスナイト、ケイ酸カルシウム繊維、炭素繊維、マグネシウムオキシサルフェート繊維、チタン酸カリウム繊維、酸化チタン、亜硫酸カルシウム、ホワイトカーボン、クレー、硫酸カルシウムなどが挙げられる。これら無機充填剤は1種単独で使用してもよく、2種以上を組み合せて使用してもよい。 Inorganic fillers include talc, silica, mica, calcium carbonate, glass fiber, glass beads, barium sulfate, magnesium hydroxide, wollastonite, calcium silicate fiber, carbon fiber, magnesium oxysulfate fiber, potassium titanate fiber, titanium oxide , Calcium sulfite, white carbon, clay, calcium sulfate and the like. These inorganic fillers may be used alone or in combination of two or more.
添加剤としては、結晶化核剤、酸化防止剤、塩酸吸収剤、耐熱安定剤、耐候安定剤、光安定剤、紫外線吸収剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、帯電防止剤、難燃剤、顔料、染料、分散剤、銅害防止剤、中和剤、可塑剤、気泡防止剤、架橋剤、過酸化物などの流れ性改良剤、ウェルド強度改良剤、天然油、合成油、ワックスなどの公知の添加剤が挙げられる。 Additives include crystallization nucleating agents, antioxidants, hydrochloric acid absorbents, heat stabilizers, weathering stabilizers, light stabilizers, UV absorbers, slip agents, antiblocking agents, antifogging agents, lubricants, antistatic agents , Flame retardants, pigments, dyes, dispersants, copper damage inhibitors, neutralizers, plasticizers, foam inhibitors, crosslinkers, flowability improvers such as peroxides, weld strength improvers, natural oils, synthetic oils And known additives such as wax.
<熱可塑性樹脂組成物>
本発明に用いられる熱可塑性樹脂組成物は、前記熱可塑性樹脂と、前記有機系発泡剤のみからなる化学発泡剤と、前記無機系発泡核剤と、これらの成分に必要に応じて、前記その他の添加剤とを含み、シリンダー導入前に上記有機系発泡剤を含む全ての成分が予め混合している態様と、シリンダー導入前には、上記有機系発泡剤以外の成分が混合されており、上記有機系発泡剤のみをシリンダの途中から注入する態様がある。シリンダー導入前の前記各成分の混合は、公知の混合装置を使用して行うことができる。混合装置としては、例えば、バンバリーミキサー、ニーダー、押出機などが挙げられる。有機系発泡剤をシリンダの途中から注入する場合は、シリンダの圧縮領域で、有機系発泡剤とその他の成分を溶融混合する。
<Thermoplastic resin composition>
The thermoplastic resin composition used in the present invention includes the thermoplastic resin, a chemical foaming agent composed only of the organic foaming agent, the inorganic foaming nucleating agent, and the other components as necessary. And an embodiment in which all the components including the organic foaming agent are mixed in advance before cylinder introduction, and before the cylinder introduction, components other than the organic foaming agent are mixed, There exists an aspect which inject | pours only the said organic type foaming agent from the middle of a cylinder. Mixing of the components before introducing the cylinder can be performed using a known mixing apparatus. Examples of the mixing device include a Banbury mixer, a kneader, and an extruder. When the organic foaming agent is injected from the middle of the cylinder, the organic foaming agent and other components are melted and mixed in the compression region of the cylinder.
前記有機系発泡剤は、発泡助剤などと予め配合して、溶融温度の低いエラストマーやポリエチレンなどの材料と混ぜ合わせてマスターバッチを製造し、これを熱可塑性樹脂に配合してもよい。 The organic foaming agent may be blended in advance with a foaming aid or the like and mixed with a material such as an elastomer or polyethylene having a low melting temperature to produce a masterbatch, which may be blended into a thermoplastic resin.
前記無機系発泡核剤は、発泡核剤量が5〜50重量%の樹脂、ワックス、ゴムを基材としたマスターバッチに加工してこれを熱可塑性樹脂に配合してもよい。マスターバッチに加工すると、成形機のホッパーの汚染、成形表面への粉の付着、スクリューの摩耗を減じることができる。 The inorganic foam nucleating agent may be processed into a master batch based on a resin, wax, or rubber having a foam nucleating agent amount of 5 to 50% by weight and blended with a thermoplastic resin. When processed into a master batch, contamination of the molding machine hopper, adhesion of powder to the molding surface, and screw wear can be reduced.
≪耐湿性軽量樹脂成形体の製造方法≫
本発明の耐湿性軽量樹脂成形体の製造方法は、二段圧縮スクリュを有する射出成形機を用いた耐湿性軽量樹脂成形体の製造方法であって、
(i)熱可塑性樹脂100重量部と、有機系発泡剤のみからなる化学発泡剤0.001〜0.5重量部と、無機系発泡核剤0.1〜1.0重量部とを含む熱可塑性樹脂組成物を溶融する工程と、
(ii)該溶融状態の熱可塑性樹脂組成物に物理発泡剤を該射出成形機のシリンダ途中から供給する工程と、
(iii)射出発泡成形する工程とを含む。
≪Method for manufacturing moisture-resistant lightweight resin molding≫
The method for producing a moisture-resistant lightweight resin molded article of the present invention is a method for producing a moisture-resistant lightweight resin molded article using an injection molding machine having a two-stage compression screw,
(I) Heat including 100 parts by weight of a thermoplastic resin, 0.001 to 0.5 parts by weight of a chemical foaming agent composed only of an organic foaming agent, and 0.1 to 1.0 part by weight of an inorganic foaming nucleating agent Melting the plastic resin composition;
(Ii) supplying a physical foaming agent to the molten thermoplastic resin composition from the middle of a cylinder of the injection molding machine;
(Iii) a step of injection foam molding.
<二段圧縮スクリュを有する射出成形機>
本発明で使用される二段圧縮スクリュを有する射出成形機は、前記熱可塑性樹脂組成物を供給するホッパーと、該熱可塑性樹脂組成物を溶融状態にするシリンダとを備えた可塑化手段と、射出成形機のシリンダ途中に物理発泡剤を供給するガス供給口を備えた、物理発泡剤を該溶融状態の熱可塑性樹脂組成物に混練および溶解させる物理発泡剤供給および溶解手段と、得られた溶融状態の発泡ガス溶解樹脂組成物から発泡成形体を得るための金型を備えた射出成形手段とからなり、シリンダ中にはスクリュを備える。前記ガス供給口は、物理発泡剤供給管を介して物理発泡剤収納手段と通じている。また、有機系発泡剤をシリンダ途中で加えて熱可塑性樹脂組成物を製造する態様においては、シリンダ途中に有機系発泡剤供給口を有する。
<Injection molding machine with two-stage compression screw>
An injection molding machine having a two-stage compression screw used in the present invention comprises a hopper for supplying the thermoplastic resin composition, and a plasticizing means comprising a cylinder for bringing the thermoplastic resin composition into a molten state, A physical foaming agent supplying and dissolving means for kneading and dissolving the physical foaming agent in the molten thermoplastic resin composition, provided with a gas supply port for supplying the physical foaming agent in the middle of the cylinder of the injection molding machine, and obtained The injection molding means is provided with a mold for obtaining a foamed molded product from the foamed gas-dissolved resin composition in a molten state, and a screw is provided in the cylinder. The gas supply port communicates with physical foaming agent storage means via a physical foaming agent supply pipe. Moreover, in the aspect which adds an organic type foaming agent in the middle of a cylinder and manufactures a thermoplastic resin composition, it has an organic type foaming agent supply port in the middle of a cylinder.
以下、二段圧縮スクリュの構成について一例を挙げて説明する。前記スクリュは第一段目および第二段目の各段において供給・圧縮・計量の領域を持つ。スクリュの溝は、第一段目の圧縮領域では、深く、第一段目の前方にかけて徐々に浅くなり、第二段目の供給部で急に深くなり、第二段目の前方にかけて徐々に浅くなる。第一段目のスクリュがこのような形状であるのは、ペレットを前方に送るとともに、樹脂組成物中の空気を抜くためであり、第二段目の供給部で急に溝が深くなり、断面積が大きくなるのは、溶融状態の熱可塑性樹脂組成物の圧力を物理発泡剤供給圧力より低下させ、溶融樹脂組成物を飢餓状態に近くすることにより、容易に物理発泡剤を供給することができ、かつ溶融樹脂の他に気体が注入可能な空間を作るためである。 Hereinafter, an example is given and demonstrated about the composition of a two-stage compression screw. The screw has supply / compression / metering areas in the first and second stages. The screw groove is deep in the compression region of the first stage, gradually becomes shallow toward the front of the first stage, suddenly deepens at the supply part of the second stage, and gradually toward the front of the second stage. It becomes shallower. The first stage screw has such a shape to feed the pellets forward and to remove air in the resin composition, and the groove suddenly becomes deeper in the second stage supply section. The cross-sectional area is increased because the physical foaming agent is easily supplied by lowering the pressure of the molten thermoplastic resin composition below the physical foaming agent supply pressure and bringing the molten resin composition close to starvation. This is to create a space in which gas can be injected in addition to the molten resin.
シリンダには、物理発泡剤導入のためのガス供給口を二段圧縮スクリュの第二段目の供給部に相当するの位置に設けることが好ましく、任意の有機系発泡剤供給口を二段圧縮スクリュの第一段目の供給部に相当する位置に設けることが好ましい。 The cylinder is preferably provided with a gas supply port for introducing a physical foaming agent at a position corresponding to the second-stage supply part of the two-stage compression screw, and any organic foaming agent supply port is compressed in two stages. Preferably, the screw is provided at a position corresponding to the first stage supply portion of the screw.
上記射出成形機は、高速射出が可能な成形機が好ましく、射出率としては、通常400cc/秒以上、好ましくは600cc/秒以上、さらに好ましくは800cc/秒以上で射出可能な成形機を用いる。なお射出率とは、射出成形機が射出可能な能力を示す指標として一般的に用いられる指標であり、1秒間に成形機が射出可能な容積(cc/秒)で表される。この射出率を用いると射出成形機の大きさや種類が異なっても、成形機が金型内に射出する樹脂の流速を規定することができる。 The injection molding machine is preferably a molding machine capable of high-speed injection, and a molding machine capable of injection at an injection rate of usually 400 cc / second or more, preferably 600 cc / second or more, more preferably 800 cc / second or more is used. The injection rate is an index that is generally used as an index indicating the ability of the injection molding machine to inject, and is represented by a volume (cc / second) that can be injected by the molding machine per second. When this injection rate is used, the flow rate of the resin injected into the mold by the molding machine can be defined even if the size and type of the injection molding machine are different.
上記射出成形機へ物理発泡剤を供給するためのシリンダ途中に設けられたガス供給口には、樹脂逆流防止機構が設けられていることが好ましい。前記樹脂逆流防止機構としては、物理発泡剤の供給口を開閉閉止する機構、焼結ベントのような微細口を有する機構、金属粉末を押し固めたり金属網を重ねて焼結した焼結金属などを有する機構を使用することができる。 It is preferable that a resin backflow prevention mechanism is provided at a gas supply port provided in the middle of the cylinder for supplying the physical foaming agent to the injection molding machine. Examples of the resin backflow prevention mechanism include a mechanism for opening and closing a physical foaming agent supply port, a mechanism having a fine port such as a sintered vent, a sintered metal obtained by compacting and sintering metal powder or overlapping a metal net, etc. A mechanism with can be used.
物理発泡剤収納手段の例としては、ボンベ、タンクが挙げられる。
また、物理発泡剤の供給配管には保温機構が設けられていることが好ましい。保温機構を設けることによって、周辺環境(特に環境温度)が変化しても常に物理発泡剤を安定的に供給することが可能となり、発泡ムラを防止することができ、特に量産時にその威力を発揮する。また、これにより、季節や時間による生産の安定性が悪化することを防ぐこともできる。さらに、この保温機構はガス供給口に設けられた発泡ガスの逆流防止機構の固化を防ぐ機能も併せ持つ。この保温機構は、射出成形機バレルの廃熱を利用することが好ましい。
Examples of the physical foaming agent storage means include a cylinder and a tank.
Moreover, it is preferable that a heat retention mechanism is provided in the supply pipe for the physical foaming agent. By providing a heat retention mechanism, it becomes possible to always supply a physical foaming agent stably even if the surrounding environment (especially the environmental temperature) changes, preventing foaming unevenness, especially in mass production. To do. This can also prevent the production stability due to the season and time from deteriorating. Furthermore, this heat retention mechanism also has a function of preventing solidification of the backflow prevention mechanism for the foaming gas provided at the gas supply port. This heat retention mechanism preferably uses waste heat of the injection molding machine barrel.
<(i)熱可塑性樹脂100重量部と、有機系発泡剤のみからなる化学発泡剤0.001〜0.5重量部と、無機系発泡核剤0.1〜1.0重量部とを含む熱可塑性樹脂組成物を溶融する工程>
先ず、熱可塑性樹脂組成物をホッパーから供給し、射出成形機のシリンダ内にて該熱可塑性樹脂組成物を可塑化・混錬して溶融状態(以下、「溶融樹脂」ともいう。)にする。
<(I) 100 parts by weight of a thermoplastic resin, 0.001 to 0.5 parts by weight of a chemical foaming agent composed only of an organic foaming agent, and 0.1 to 1.0 part by weight of an inorganic foaming nucleating agent Process of melting thermoplastic resin composition>
First, a thermoplastic resin composition is supplied from a hopper, and the thermoplastic resin composition is plasticized and kneaded in a cylinder of an injection molding machine to be in a molten state (hereinafter also referred to as “molten resin”). .
ホッパーから供給される前記熱可塑性樹脂組成物が、予め前記有機系発泡剤を含んでいない場合、前記有機系発泡剤は、シリンダー途中、好ましくは第一段目のスクリュの供給領域で、熱可塑性樹脂、無機系発泡核剤および任意のその他添加剤の混合物に加えてもよい。 When the thermoplastic resin composition supplied from the hopper does not contain the organic foaming agent in advance, the organic foaming agent is thermoplastic in the middle of the cylinder, preferably in the first stage screw supply region. It may be added to a mixture of resin, inorganic foam nucleating agent and any other additives.
具体例としては、第一段目のスクリュの供給領域でホッパーより熱可塑性樹脂組成物を供給し、圧縮領域で熱可塑性樹脂組成物を溶融、混錬および/または可塑化を行い、その下流の計量領域でさらに熱可塑性樹脂組成物に含まれる熱可塑性樹脂と有機系発泡剤との分散を均一化するための混錬を行う。 As a specific example, a thermoplastic resin composition is supplied from a hopper in a first stage screw supply region, and the thermoplastic resin composition is melted, kneaded and / or plasticized in a compression region, and downstream of the thermoplastic resin composition. In the metering region, kneading is further performed to make the dispersion of the thermoplastic resin and the organic foaming agent contained in the thermoplastic resin composition uniform.
<(ii)該溶融状態の熱可塑性樹脂組成物に物理発泡剤を該射出成形機のシリンダ途中から供給する工程>
有機系発泡剤から発生した発泡ガスを含有する溶融樹脂に、前記ガス供給口から物理発泡剤を供給し、混練および溶解させる。この物理発泡剤は、第二段目のスクリュの供給領域で供給されることが好ましい。ここで、第一段目のスクリュの計量領域に比べて第二段目の供給領域の溝を深くすることにより、樹脂圧を急激に低下させることが好ましい。この減圧により、溶融樹脂は飢餓状態に近くなり、容易に物理発泡剤を供給することができる。また、第二段目のスクリュの供給領域から圧縮領域、計量領域と下流方向に圧力を上
昇させることにより、供給された物理発泡剤と溶融樹脂との混練および溶解を促進することができる。
<(Ii) Step of supplying a physical foaming agent to the molten thermoplastic resin composition from the middle of the cylinder of the injection molding machine>
A physical foaming agent is supplied from the gas supply port to a molten resin containing a foaming gas generated from an organic foaming agent, and is kneaded and dissolved. This physical foaming agent is preferably supplied in the supply region of the second stage screw. Here, it is preferable to sharply lower the resin pressure by deepening the groove in the second-stage supply region as compared with the measurement region of the first-stage screw. Due to this reduced pressure, the molten resin becomes close to a starvation state, and the physical foaming agent can be easily supplied. Further, by increasing the pressure in the downstream direction from the supply region of the second stage screw to the compression region and the metering region, kneading and dissolution of the supplied physical foaming agent and the molten resin can be promoted.
具体例としてはスクリュの第二段目の供給部で溝の断面積を拡大することにより溶融状態の熱可塑性樹脂組成物の圧力を物理発泡剤供給圧力より低下させた後、ガス供給部から物理発泡剤を供給し、さらにその下流方向に圧力を上昇させながら供給された物理発泡剤と溶融状態の熱可塑性樹脂組成物を混練および溶解させ、さらにその下流の計量領域で溶融状態の熱可塑性樹脂組成物に対する物理発泡剤の分散性を向上させる。 As a specific example, the pressure of the molten thermoplastic resin composition is lowered from the physical foaming agent supply pressure by enlarging the cross-sectional area of the groove at the second stage supply part of the screw, and then the physical supply from the gas supply part. The blowing agent is supplied, and the supplied physical blowing agent and the molten thermoplastic resin composition are kneaded and dissolved while increasing the pressure in the downstream direction, and the molten thermoplastic resin is further melted in the downstream measurement region. Improves the dispersibility of the physical foaming agent in the composition.
<物理発泡剤>
本発明の耐湿性軽量樹脂成形体の製造方法に用いる物理発泡剤としては、通常の物理発泡剤であれば特に制限されず、二酸化炭素、窒素、アルゴン、ヘリウム、ネオンなどの不活性ガスが挙げられる。これらの中で、安価で、環境汚染、火災の危険性が極めて少ない二酸化炭素、窒素、アルゴンがもっとも優れている。また、物理発泡剤は、液体状態、超臨界状態、および気体状態のいずれも使用可能であるが、気体状態で使用することが取り扱いおよび安全性の観点から好ましい。
<Physical foaming agent>
The physical foaming agent used in the method for producing the moisture-resistant lightweight resin molded body of the present invention is not particularly limited as long as it is a normal physical foaming agent, and examples thereof include inert gases such as carbon dioxide, nitrogen, argon, helium, and neon. It is done. Among these, carbon dioxide, nitrogen, and argon are the best because they are inexpensive and have very little risk of environmental pollution and fire. The physical foaming agent can be used in any of a liquid state, a supercritical state, and a gas state, but it is preferable to use the physical foaming agent from the viewpoint of handling and safety.
また、本発明における物理発泡剤の供給量は、得られる耐湿性軽量樹脂成形体の要求物性に応じて、好ましい発泡倍率などを考慮して選択されるが、上記有機系発泡剤のみからなる化学発泡剤を含む熱可塑性樹脂組成物に対して、通常0.1〜2.0重量%、好ましくは0.1〜1.0重量%、さらに好ましくは0.1〜0.7重量%の範囲にある。物理発泡剤の供給量が前記範囲を超えると、得られる成形体の発泡倍率自体は上がるが、スワールマークやディンプルが大量に発生することがある。このため、無塗装成形体はもちろんのこと、たとえ塗装をしても場所による光沢ムラが発生したり、成形体に曇りが発生し、外観が悪くなり実際の商品として使用することができない場合がある。
なお、物理発泡剤の供給量は、単位樹脂あたりの物理発泡剤消費量をボンベの重量測定によって算出する。
The supply amount of the physical foaming agent in the present invention is selected according to the required physical properties of the obtained moisture-resistant lightweight resin molded product in consideration of a preferable foaming ratio, etc. The range of 0.1 to 2.0% by weight, preferably 0.1 to 1.0% by weight, more preferably 0.1 to 0.7% by weight, based on the thermoplastic resin composition containing the foaming agent. It is in. When the supply amount of the physical foaming agent exceeds the above range, the foaming ratio itself of the obtained molded product increases, but swirl marks and dimples may be generated in large quantities. For this reason, not only the unpainted molded product, even if it is painted, uneven gloss depending on the location may occur, the molded product may become cloudy, the appearance will deteriorate, and it may not be used as an actual product is there.
The supply amount of the physical foaming agent is calculated by measuring the physical foaming agent consumption per unit resin by measuring the weight of the cylinder.
<(iii)射出発泡成形する工程>
物理発泡剤を溶解させた溶融樹脂を、射出成形機に取り付けた型締状態の金型キャビティ内に射出後、発泡させる。
<(Iii) Step of injection foam molding>
A molten resin in which a physical foaming agent is dissolved is injected into a mold cavity in a mold-clamped state attached to an injection molding machine and then foamed.
上記発泡方法としては、キャビティ容積を変化させないショートショット発泡やヒケ防止発泡などの発泡方法でもよいが、キャビティ容積を増大させて発泡させる発泡方法(コアバック)が発泡倍率の高い射出発泡成形体が得られるため好ましい。 The foaming method may be a foaming method such as short shot foaming or anti-sink foaming that does not change the cavity volume, but the foaming method (core back) that increases the cavity volume and foams is an injection foamed molded article with a high foaming ratio. Since it is obtained, it is preferable.
上記キャビティ容積を増大させて発泡させる方法(コアバック)においては、金型キャビティ内に溶融樹脂を射出した後、適度な時間を置き、キャビティ容積を増大させることが好ましい。キャビティ容積を増大させる好適な方法としては、金型キャビティの壁を構成する金属板を油圧シリンダもしくは空圧シリンダ、またはモータなどを使用した機構を用い移動させる方法や、射出成形機の可動側金型取り付け盤自体を型開方向に微小移動する方法などが挙げられる。 In the method of foaming by increasing the cavity volume (core back), it is preferable to increase the cavity volume by placing an appropriate time after injecting the molten resin into the mold cavity. As a preferable method for increasing the cavity volume, a metal plate constituting the wall of the mold cavity is moved using a mechanism using a hydraulic cylinder, a pneumatic cylinder, or a motor, or a movable side mold of an injection molding machine. For example, there is a method of moving the mold mounting plate itself in the mold opening direction.
なお、射出開始時のキャビティの空間厚み(T0)が、好ましくは1.0〜3.0mm
、より好ましくは1.0〜2.5mm、さらに好ましくは1.0〜2.0mmの範囲にあると、成形体の外観が良好となる。また、射出開始時のキャビティの空間厚み(T0)と
可動型後退後のキャビティの空間厚み(T1)との比(T1/T0)は、好ましくは1.2
〜3.0、より好ましくは1.2〜2.5、さらに好ましくは1.3〜2.0の範囲にある。
Note that the cavity space thickness (T 0 ) at the start of injection is preferably 1.0 to 3.0 mm.
When the thickness is in the range of 1.0 to 2.5 mm, more preferably 1.0 to 2.0 mm, the appearance of the molded article becomes good. Further, the ratio (T 1 / T 0 ) between the cavity space thickness (T 0 ) at the start of injection and the cavity space thickness (T 1 ) after the movable mold retreats is preferably 1.2.
-3.0, more preferably 1.2-2.5, and still more preferably 1.3-2.0.
また、上記のように金型キャビティ内に一度に溶融樹脂を射出することにより、金型と接する溶融樹脂表面は内部に比べ早く固化し、成形体表面に未発泡のスキン層を形成することができる。これにより、固い製品形状を形成および維持することができ、内部の発泡状態が均一で、高剛性の成形体を得ることができる。前記スキン層の厚みは特に限定されないが、好ましくは0.1mm以上、より好ましくは0.3mm以上である。 In addition, by injecting molten resin at once into the mold cavity as described above, the surface of the molten resin in contact with the mold is solidified faster than the inside, and an unfoamed skin layer can be formed on the surface of the molded body. it can. As a result, a solid product shape can be formed and maintained, and a highly rigid molded body having a uniform internal foamed state can be obtained. Although the thickness of the said skin layer is not specifically limited, Preferably it is 0.1 mm or more, More preferably, it is 0.3 mm or more.
上記スキン層を形成するためのコアバック開始のタイミングは、熱可塑性樹脂の種類、有機系発泡剤および物理発泡剤の種類、金型温度ならびに溶融樹脂温度により異なるが、たとえば物理発泡剤として二酸化炭素を用い、熱可塑性樹脂として通常のポリプロピレン樹脂を用いた場合には、射出完了後から0.5〜4秒程度が好ましい。射出完了後からコアバック開始までの時間が短すぎると、溶融樹脂の先端はまだ流動しており、流動先端にスワールマークが発現し、外観の悪化の原因となったり、十分な厚みのスキン層が形成されないことがある。また、射出完了後からコアバック開始までの時間が長すぎると溶融樹脂の固化が進行して、コアバックしても十分な発泡倍率が得られない。ただし、通常の射出成形機においては、射出完了後からコアバック開始までの時間をたとえ0秒に設定しても、射出時の型締め圧力が低下する時間が0.5〜1秒程度存在するため、設定上は射出完了と同時に型開きを行ってもショートショットやスワールマーク発生の問題はほとんど起こらない。 The core back start timing for forming the skin layer varies depending on the type of thermoplastic resin, the type of organic foaming agent and physical foaming agent, the mold temperature, and the molten resin temperature. When a normal polypropylene resin is used as the thermoplastic resin, it is preferably about 0.5 to 4 seconds after completion of the injection. If the time from the completion of injection to the start of the core back is too short, the tip of the molten resin is still flowing, swirl marks appear at the tip of the flow, causing deterioration of the appearance, and a skin layer with sufficient thickness May not be formed. Further, if the time from the completion of injection to the start of the core back is too long, solidification of the molten resin proceeds, and a sufficient foaming ratio cannot be obtained even if the core is backed. However, in a normal injection molding machine, even if the time from the completion of injection to the start of the core back is set to 0 seconds, there is a time during which the mold clamping pressure at the time of injection is about 0.5 to 1 second. Therefore, in terms of setting, even if the mold is opened at the same time as the completion of injection, there is almost no problem of short shots or swirl marks.
コアバック時のコア移動速度も、成形体厚み、熱可塑性樹脂の種類、有機系発泡剤および物理発泡剤の種類、金型温度ならびに溶融樹脂温度により異なるが、たとえば物理発泡剤として二酸化炭素を用い、熱可塑性樹脂として通常のポリプロピレン樹脂を用いた場合、0.01〜50mm/秒程度が好ましい。コア移動の速度が遅過ぎると、コアバックの途中で溶融樹脂が固化し、十分な発泡倍率が得られない。また、コア移動の速度が速すぎると発泡セルの発生および成長がコアの移動に追随せず、発泡セルが破壊し良好な成形体が得られない。 The core moving speed during core back also varies depending on the thickness of the molded product, the type of thermoplastic resin, the types of organic foaming agent and physical foaming agent, mold temperature and molten resin temperature. For example, carbon dioxide is used as the physical foaming agent. When a normal polypropylene resin is used as the thermoplastic resin, it is preferably about 0.01 to 50 mm / second. When the core moving speed is too slow, the molten resin is solidified in the middle of the core back, and a sufficient foaming ratio cannot be obtained. On the other hand, if the core moving speed is too high, the generation and growth of the foamed cells do not follow the core movement, and the foamed cells are destroyed and a good molded product cannot be obtained.
また、コアバックは、数段階に分けて行うことも可能であり、これにより高発泡、微細発泡セルを有する成形体が得られる。
金型温度は、使用する熱可塑性樹脂の成形に通常用いられる金型温度で成形するが、厚みが薄い成形体や、発泡倍率が高い成形体を得る場合は、通常の金型温度より高めに設定するとよい。たとえば、物理発泡剤として二酸化炭素を用い、熱可塑性樹脂として通常のポリプロピレン樹脂を用いた場合、金型温度は好ましくは10〜80℃程度、より好ましくは20〜60℃程度の範囲にある。
Further, the core back can be performed in several stages, whereby a molded body having highly foamed and finely foamed cells can be obtained.
Mold temperature is the same as the mold temperature normally used for molding the thermoplastic resin to be used. However, when obtaining a molded product with a thin thickness or a foam with a high expansion ratio, the mold temperature should be higher than the normal mold temperature. It is good to set. For example, when carbon dioxide is used as the physical foaming agent and a normal polypropylene resin is used as the thermoplastic resin, the mold temperature is preferably in the range of about 10 to 80 ° C, more preferably about 20 to 60 ° C.
また、金型温度に関しては、熱可塑性樹脂として結晶性樹脂を使用する場合、射出する時の金型キャビティの表面温度を、該結晶性樹脂の結晶化温度から溶融温度の間にすると、成形体の表面にスワールマークが発現しない高外観で高発泡の成形体を得ることができる。また、熱可塑性樹脂として非結晶性樹脂を使用する場合においても、同様に、該非結晶性樹脂の軟化点から溶融温度の間がスワールマーク抑制の温度となる。ただし金型キャビティの表面温度を高くすると冷却が阻害され、金型キャビティの表面に接する溶融樹脂の表面温度を結晶化温度または軟化点以下に低下させないと成形体として金型から取り出すことが困難となる。このため成形サイクルが長くなったり、金型温度を成形サイクル中に昇降させる温度制御装置を必要とするという問題がある。なお、このような金型温度を昇降させる機構を備え付けた金型も、本発明の成形体の製造方法に用いることができる。 As for the mold temperature, when a crystalline resin is used as the thermoplastic resin, if the surface temperature of the mold cavity at the time of injection is between the crystallization temperature of the crystalline resin and the melting temperature, the molded body It is possible to obtain a high-foamed and highly-foamed molded body that does not exhibit swirl marks on its surface. Similarly, when an amorphous resin is used as the thermoplastic resin, the temperature between the softening point and the melting temperature of the amorphous resin is the swirl mark suppression temperature. However, if the surface temperature of the mold cavity is increased, cooling is hindered, and it is difficult to remove from the mold as a molded body unless the surface temperature of the molten resin in contact with the surface of the mold cavity is lowered below the crystallization temperature or the softening point. Become. For this reason, there exists a problem that a shaping | molding cycle becomes long or the temperature control apparatus which raises / lowers mold temperature during a shaping | molding cycle is required. In addition, the metal mold | die provided with the mechanism which raises / lowers such metal mold temperature can also be used for the manufacturing method of the molded object of this invention.
他方、金型温度を昇降させるかわりに、金型キャビティ周囲を円形状、板状、チューブ、ホース状、矩形または台形など各種形状の断面を持つゴムシールにてシールして、金型キャビティ内にエア、二酸化炭素または窒素などのガスを注入して圧力を掛けた状態で射出を行う、カウンタプレッシャ法を用いて成形を行う方法も、本発明の耐湿性軽量樹脂成
形体の製造方法に適用することができる。
On the other hand, instead of raising or lowering the mold temperature, the periphery of the mold cavity is sealed with a rubber seal having various cross-sections such as circular, plate, tube, hose, rectangular or trapezoidal, and air is injected into the mold cavity. In addition, a method of molding using a counter pressure method, in which a gas such as carbon dioxide or nitrogen is injected and injection is applied, is also applicable to the method for producing a moisture-resistant lightweight resin molded body of the present invention. Can do.
冷却時間は、成形体取り出し後、内部ガス圧で生じる成形体の膨れを抑制するため、および成形体表面を固化するために設ける時間であり一般的に5〜40秒程度である。
また、本発明では、通常の射出成形で用いられるホットランナ、シャットオフノズルまたはバルブゲートなどを利用することもできる。ホットランナ、シャットオフノズルまたはバルブゲートは、ランナなど廃樹脂の発生を押さえるだけでなく、発泡剤を含有する熱可塑性樹脂組成物がランナからキャビティに漏れ出し次サイクルの発泡成形体の外観不良,発泡不良を防止する効果がある。
The cooling time is a time provided for suppressing the swelling of the molded body caused by the internal gas pressure after taking out the molded body and for solidifying the surface of the molded body, and is generally about 5 to 40 seconds.
In the present invention, a hot runner, a shut-off nozzle, a valve gate, or the like used in normal injection molding can also be used. Hot runners, shut-off nozzles or valve gates not only suppress the generation of waste resin such as runners, but the thermoplastic resin composition containing a foaming agent leaks from the runner into the cavity, resulting in poor appearance of the foam molded product in the next cycle. It has the effect of preventing foaming defects.
<耐湿性軽量樹脂成形体>
本発明の耐湿性軽量樹脂成形体の製造方法によれば、成形体内部のセル形状、セル密度および/または発泡倍率に多少の分布が発生しても、スキン層の平滑性、剛性、耐湿性、軽量性および外観に優れた耐湿性軽量樹脂成形体が得られる。
<Moisture resistant lightweight resin molding>
According to the method for producing a moisture-resistant lightweight resin molded body of the present invention, even if some distribution occurs in the cell shape, cell density and / or foaming ratio inside the molded body, the smoothness, rigidity, and moisture resistance of the skin layer. Thus, a moisture-resistant lightweight resin molded article excellent in lightness and appearance can be obtained.
本発明の製造方法では、発泡倍率および外観性能は、上述の射出される溶融樹脂の温度、射出速度、射出終了からコアバック開始までの待ち時間、コアバック量、コアバック速度および/またはコアバック終了後の冷却時間などによって適宜制御することができる。 In the production method of the present invention, the expansion ratio and appearance performance are the temperature of the injected molten resin, the injection speed, the waiting time from the end of injection to the start of core back, the core back amount, the core back speed and / or the core back. It can be appropriately controlled depending on the cooling time after completion.
上記耐湿性軽量樹脂成形体が独立気泡を有する製品の場合は、平均セル径は、0.1〜1.0mm程度である。また、製品形状や製品の用途によっては、平均セル径が数mmでありそのセルの一部が連通したものが一部存在しても、成形体表面に内部セルのサイズまたは連通化による凹凸が生じなく、かつ成形体をある程度湾曲した時に成形体の表面と裏面との厚み変化がほとんど無ければ、成形体として問題は生じない。 In the case where the moisture-resistant lightweight resin molded product is a product having closed cells, the average cell diameter is about 0.1 to 1.0 mm. Depending on the product shape and product application, the surface of the molded product may have irregularities due to the size of the internal cells or communication even if there are some cells with an average cell diameter of several millimeters and some of the cells communicating. If it does not occur and there is almost no change in thickness between the front surface and the back surface of the molded body when the molded body is curved to some extent, there will be no problem as a molded body.
高発泡製品の場合、発泡セルは共に会合・連通化し、発泡製品は一種の中空に近い状態になるが、空洞化した中に柱として樹脂の延伸された支柱が存在するため、高度に軽量化され、強固な剛性を有する製品を製造することが可能である。これら高発泡製品はダンボールなどの代替え品などに最適である。 In the case of highly foamed products, the foamed cells are associated and communicated together, and the foamed product becomes a kind of hollow, but because there are struts stretched with resin as columns in the hollow, it is highly lightweight. Thus, it is possible to manufacture a product having strong rigidity. These highly foamed products are ideal for substitutes such as cardboard.
本発明の製造方法で得られる耐湿性軽量樹脂成形体の密度は、通常0.4〜0.8g/cm3の範囲、好ましくは0.5〜0.8g/cm3の範囲にある。本発明の製造方法で得られる耐湿性軽量樹脂成形体の密度は通常前記範囲にあるため、軽量であり、自動車などの外装部品に好適に用いることができる。 Density of the resulting moisture resistance lightweight resin molded article by the process of the present invention is usually in the range of 0.4 to 0.8 g / cm 3, preferably in the range of 0.5~0.8g / cm 3. Since the density of the moisture-resistant lightweight resin molded article obtained by the production method of the present invention is usually in the above range, it is lightweight and can be suitably used for exterior parts such as automobiles.
本発明の製造方法で得られる耐湿性軽量樹脂成形体は、水中または多湿環境下においても外観が悪化しない耐湿性軽量樹脂成形体であり、たとえばバンパー、モール、アンダーカバーなどの自動車外装材への適用、またパレット、コンテナなどの産業用用途への適用、その他にキッチン、トイレ、浴室などの水周り製品、たとえば洗濯機の洗濯槽や蓋、浴室の椅子などへの適用も可能となる。また、印刷、塗装または加飾加工が加えられた自動車外装材としても好適に用いることができる。 The moisture-resistant lightweight resin molded product obtained by the production method of the present invention is a moisture-resistant lightweight resin molded product whose appearance does not deteriorate even in water or in a humid environment. For example, it can be applied to automobile exterior materials such as bumpers, moldings, and undercovers. It can also be applied to industrial applications such as pallets and containers, as well as water-related products such as kitchens, toilets, and bathrooms, such as washing machine wash tubs and lids, and bathroom chairs. Moreover, it can use suitably also as an automotive exterior material to which printing, painting, or a decoration process was added.
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、本発明の製造方法により得られる耐湿性軽量樹脂成形体の評価方法などは以下の通りである。
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.
In addition, the evaluation method etc. of the moisture-resistant lightweight resin molding obtained by the manufacturing method of this invention are as follows.
〔耐湿性軽量樹脂成形体の密度測定方法〕
耐湿性軽量樹脂成形体の密度は、JIS K7222Aに準拠して測定した。発泡不良
で板厚に大きなバラツキを生じるものは、密度にもバラツキを生じるため評価不能とした。
[Density measurement method for moisture-resistant lightweight resin moldings]
The density of the moisture-resistant lightweight resin molded body was measured according to JIS K7222A. Those having a large variation in the plate thickness due to poor foaming were not evaluated because the density also varied.
〔外観評価方法〕
耐湿性軽量樹脂成形体の表面を目視で観察し、次の基準で判定した。
[Appearance evaluation method]
The surface of the moisture-resistant lightweight resin molding was visually observed and judged according to the following criteria.
<板厚>
ノギスにて耐湿性軽量樹脂成形体の板厚を三箇所測定し平均して求めた。発泡不良で板厚に大きなバラツキを生じるものは評価不能とした。
<Thickness>
Three plate thicknesses of the moisture-resistant lightweight resin molding were measured with a vernier caliper and averaged. Evaluations were not possible for foaming defects that caused large variations in plate thickness.
<セル状態>
○:良好、△:セルはやや大きいが外観への影響無し、×:セルが大きく耐湿性軽量樹脂成形体表面に凹凸発生またはセル連通化、評価不能:発泡不良で発泡状態バラツキ大
<Cell state>
○: Good, △: Slightly large cell but no effect on appearance, ×: Large cell and moisture-resistant, light-weight molded resin surface has unevenness or cell connection, cannot be evaluated: Poor foaming and large variation in foamed state
<表面凹凸ディンプル>
○:無し、△:裏面に発生、×:表面・裏面ともに発生(発泡不良による変形を含む)
<Surface uneven dimple>
○: None, △: Occurred on the back surface, x: Occurred on both the front and back surfaces (including deformation due to poor foaming)
<スワールマーク>
○:ほとんど確認できず、△:やや多め、×:多い
<Swirl mark>
○: Almost no confirmation, △: Slightly more, ×: Many
<耐湿性軽量樹脂成形体形状>
○:良好(無し)、×:変形有り(凹み、シワ、厚みムラ)
<Moisture resistant lightweight resin molding shape>
○: Good (none), ×: Deformed (dent, wrinkle, uneven thickness)
<熱間耐水試験後外観>
耐湿性軽量樹脂成形体を5cm×5cmに切り出し、80℃×24時間および40℃×240時間の条件下で、水中に浸漬した後に外観評価を行い、表面のブリスタの発生を確認した。
○:良好、×:不良、評価不能:外観不良(試験片変形大またはスワールマーク過多)で評価不能
<Appearance after hot water resistance test>
The moisture-resistant lightweight resin molded body was cut out to 5 cm × 5 cm, and after being immersed in water under the conditions of 80 ° C. × 24 hours and 40 ° C. × 240 hours, appearance evaluation was performed to confirm occurrence of surface blisters.
○: Good, ×: Poor, unevaluable: Appearance is unsatisfactory due to poor appearance (large deformation of specimen or excessive swirl mark)
〔実施例1〕
ポリプロピレン樹脂(プライムポリマー(株)製、商品名:プライムポリプロTSOP−GP6B)100重量部に、有機系発泡剤マスターバッチ(永和化成(株)社製 EE206E ADCA)を有機系発泡剤の量として0.06重量部、無機系(シリカ)発泡核剤マスターバッチ(商品名:プライムポリプロ MB401(粒径:2μm)をシリカとして0.3重量部となるように加えてドライブレンドし、熱可塑性樹脂組成物ペレットを調製した。
[Example 1]
100 parts by weight of a polypropylene resin (manufactured by Prime Polymer Co., Ltd., trade name: Prime Polypro TSOP-GP6B), and an organic foaming agent master batch (EE206E ADCA, manufactured by Eiwa Kasei Co., Ltd.) as the amount of the organic foaming agent is 0. .06 parts by weight, inorganic (silica) foam nucleating agent masterbatch (trade name: Prime Polypro MB401 (particle size: 2 μm) added as silica to 0.3 parts by weight, dry blended, thermoplastic resin composition A pellet was prepared.
宇部興産機械(株)製の射出成形機(商品名:MD850S−III)のホッパーに上記樹脂組成物ペレットを供給して溶融し、溶融状態の樹脂組成物(溶融樹脂)に、シリンダ途中から物理発泡剤としてCO2を0.2重量%供給し、溶解・混錬した。 The above resin composition pellets are supplied to the hopper of an injection molding machine (trade name: MD850S-III) manufactured by Ube Industries Co., Ltd. and melted, and the molten resin composition (molten resin) is physically processed from the middle of the cylinder. 0.2% by weight of CO 2 was supplied as a foaming agent and dissolved and kneaded.
CO2が混錬溶解した230℃の溶融樹脂を、金型キャビティの空間厚み(T0)が1.8mm、表面温度が40℃の金型に、0.8秒間で射出して金型キャビティ内に充填した。なお、射出時間は射出開始から溶融樹脂の全量を射出し終わるまでの時間とした。 A mold cavity is produced by injecting a molten resin at 230 ° C. in which CO 2 is kneaded and melted into a mold having a mold cavity space thickness (T 0 ) of 1.8 mm and a surface temperature of 40 ° C. in 0.8 seconds. Filled in. The injection time was the time from the start of injection to the end of injection of the entire amount of molten resin.
上記溶融樹脂の射出完了から0.5秒後にコアバックを開始し、コア移動速度を20mm/秒で金型キャビティの空間厚み(T1)を2.8mmへとし、縦50cm、横80c
mの耐湿性軽量樹脂成形体を得た。冷却時間は30秒とした。得られた耐湿性軽量樹脂成形体の板厚および密度の実測値と外観の観察結果とを表1に示す。
The core back is started 0.5 seconds after the completion of the injection of the molten resin, the core moving speed is 20 mm / second, the space thickness (T 1 ) of the mold cavity is 2.8 mm, the length is 50 cm, the width is 80 c.
A moisture-resistant lightweight resin molded product of m was obtained. The cooling time was 30 seconds. Table 1 shows the measured values of the thickness and density of the obtained moisture-resistant lightweight resin molded body and the observation results of the appearance.
〔実施例2〕
実施例1において、シリカの量を0.5重量部とする以外は実施例1と同様に実施した。得られた耐湿性軽量樹脂成形体の板厚および密度の実測値と外観の観察結果とを表1に示す。
[Example 2]
In Example 1, it implemented similarly to Example 1 except the quantity of a silica having been 0.5 weight part. Table 1 shows the measured values of the thickness and density of the obtained moisture-resistant lightweight resin molded body and the observation results of the appearance.
〔実施例3〕
実施例1において、有機系発泡剤(ADCA)の量を0.1重量部、シリカの量を0.5重量部とする以外は実施例1と同様に実施した。得られた耐湿性軽量樹脂成形体の板厚および密度の実測値と外観の観察結果とを表1に示す。
Example 3
In Example 1, it implemented like Example 1 except the quantity of an organic type foaming agent (ADCA) being 0.1 weight part, and the quantity of a silica being 0.5 weight part. Table 1 shows the measured values of the thickness and density of the obtained moisture-resistant lightweight resin molded body and the observation results of the appearance.
〔比較例1〕
実施例3において、無機系発泡核剤の量を0にした以外は実施例3と同様に実施した。得られた発泡成形体の板厚および密度の実測値と外観の観察結果とを表1に示す。
[Comparative Example 1]
In Example 3, it carried out similarly to Example 3 except having made the quantity of the inorganic type foam nucleating agent into 0. Table 1 shows the measured values of the thickness and density of the foamed molded article and the observation results of the appearance.
〔比較例2〕
実施例3において、無機系発泡核剤の量を0.01にした以外は実施例3と同様に実施した。得られた発泡成形体の板厚および密度の実測値と外観の観察結果とを表1に示す。
[Comparative Example 2]
In Example 3, it carried out similarly to Example 3 except having made the quantity of the inorganic type foam nucleating agent 0.01. Table 1 shows the measured values of the thickness and density of the foamed molded article and the observation results of the appearance.
〔比較例3〕
実施例3において、無機系発泡核剤の量を0、化学発泡剤として有機系発泡剤(ADCA)に変えて炭酸水素ナトリウム(重曹)からなる無機系発泡剤とクエン酸からなる有機系発泡剤とからなる混合発泡剤を用い、その量を0.1重量部にした以外は実施例3と同様に実施した。得られた発泡成形体の板厚および密度の実測値と外観の観察結果とを表1に示す。
[Comparative Example 3]
In Example 3, the amount of the inorganic foaming nucleating agent was 0, and the organic foaming agent composed of sodium hydrogen carbonate (sodium bicarbonate) instead of the organic foaming agent (ADCA) as the chemical foaming agent and the organic foaming agent composed of citric acid. This was carried out in the same manner as in Example 3 except that the mixed foaming agent consisting of Table 1 shows the measured values of the thickness and density of the foamed molded article and the observation results of the appearance.
Claims (7)
熱可塑性樹脂100重量部と、有機系発泡剤のみからなる化学発泡剤0.001〜0.5重量部と、無機系発泡核剤0.1〜1.0重量部とを含む熱可塑性樹脂組成物を溶融する工程と、
該溶融状態の熱可塑性樹脂組成物に物理発泡剤を該射出成形機のシリンダ途中から供給する工程と、
射出発泡成形する工程とを含むことを特徴とする耐湿性軽量樹脂成形体の製造方法。 A method for producing a moisture-resistant lightweight resin molding using an injection molding machine having a two-stage compression screw,
A thermoplastic resin composition comprising 100 parts by weight of a thermoplastic resin, 0.001 to 0.5 parts by weight of a chemical foaming agent comprising only an organic foaming agent, and 0.1 to 1.0 part by weight of an inorganic foaming nucleating agent Melting the product,
Supplying a physical foaming agent from the middle of the cylinder of the injection molding machine to the molten thermoplastic resin composition;
A method for producing a moisture-resistant lightweight resin molded article, comprising a step of injection foam molding.
量ポリプロピレン樹脂成形体であることを特徴とする請求項1〜5のいずれかに記載の耐湿性軽量樹脂成形体の製造方法。 The moisture-resistant lightweight resin molded body is a moisture-resistant lightweight polypropylene resin molded body having a density in the range of 0.4 to 0.8 g / cm 3 . A method for producing a moisture-resistant lightweight resin molding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008297987A JP2010120335A (en) | 2008-11-21 | 2008-11-21 | Method of manufacturing moisture-proof light-weighted resin molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008297987A JP2010120335A (en) | 2008-11-21 | 2008-11-21 | Method of manufacturing moisture-proof light-weighted resin molding |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010120335A true JP2010120335A (en) | 2010-06-03 |
Family
ID=42322084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008297987A Pending JP2010120335A (en) | 2008-11-21 | 2008-11-21 | Method of manufacturing moisture-proof light-weighted resin molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010120335A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014121793A (en) * | 2012-12-20 | 2014-07-03 | Kojima Press Industry Co Ltd | Method for producing under cover for vehicle and under cover for vehicle |
JP2016087887A (en) * | 2014-10-31 | 2016-05-23 | 日立マクセル株式会社 | Manufacturing method and manufacturing device for foam molded body |
JP2017100449A (en) * | 2015-11-30 | 2017-06-08 | 日立化成株式会社 | Die and method for producing foam molded body |
CN111548552A (en) * | 2019-02-08 | 2020-08-18 | 松下知识产权经营株式会社 | Foamed molded article |
-
2008
- 2008-11-21 JP JP2008297987A patent/JP2010120335A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014121793A (en) * | 2012-12-20 | 2014-07-03 | Kojima Press Industry Co Ltd | Method for producing under cover for vehicle and under cover for vehicle |
JP2016087887A (en) * | 2014-10-31 | 2016-05-23 | 日立マクセル株式会社 | Manufacturing method and manufacturing device for foam molded body |
JP2017100449A (en) * | 2015-11-30 | 2017-06-08 | 日立化成株式会社 | Die and method for producing foam molded body |
CN111548552A (en) * | 2019-02-08 | 2020-08-18 | 松下知识产权经营株式会社 | Foamed molded article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4233240B2 (en) | Injection foam molding method, and injection molding machine and resin composition suitable therefor | |
KR100378313B1 (en) | Process for the production of expanded olefinic thermoplastic elastomer products | |
EP1166991A2 (en) | Process, machine and composition for injection foaming | |
JP4640814B2 (en) | Thermoplastic resin foam | |
JP4945957B2 (en) | Thermoplastic resin injection foam molding method and injection foam molding apparatus | |
WO2016068268A1 (en) | Process and device for producing foamed molded object | |
JP2010120335A (en) | Method of manufacturing moisture-proof light-weighted resin molding | |
MX2010010481A (en) | Method of manufacture of a foamed core class "a" article. | |
JP5075506B2 (en) | Manufacturing method of foam molded article | |
JP5084559B2 (en) | Method for producing moisture-resistant lightweight resin molding | |
JP3374356B2 (en) | Method for producing foam molded article and foam molded article | |
JP2013231099A (en) | Propylene polymer, propylene polymer composition, preliminary foamed particle foamed molding, injection-foamed molding, and method for producing them | |
JP3383603B2 (en) | Automotive door panel or pillar and method of manufacturing the same | |
JP2008142997A (en) | Method for manufacturing injection-foamed article and molding obtained by the method | |
JP4752560B2 (en) | Method for producing thermoplastic resin foam molding | |
JP4618910B2 (en) | Injection foaming resin composition | |
WO2021161586A1 (en) | Molded body, and method for producing molded body | |
WO2020213457A1 (en) | Molding die apparatus for resin molded products, molding apparatus, molding system, and manufacturing method for molded products | |
JP4951894B2 (en) | Injection device | |
JP7183728B2 (en) | Foamed molded article and method for producing foamed molded article | |
JP5072170B2 (en) | Manufacturing method of three-layer structure | |
JP7523929B2 (en) | Manufacturing method of foamed molded article | |
JP2006159531A (en) | Manufacturing method of thermoplastic resin foamed molded product | |
JP2002361690A (en) | Mold for injection molding and method for injection molding using the same | |
CN1229382A (en) | Method of injection molding expandable plastic composition |