JPH08330669A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH08330669A
JPH08330669A JP13767395A JP13767395A JPH08330669A JP H08330669 A JPH08330669 A JP H08330669A JP 13767395 A JP13767395 A JP 13767395A JP 13767395 A JP13767395 A JP 13767395A JP H08330669 A JPH08330669 A JP H08330669A
Authority
JP
Japan
Prior art keywords
layer
face
resonator
semiconductor laser
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13767395A
Other languages
Japanese (ja)
Inventor
Kenji Endo
健司 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13767395A priority Critical patent/JPH08330669A/en
Publication of JPH08330669A publication Critical patent/JPH08330669A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To form a current non-injection structure near the end face by simple manufacturing steps by not providing at least hetero buffer layer near the end faces of a resonator sandwiching an exciting region from the direction of the resonator length. CONSTITUTION: A stripe-like exciting region elongated in the direction of a resonator length is provided in the length not arriving at the end face of the resonator, and at least one hetero buffer layer 5 having an intermediate band gap of the both of a first clad layer 4 and a cap layer having a band gap smaller than that of the layer 4 formed on the layer 4 is provided between the layer 4 and the cap layer in the exciting region. Thus, at least the one buffer layer is not provided near the end faces of the resonator sandwiching the exciting region in the direction of the resonator length, thereby reducing the current injection amount to the vicinity of the end face of the resonator. Thus, etching step is simplified since the crystal surface to be etched is flat, and there is no anxiety of introducing the deteriorating cause on the way of the steps.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザ、特に光デ
ィスク用光源に適した半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser, and more particularly to a semiconductor laser suitable as a light source for optical disks.

【0002】[0002]

【従来の技術】光ディスク光源に用いられる半導体レー
ザの高信頼化には共振器端面の劣化の防止が重要であ
る。端面劣化の防止策として、端面に保護膜を形成する
方法が広く用いられている。図4に従来の典型的な光デ
ィスク用半導体レーザを示す。活性層3を挟んでバンド
ギャップの大きなクラッド層2、4が形成されており、
上部クラッド層4にはリブ型の光導波路が形成されてい
る。電流は電流ブロック層6によってリブ導波路に狭窄
されて活性層に注入される。共振器の長手方向に電流狭
窄構造はなく、共振器端面にも共振器内部と同等の高密
度の電流注入が行われる。共振器端面では結晶表面の表
面準位を介してキャリアが非発光に再結合するため、共
振器内部に比較して局所的に温度が上昇し、劣化の進行
が速い。そこで、共振器端面には保護膜10、11が形
成され、端面結晶が雰囲気中の酸素と反応して酸化し、
急速に劣化するのを防止する。
2. Description of the Related Art In order to improve the reliability of a semiconductor laser used as a light source for an optical disk, it is important to prevent the deterioration of the end face of the resonator. A method of forming a protective film on the end face is widely used as a measure for preventing end face deterioration. FIG. 4 shows a conventional typical semiconductor laser for an optical disk. Cladding layers 2 and 4 having a large band gap are formed with the active layer 3 interposed therebetween,
A rib type optical waveguide is formed in the upper clad layer 4. The current is confined in the rib waveguide by the current blocking layer 6 and injected into the active layer. There is no current constriction structure in the longitudinal direction of the resonator, and the same high-density current injection as in the inside of the resonator is also performed on the end face of the resonator. At the cavity end face, carriers recombine non-emissively via the surface level of the crystal surface, so that the temperature locally rises and the deterioration progresses faster than inside the cavity. Therefore, protective films 10 and 11 are formed on the cavity end face, and the facet crystal reacts with oxygen in the atmosphere to oxidize,
Prevents rapid deterioration.

【0003】また従来技術では、共振器端面近傍に活性
層よりバンドギャップの広い半導体層を設けた窓構造と
呼ばれる半導体レーザが、多数報告されている。そのな
かで特開平2−130886号公報には、共振器端面近
傍にリッジ段差を設けた半導体基板を用いて窓構造を形
成する方法が述べられている。窓構造によって、端面近
傍の活性層が発振光で励起されるのを防止し、高出力化
を図るものである。
In the prior art, a large number of semiconductor lasers called window structures in which a semiconductor layer having a wider bandgap than the active layer is provided near the end face of the resonator have been reported. Among them, Japanese Patent Application Laid-Open No. 2-130886 describes a method of forming a window structure using a semiconductor substrate having a ridge step near the cavity facet. The window structure prevents the active layer in the vicinity of the end face from being excited by the oscillated light, thereby achieving high output.

【0004】[0004]

【発明が解決しようとする課題】これらの従来技術には
以下に説明するような問題があり充分な効果が得られな
かった。
However, these conventional techniques have the problems described below, and cannot provide sufficient effects.

【0005】端面に保護膜を形成する方法は、端面の結
晶表面の酸化による急速な劣化の防止には効果的である
が、端面近傍へも高密度の電流注入が行われ、結晶欠陥
の形成が加速される。このため長期的な端面劣化の防止
は不十分であった。
The method of forming a protective film on the end face is effective in preventing rapid deterioration due to oxidation of the crystal surface of the end face, but high-density current injection is also performed near the end face to form crystal defects. Is accelerated. Therefore, long-term prevention of end face deterioration was insufficient.

【0006】窓構造半導体レーザは、一般に、窓構造の
形成に微細なエッチング工程や高度な結晶成長工程が必
要で製造工程に高い精度が要求される問題があった。ま
た複雑な製造工程途中で結晶欠陥が導入されやすく、窓
構造の結晶や窓構造と励起領域の界面領域などを高い品
質で作製することが難しかった。前述の特開平2−13
0886号公報記載の発明でも窓構造が複雑で、(00
1)面、(111)面、そして励起部と窓構造部の境界
領域の傾斜面と、互いに両方位の異なる結晶面に同時に
結晶成長を行うので全領域で高品質な結晶を得ることが
困難であった。またこの従来の窓構造半導体レーザで
は、窓構造領域の劣化防止と無効電流の低減のため、窓
構造上部にn型GaAs層が設けられ、電流が注入され
ないようにしている。即ち、このn型GaAs層は、電
流狭窄用を兼用しており、そのため0.6−0.9μm
と厚い。このため素子表面に凹凸ができ、ヒートシンク
への融着と放熱が不均一になり、特性の悪化や劣化を生
じる原因となっていた。
The window-structured semiconductor laser generally has a problem that a fine etching process and a high-grade crystal growth process are required to form the window structure, and a high precision is required in the manufacturing process. Further, crystal defects are easily introduced during the complicated manufacturing process, and it is difficult to manufacture a crystal having a window structure or an interface region between the window structure and the excitation region with high quality. The aforementioned Japanese Patent Laid-Open No. 2-13
In the invention described in Japanese Patent No. 0886, the window structure is complicated, and (00
It is difficult to obtain a high-quality crystal in the entire region because the crystal growth is performed simultaneously on the 1) plane, the (111) plane, the inclined plane of the boundary region between the excitation portion and the window structure portion, and the crystal planes different from each other. Met. Further, in this conventional window structure semiconductor laser, in order to prevent deterioration of the window structure region and reduce the reactive current, an n-type GaAs layer is provided on the upper portion of the window structure to prevent current injection. That is, this n-type GaAs layer also serves as a current constriction, and therefore 0.6-0.9 μm.
And thick. As a result, the surface of the element becomes uneven, and the fusion with the heat sink and the heat radiation become non-uniform, which causes deterioration or deterioration of the characteristics.

【0007】本発明の目的は、簡単な製造工程で端面近
傍に電流非注入構造を形成し、これらの問題を解決した
高信頼な半導体レーザを提供することにある。
An object of the present invention is to provide a highly reliable semiconductor laser which solves these problems by forming a current non-injection structure near the end face by a simple manufacturing process.

【0008】[0008]

【課題を解決するための手段】本発明の半導体レーザ
は、少なくとも活性層と、この活性層を挟んでこの活性
層よりもバンドギャップの大きい第1および第2のクラ
ッド層を有し、共振器長方向に延伸したストライプ状の
励起領域が共振器端面には達しない長さに設けられ、こ
の励起領域では、前記第1のクラッド層と前記第1のク
ラッド層上に形成されたこの第1のクラッド層よりもバ
ンドギャップの小さいキャップ層との間に、この両者の
中間的なバンドギャップを有する少なくとも1層のヘテ
ロバッファ層が設けられ、前記励起領域を前記共振器長
方向から挟む前記共振器端面近傍には前記少なくとも1
層のヘテロバッファ層を設けないことにより前記共振器
端面近傍への電流注入量を低減したことを特徴とする。
A semiconductor laser according to the present invention has at least an active layer and first and second clad layers having a band gap larger than that of the active layer and sandwiching the active layer. A striped excitation region extending in the longitudinal direction is provided in a length that does not reach the cavity end face, and in this excitation region, the first cladding layer and the first cladding layer formed on the first cladding layer are provided. Between the clad layer and the cap layer having a band gap smaller than that of the clad layer, at least one hetero buffer layer having an intermediate band gap therebetween is provided, and the resonance region sandwiching the excitation region from the cavity length direction is provided. At least one of the
It is characterized in that the amount of current injected into the vicinity of the cavity facet is reduced by not providing the hetero-buffer layer as a layer.

【0009】[0009]

【実施例】本発明の上記および他の目的、特徴および効
果を明瞭にすべく、以下図面を参照して本発明の実施例
を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to clarify the above and other objects, features and effects of the present invention, embodiments of the present invention will be described in detail below with reference to the drawings.

【0010】図1(a)は素子全体の斜視図、同図
(b)は共振器に沿ったA−A′での素子断面図、そし
て図2(a),(b)および図3(a),(b)は製造
工程を示す図である。
FIG. 1 (a) is a perspective view of the entire device, FIG. 1 (b) is a sectional view of the device along the resonator taken along line AA ', and FIGS. 2 (a), 2 (b) and 3 (). (a), (b) is a figure which shows a manufacturing process.

【0011】図2(a)において、まずn型GaAs基
板1上に、厚さ1.5μmのn型(Alx Ga1-x y
In1-y P(x=0.6,y=0.5)クラッド層2、
厚さ0.05μmのGa0.5 In0.5 P活性層3、厚さ
1.5μmのp型(Alx Ga1-x y In1-y P(x
=0.6,y=0.5)クラッド層4、そして厚さ10
nmのp型Ga0.5 In0.5 Pヘテロバッファ層5を順
次結晶成長する。次に、通常のフォトリソグラフィ法等
により、共振器端面近傍を除く領域にエッチングマスク
12を形成し、これをマスクとしてp型Ga0.5 In
0.5 Pヘテロバッファ層5を選択的にエッチングする。
このエッチングにはAlGaInP層に対するエッチン
グ速度が非常に遅いHBrとH2 Oの混合液を用いた。
次にエッチングマスク12を除去した後、SiO2 膜1
3を結晶全面に形成してから通常のフォトリソグラフィ
法を使ったエッチングを行ってSiO2 膜を幅約5μm
のストライプ状にする。次に、同図(b)に示すよう
に、このSiO2 膜13をマスクとしてp型(Al0.6
Ga0.4 0.5 In0.5 P層4をエッチングしてリッジ
状光導波路を形成する。このエッチングには硫酸、過酸
化水素水そしてH2 Oの混合液を用いた。この後、リッ
ジ上部にSiO2 膜を残したままn型GaAsブロック
層6を結晶成長する。このときSiO2 膜上には結晶成
長せず、図3(a)に示すように、リッジ分を埋め込ん
でn型GaAsブロック層6が形成される。SiO2
13を除去後、結晶全面にp型GaAsキャップ層7を
結晶成長する。結晶成長完了後は、通常の電極形成工
程、素子化工程、端面保護膜形成工程を経て、図1
(a)の半導体レーザを作製する。
In FIG. 2A, first, on an n-type GaAs substrate 1, an n-type (Al x Ga 1-x ) y having a thickness of 1.5 μm is formed.
In 1-y P (x = 0.6, y = 0.5) cladding layer 2,
Ga 0.5 In 0.5 P active layer 3 having a thickness of 0.05 μm, p-type (Al x Ga 1-x ) y In 1-y P (x having a thickness of 1.5 μm
= 0.6, y = 0.5) Cladding layer 4 and thickness 10
nm p-type Ga 0.5 In 0.5 P heterobuffer layer 5 is sequentially grown. Next, an etching mask 12 is formed in a region other than the vicinity of the cavity end face by a normal photolithography method or the like, and using this as a mask, p-type Ga 0.5 In
The 0.5 P heterobuffer layer 5 is selectively etched.
For this etching, a mixed solution of HBr and H 2 O having an extremely low etching rate for the AlGaInP layer was used.
Next, after removing the etching mask 12, the SiO 2 film 1
3 is formed on the entire surface of the crystal, and etching is performed using a normal photolithography method to form a SiO 2 film with a width of about 5 μm.
Stripes. Next, as shown in FIG. (B), p-type the SiO 2 film 13 as a mask (Al 0.6
The Ga 0.4 ) 0.5 In 0.5 P layer 4 is etched to form a ridge-shaped optical waveguide. For this etching, a mixed solution of sulfuric acid, hydrogen peroxide solution and H 2 O was used. After that, the n-type GaAs block layer 6 is crystal-grown while leaving the SiO 2 film on the ridge. At this time, crystal growth does not occur on the SiO 2 film, and as shown in FIG. 3A, the n-type GaAs block layer 6 is formed by embedding the ridge portion. After removing the SiO 2 film 13, a p-type GaAs cap layer 7 is grown on the entire surface of the crystal. After the crystal growth is completed, a normal electrode forming process, an element forming process, and an end face protective film forming process are performed, and then the process shown in FIG.
The semiconductor laser of (a) is manufactured.

【0012】本発明の半導体レーザは、図1(b)に示
すように、p型Ga0.5 In0.5 Pヘテロバッファ層5
が共振器内部にのみ設けられており、端面近傍はp型
(Al0.6 Ga0.4 0.5 In0.5 Pクラッド層4とp
型GaAsキャップ層7が直接接している。(Al0.6
Ga0.4 0.5 In0.5 Pクラッド層4とGaAsキャ
ップ層7のバンドギャップは室温でそれぞれ2.265
eVと1.42eVである。このように、両半導体層の
バンドギャップ差が約0.8eVと大きいため、両者の
界面には、従来報告されているように、バンド不連続に
よる大きなポテンシャルバリアが形成され、電流が流れ
ない。一方、励起領域では、バンドギャップが両半導体
層の中間的な大きさの1.91eVであるGa0.5 In
0.5 Pヘテロバッファ層5が設けられており、ヘテロ界
面がAlGaInP層とGaInP層の界面とGaIn
P層とGaAs層の界面とのバンドギャップ差の小さい
界面となり、ポテンシャルバリアは小さく、電気伝導の
障害とならない。
As shown in FIG. 1B, the semiconductor laser of the present invention has a p-type Ga 0.5 In 0.5 P heterobuffer layer 5 as shown in FIG.
Is provided only inside the resonator, and the p-type (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P cladding layer 4 and p are provided near the end face.
The type GaAs cap layer 7 is in direct contact. (Al 0.6
The band gaps of the Ga 0.4 ) 0.5 In 0.5 P cladding layer 4 and the GaAs cap layer 7 are 2.265 at room temperature, respectively.
eV and 1.42 eV. As described above, since the band gap difference between the two semiconductor layers is as large as about 0.8 eV, a large potential barrier due to band discontinuity is formed at the interface between the two semiconductor layers, and no current flows. On the other hand, in the excitation region, Ga 0.5 In having a band gap of 1.91 eV which is an intermediate size between both semiconductor layers is used.
The 0.5 P heterobuffer layer 5 is provided, and the hetero interface is the interface between the AlGaInP layer and the GaInP layer and GaIn.
The interface has a small band gap difference between the interface between the P layer and the GaAs layer, the potential barrier is small, and it does not hinder electric conduction.

【0013】本発明の半導体レーザでは、端面近傍の電
流非注入領域のGaInP活性層3にも、p型(Al
0.6 Ga0.4 0.5 In0.5 Pクラッド層4を経由して
励起領域から漏れ電流を流している。こうして注入され
る漏れ電流の大きさは、最大でも(動作電流値)×(非
注入領域の長さ)÷(励起領域の長さ)と見積られる。
この漏れ電流が小さくて端面近傍のGaInP活性層3
への注入キャリア密度が低すぎると、電流非注入領域の
発振光に対する吸収損失が増大し、双安定動作などの特
異な動作を示すようになる。そこで、注入キャリア密度
が適切な値になるよう、p型(Alx Ga1-x y In
1-y Pクラッド層の電気抵抗(ρ)や層厚に応じて端面
電流非注入領域の長さを設定する必要がある。この際、
端面部の注入キャリア密度が励起領域の1/2〜1/5
になるようにその長さを設定すれば非注入領域での光吸
収係数が10〜100cm-1程度となるが、非注入領域
の長さがこれを超えると、光吸収係数が100cm-1
上の大きな値となり、双安定動作などを生じてしまう。
本実施例の場合、x=0.6,ρ=0.66Ω・cm,
P=6.4×1017cm-3であり、共振器長が700μ
mであるので非注入領域の長さは10〜30μmが適切
であった。
In the semiconductor laser of the present invention, the GaInP active layer 3 in the current non-injection region near the end face is also p-type (Al
Leakage current flows from the excitation region via the 0.6 Ga 0.4 ) 0.5 In 0.5 P cladding layer 4. The magnitude of the leakage current injected in this manner is estimated to be (operating current value) × (length of non-injection region) ÷ (length of excitation region) at maximum.
This leakage current is small and the GaInP active layer 3 near the end face is
If the density of injected carriers is too low, absorption loss for oscillation light in the current non-injection region increases, and peculiar operation such as bistable operation is exhibited. Therefore, p-type (Al x Ga 1 -x ) y In is adjusted so that the injected carrier density becomes an appropriate value.
It is necessary to set the length of the end face current non-injection region according to the electrical resistance (ρ) of the 1-y P clad layer and the layer thickness. On this occasion,
The injected carrier density at the end face is 1/2 to 1/5 of the excitation region.
By setting the length such that the light absorption coefficient in the non-injection region is is about 10 to 100 cm -1, the length of the non-injection region is greater than this, the light absorption coefficient of 100 cm -1 or more Becomes a large value, resulting in bistable operation.
In the case of this embodiment, x = 0.6, ρ = 0.66 Ω · cm,
P = 6.4 × 10 17 cm −3 and the resonator length is 700 μ
Therefore, the length of the non-implanted region was 10 to 30 μm.

【0014】本発明は上記実施例に記載した、半導体材
料、活性層や光導波路の構造、クラッド層などの限定さ
れるものでなく、本発明の特徴を満す限り、他のもので
も良いことはもちろんである。
The present invention is not limited to the semiconductor material, the structure of the active layer or the optical waveguide, the cladding layer, etc. described in the above embodiments, and other materials may be used as long as they satisfy the features of the present invention. Of course.

【0015】例えば、活性層がZnSe等のII−VI
族化合物半導体からなる緑青色半導体レーザにも適用で
きる。この場合、GaAs基板上にn型ZnMgSSe
からなる第2のクラッド層、ZnSe活性層、p型Zn
MgSSeからなる第1のクラッド層、ZnSeからな
る第2のヘテロバッファ層、GaInPまたはAlGa
InPからなる第1のヘテロバッファ層、そしてp型G
aAsキャップ層が順次積層され、第1のヘテロバッフ
ァ層が共振器端面近傍には設けられていない構成となっ
ている。ここで、ZnSeヘテロバッファ層が設けられ
るのは、GaInPまたはAlGaInPからなる第1
のヘテロバッファ層とp型ZnMgSSeからなる第1
のクラッド層とのバンドギャップの差が大きいため、両
者の中間的な大きさのバンドギャップを有しているZn
Seヘテロバッファ層を間に介在させることにより励起
領域における電流注入効率を改善するためである。
For example, the active layer is II-VI such as ZnSe.
It can also be applied to a green-blue semiconductor laser made of a group compound semiconductor. In this case, n-type ZnMgSSe is formed on the GaAs substrate.
Second clad layer composed of ZnSe active layer, p-type Zn
First cladding layer made of MgSSe, second heterobuffer layer made of ZnSe, GaInP or AlGa
First heterobuffer layer of InP and p-type G
The aAs cap layer is sequentially stacked, and the first heterobuffer layer is not provided near the cavity facet. Here, the ZnSe heterobuffer layer is provided in the first GaInP or AlGaInP layer.
First hetero-buffer layer and p-type ZnMgSSe
Since the difference in the band gap from the clad layer of Zn is large, Zn having a band gap intermediate between the two is present.
This is to improve the current injection efficiency in the excitation region by interposing the Se heterobuffer layer between them.

【0016】[0016]

【発明の効果】本発明によれば端面近傍に電流非注入構
造を設けることによって端面部への電流注入を低減し、
高信頼な半導体レーザを実現できる。本発明の電流非注
入構造は、エッチングする結晶表面が平坦なためエッチ
ング工程が簡単であり、また工程途中で劣化原因を導入
する心配もない。さらに除去するヘテロバッファ層が1
0nm程度と薄いため、従来の窓構造半導体レーザの電
流非注入構造のような素子表面の凹凸を生じることもな
く、特性や信頼性への悪影響も無い。
According to the present invention, the current non-injection structure is provided near the end face to reduce the current injection into the end face,
A highly reliable semiconductor laser can be realized. In the current non-injection structure of the present invention, the crystal surface to be etched is flat, so that the etching process is simple, and there is no fear of introducing a cause of deterioration during the process. Hetero buffer layer to be further removed is 1
Since the thickness is as thin as about 0 nm, no unevenness on the element surface like the conventional current non-injection structure of the window structure semiconductor laser is generated, and the characteristics and reliability are not adversely affected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の半導体レーザの構造図であ
り(a)は素子全体の斜視図、(b)は共振器に沿った
A−A′での素子断面図である。
1A and 1B are structural views of a semiconductor laser according to an embodiment of the present invention, FIG. 1A is a perspective view of the entire device, and FIG. 1B is a device cross-sectional view taken along line AA ′ of the device.

【図2】本発明の一実施例の半導体レーザの製造工程の
一部を示す図であり、(a)はGaInPヘテロバッフ
ァ層の選択エッチング後の構造図、(b)はp−AlG
aInPクラッド層のリジ導波路形成後の構造図であ
る。
2A and 2B are views showing a part of a manufacturing process of a semiconductor laser according to an embodiment of the present invention, in which FIG. 2A is a structural view after selective etching of a GaInP heterobuffer layer, and FIG. 2B is p-AlG.
FIG. 6 is a structural diagram of an aInP clad layer after formation of a rigid waveguide.

【図3】図2(b)に引き続く半導体レーザの製造工程
を示す図であり、(a)はn−GaAsブロック層の選
択成長、SiO2 マスク除去後の構造図、(b)はp−
GaAsキャップ層成長後の構造図である。
3A and 3B are diagrams showing a semiconductor laser manufacturing process following FIG. 2B, in which FIG. 3A is a structural diagram after selective growth of an n-GaAs block layer and removal of a SiO 2 mask, and FIG.
FIG. 6 is a structural diagram after growth of a GaAs cap layer.

【図4】従来の半導体レーザの構造図であり(a)は素
子全体の斜視図、(b)は共振器に沿ったB−B′での
素子断面図である。
4A and 4B are a structural view of a conventional semiconductor laser, FIG. 4A is a perspective view of the entire device, and FIG. 4B is a device sectional view taken along line BB ′ of the device.

【符号の説明】[Explanation of symbols]

1 n型GaAs基板 2 n型AlGaInPクラッド層 3 GaInP活性層 4 p型AlGaInPクラッド層 5 p型GaInPヘテロバッファ層 6 n型GaAsブロック層 7 p型キャップ層 8,9 電極 10,11 共振器端面保護膜 12 エッチングマスク 13 SiO2 マスク1 n-type GaAs substrate 2 n-type AlGaInP clad layer 3 GaInP active layer 4 p-type AlGaInP clad layer 5 p-type GaInP heterobuffer layer 6 n-type GaAs block layer 7 p-type cap layer 8, 9 electrode 10, 11 Resonator end face protection Film 12 Etching mask 13 SiO 2 mask

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも活性層と、この活性層を挟ん
でこの活性層よりもバンドギャップの大きい第1および
第2のクラッド層を有し、共振器長方向に延伸したスト
ライプ状の励起領域が共振器端面には達しない長さに設
けられ、この励起領域では、前記第1のクラッド層と前
記第1のクラッド層上に形成されたこの第1のクラッド
層よりもバンドギャップの小さいキャップ層との間に、
この両者の中間的なバンドギャップを有する少なくとも
1層のヘテロバッファ層が設けられ、前記励起領域を前
記共振器長方向から挟む前記共振器端面近傍には前記少
なくとも1層のヘテロバッファ層を設けないことにより
前記共振器端面近傍への電流注入量を低減したことを特
徴とする半導体レーザ。
1. A striped pumping region having at least an active layer and first and second cladding layers sandwiching the active layer and having a bandgap larger than that of the active layer, the striped pumping region extending in a cavity length direction. In the excitation region, the first cladding layer and the cap layer formed on the first cladding layer and having a bandgap smaller than that of the first cladding layer are provided in a length that does not reach the end face of the resonator. Between
At least one hetero-buffer layer having a band gap intermediate between the two is provided, and the at least one hetero-buffer layer is not provided in the vicinity of the cavity end face that sandwiches the excitation region from the cavity length direction. As a result, the amount of current injected into the vicinity of the cavity facet is reduced, and the semiconductor laser is characterized.
【請求項2】 第1のクラッド層がAlGaInP、キ
ャップ層がGaAs、ヘテロバッファ層がGaInPで
あることを特徴とする請求項1記載の半導体レーザ。
2. The semiconductor laser according to claim 1, wherein the first cladding layer is AlGaInP, the cap layer is GaAs, and the heterobuffer layer is GaInP.
【請求項3】 第1のクラッド層がZnMgSSe、キ
ャップ層がGaAsであり、前記ヘテロバッファ層とし
てAlGaInPまたはGaInPからなる第1のヘテ
ロバッファ層とZnSeからなる第2のヘテロバッファ
層を有し、前記共振器端面近傍では前記第1のヘテロバ
ッファ層を介さずに、前記第1のヘテロバッファ層と前
記キャップ層とが接して設けられていることを特徴とす
る請求項1記載の半導体レーザ。
3. The first cladding layer is ZnMgSSe, the cap layer is GaAs, and the heterobuffer layer has a first heterobuffer layer made of AlGaInP or GaInP and a second heterobuffer layer made of ZnSe. 2. The semiconductor laser according to claim 1, wherein the first heterobuffer layer and the cap layer are provided in contact with each other in the vicinity of the cavity end face without the first heterobuffer layer interposed therebetween.
【請求項4】 前記第1のクラッド層が、他の部分に比
べて厚さの大きいストライプ状の領域を有しており、こ
のストライプ状の領域の一部が前記励起領域に形成され
ていることを特徴とする請求項1記載または請求項2ま
たは請求項3に記載の半導体レーザ。
4. The first cladding layer has a stripe-shaped region having a larger thickness than other portions, and a part of the stripe-shaped region is formed in the excitation region. The semiconductor laser according to claim 1, 2 or 3, wherein:
JP13767395A 1995-06-05 1995-06-05 Semiconductor laser Pending JPH08330669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13767395A JPH08330669A (en) 1995-06-05 1995-06-05 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13767395A JPH08330669A (en) 1995-06-05 1995-06-05 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH08330669A true JPH08330669A (en) 1996-12-13

Family

ID=15204153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13767395A Pending JPH08330669A (en) 1995-06-05 1995-06-05 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH08330669A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218565A (en) * 1992-01-31 1993-08-27 Toshiba Corp Semiconductor light emitting device
JPH0613694A (en) * 1991-02-01 1994-01-21 Nec Corp Semiconductor laser
JPH077218A (en) * 1993-06-15 1995-01-10 Sony Corp Semiconductor laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613694A (en) * 1991-02-01 1994-01-21 Nec Corp Semiconductor laser
JPH05218565A (en) * 1992-01-31 1993-08-27 Toshiba Corp Semiconductor light emitting device
JPH077218A (en) * 1993-06-15 1995-01-10 Sony Corp Semiconductor laser

Similar Documents

Publication Publication Date Title
JPH05275798A (en) Laser diode
JPH0491484A (en) Manufacture of semiconductor laser device
US5892785A (en) Semiconductor laser
JP2815769B2 (en) Manufacturing method of semiconductor laser
US4769821A (en) High power semiconductor laser by means of lattice mismatch stress
US4644551A (en) Buried-type semiconductor laser
JPH07226566A (en) Quantum well semiconductor laser and its manufacture
JP3501676B2 (en) Method for manufacturing semiconductor laser device
JPH04103187A (en) Semiconductor laser and manufacture thereof
JPH08330669A (en) Semiconductor laser
JP2947164B2 (en) Semiconductor laser device
JP3109481B2 (en) Semiconductor laser device and method of manufacturing the same
JP2833962B2 (en) Semiconductor laser and its manufacturing method
JP3196831B2 (en) Method for manufacturing semiconductor laser device
JP2003124569A (en) Edge window semiconductor laser
JP3328933B2 (en) Semiconductor laser device and method of manufacturing the same
JP3410959B2 (en) Semiconductor laser device and method of manufacturing the same
JPH01132191A (en) Semiconductor laser element
JP2556276B2 (en) Semiconductor laser
JP3038186B2 (en) Method for manufacturing semiconductor laser device
JPH06112586A (en) Semiconductor laser diode
JPH08307009A (en) Semiconductor laser element
JPS61231792A (en) Manufacture of semiconductor element and semiconductor crystal for the same
JPH07115249A (en) Semiconductor laser
JPH0637390A (en) Semiconductor laser and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19971021