JPH06112586A - Semiconductor laser diode - Google Patents

Semiconductor laser diode

Info

Publication number
JPH06112586A
JPH06112586A JP4280988A JP28098892A JPH06112586A JP H06112586 A JPH06112586 A JP H06112586A JP 4280988 A JP4280988 A JP 4280988A JP 28098892 A JP28098892 A JP 28098892A JP H06112586 A JPH06112586 A JP H06112586A
Authority
JP
Japan
Prior art keywords
layer
active layer
semiconductor laser
algainp
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4280988A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Ueno
芳康 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4280988A priority Critical patent/JPH06112586A/en
Publication of JPH06112586A publication Critical patent/JPH06112586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enhance high output operation characteristics of semiconductor laser diode by making an active layer sufficiently thin thereby enhancing controllability of impurity diffusion step. CONSTITUTION:The semiconductor laser diode comprises a multilayer epitaxial layer 2 including at least n-AlGaAsInP clad layer 9, an active layer 11 of GaInP or AlGaInP, and a P-AlGaInP clad layer 13 formed sequentially on an n-GaAs substrate 7, and a pair of laser edges 6. The active layer 11 or the P-AlGaInP clad layer 13 is formed sufficiently thin and the active layer 11 in the pumping region 3 of the laser is composed of AlGaInP in ordered state whereas the active layer 11 in the window region 4 in the vicinity of the laser edge 6 is composed of AlGaInP in disorded State. The active layer 11 is a multiple quantum well layer of 50nm thick or less. Alternatively, a GaInP well layer in disordered state may be employed. Furthermore, the P-AlGaInP clad layer 13 is set at 0.75mum thick or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ディスク装置などの
情報処理装置の光源に用いる高出力半導体レーザに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high power semiconductor laser used as a light source for an information processing device such as an optical disk device.

【0002】[0002]

【従来の技術】近年、光ディスク装置の記録容量をさら
に高めるため従来より短い発振波長を持つ可視光半導体
レーザの開発が進められている。該可視光半導体レーザ
が光ディスク装置に必要な高出力動作を行うためには、
該可視光半導体レーザ端面近傍の光吸収に起因する光学
損傷を抑制しなければならない。最近、上野ら(ジャパ
ニーズ ジャーナル オブ アプライド フィジクス誌
第29巻第9号L1666−L1668頁、1990年
9月)や板谷ら(第12回 IEEE国際半導体レーザ
国際会議、1990年9月、スイス・ダボス、講演番号
C−5)はレーザ端面近傍にバンドギャップエネルギー
の大きい活性層を持つウィンドウ型可視光半導体レーザ
を試作し、光学損傷が抑制されたことを示し優れた高出
力動作特性を報告した。該半導体レーザ内部の活性層は
秩序状態のGa0.5 In0.5 P(厚さ60nm)からな
るのに対しレーザ端面近傍の活性層はバンドギャップエ
ネルギの大きい無秩序状態のGa0.5 In0.5 P(厚さ
60nm)からなり、該レーザ端面近傍の光吸収は低減
された。無秩序状態の該GaInP活性層は、秩序状態
のGaInP活性層に不純物を拡散して形成された。該
不純物は活性層に対して基板と反対側に位置するクラッ
ド層(厚さ1μm)の表面から内部を経て活性層へ拡散
した。
2. Description of the Related Art In recent years, in order to further increase the recording capacity of an optical disk device, development of a visible light semiconductor laser having an oscillation wavelength shorter than before has been underway. In order for the visible light semiconductor laser to perform the high output operation necessary for the optical disk device,
Optical damage due to absorption of light near the facet of the visible light semiconductor laser must be suppressed. Recently, Ueno et al. (Japanese Journal of Applied Physics Vol. 29, No. 9, L1666-L1668, September 1990) and Itaya et al. (The 12th IEEE International Laser Diode International Conference, September 1990, Davos, Switzerland, Lecture number C-5) prototyped a window-type visible light semiconductor laser having an active layer with a large bandgap energy near the laser facet, and showed that optical damage was suppressed, and reported excellent high-power operating characteristics. The semiconductor laser inside the active layer is Ga 0.5 In 0.5 P (thickness 60nm large disordered state of the active layer band gap energy of the laser facet vicinity whereas consisting Ga 0.5 In 0.5 P of ordered state (thickness 60nm) ), The light absorption near the laser end face was reduced. The disordered GaInP active layer was formed by diffusing impurities into the disordered GaInP active layer. The impurities diffused into the active layer from the surface of the clad layer (thickness 1 μm) located on the side opposite to the substrate with respect to the active layer, through the inside.

【0003】[0003]

【発明が解決しようとする課題】該GaInP活性層の
不純物濃度が不十分な場合、秩序状態のGaInPが残
存し光吸収は充分低減しない。逆に該GaInP活性層
の不純物濃度が過剰な場合、自由キャリア散乱やバンド
テールの増大等のために光吸収は増大する。従って、活
性層の該不純物濃度は適切に制御される必要がある。上
述した従来の半導体レーザは不純物濃度の制御が不十分
であり高出力動作特性が限定されている。該半導体レー
ザの高出力動作特性を改善するためには、該不純物の制
御性を向上させる必要がある。
When the impurity concentration of the GaInP active layer is insufficient, the GaInP in the ordered state remains and the light absorption is not sufficiently reduced. On the other hand, when the GaInP active layer has an excessive impurity concentration, light absorption increases due to free carrier scattering and increase in band tail. Therefore, the impurity concentration of the active layer needs to be appropriately controlled. The above-mentioned conventional semiconductor laser has insufficient control of the impurity concentration, and its high-power operation characteristics are limited. In order to improve the high output operation characteristics of the semiconductor laser, it is necessary to improve the controllability of the impurities.

【0004】[0004]

【課題を解決するための手段】本発明の半導体レーザの
1つは、活性層の厚さが50nm以下と充分薄いことを
特徴とする半導体レーザである。本発明の別の半導体レ
ーザは、活性層に対して基板と反対側に位置するクラッ
ド層の厚さが0.75μm以下と充分薄いことを特徴と
する半導体レーザである。
One of the semiconductor lasers of the present invention is a semiconductor laser characterized in that the thickness of the active layer is as thin as 50 nm or less. Another semiconductor laser of the present invention is a semiconductor laser characterized in that the thickness of the clad layer located on the side opposite to the substrate with respect to the active layer is as thin as 0.75 μm or less.

【0005】[0005]

【作用】該不純物がクラッド層を経て活性層に拡散する
と、活性層上端から下端に向かい不純物濃度勾配が生じ
る。活性層が薄いほど該活性層上端と下端の不純物濃度
差は低減し、活性層全域にわたる該不純物濃度の制御性
は向上する。また、該不純物は該クラッド層の表面から
内部を経て活性層上端へ拡散するため、該クラッド層が
薄いほど該不純物の拡散距離が短く活性層の該不純物の
制御性は向上する。
When the impurities diffuse into the active layer through the clad layer, an impurity concentration gradient occurs from the upper end of the active layer to the lower end. The thinner the active layer is, the smaller the difference in impurity concentration between the upper end and the lower end of the active layer is, and the controllability of the impurity concentration over the entire active layer is improved. Further, since the impurities diffuse from the surface of the clad layer to the upper end of the active layer, the thinner the clad layer, the shorter the diffusion distance of the impurity and the better the controllability of the impurity in the active layer.

【0006】[0006]

【実施例】本発明の半導体レーザの平面図を図1に示
す。レーザ内部の励起領域3の活性層が秩序状態のAl
GaInPからなるのに対し、レーザ端面6近傍のウィ
ンドウ領域4の活性層は無秩序状態のAlGaInPか
らなる。図2および図3はそれぞれ励起領域3およびウ
ィンドウ領域4におけるレーザ断面図である。図2およ
び図3の断面は図1のレーザ端面6に平行な平面であ
る。
1 is a plan view of a semiconductor laser of the present invention. The active layer of the pumping region 3 inside the laser is Al with an ordered state.
While it is made of GaInP, the active layer in the window region 4 near the laser end face 6 is made of disordered AlGaInP. 2 and 3 are laser sectional views in the excitation region 3 and the window region 4, respectively. The cross sections of FIGS. 2 and 3 are planes parallel to the laser end face 6 of FIG.

【0007】本発明の半導体レーザの実施例の1つを以
下に示す。まず、n−GaAs基板7上にn−GaAs
バッファー層8、900nm厚のSiドープn−(Al
0.7Ga0.3 0.5 In0.5 Pクラッド層9、100n
m厚のSiドープn−(Al0.6 Ga0.4 0.5 In
0.5 Pガイド層10、活性層11、100nm厚のZn
ドープp−(Al0.6 Ga0.4 0.5 In0.5 Pガイド
層12、900nm厚のZnドープp−(Al0.7 Ga
0.3 0.5 In0.5 Pクラッド層13、10nm厚のZ
nドープp−Ga0.5 In0.5 P層14を順次に有機金
属気相成長法(Metalorganic Vapor
Phase Epitaxy:MOVPE法)により
積層成長した。結晶成長条件は成長温度650−750
℃、V/III比50−500、成長速度1−2μm/
hとした。結晶成長法はMOVPE法に限らずMBE
法、MOMBE法、GSMBE法などが可能である。該
活性層11は10nm厚の無秩序状態の(Al0.05
0.95 0.5 In0.5 Pウェル層と5nm厚の(Al
0.6 Ga0.4 0.5 In0.5 Pバリア層からなる多重量
子井戸層である。無秩序状態の(Al0.05 Ga0.95
0.5 In0.5 Pのバンドギャップエネルギーは1.88
eVである。該ウェル数は4とした。無秩序状態のGa
InPウェル層を用いてもよい。該活性層11に50n
m以下の厚さの無秩序状態のAlGaInPまたはGa
InPバルク層を用いてもよい。p−GaInP層14
まで結晶成長した後、p−AlGaInPクラッド層1
3およびp−GaInP層14の一部を除去してメサ型
の幅3−6μmのストライプを形成し、光導波路1を形
成した。次に、ウィンドウ領域4の該p−GaInP層
14の表面からp−AlGaInPクラッド層13およ
びp−AlGaInPガイド層12を経て活性層11へ
Zn不純物を拡散した。該不純物拡散は、ZnAs2拡
散原料と拡散マスクを用いた熱拡散法で行い、拡散温度
600−700℃、拡散時間1時間未満とした。拡散原
料はZnAs2に限らずZn2As3などでもよい。該
不純物拡散は該熱拡散法に限らず、結晶成長中のドーパ
ンZnの自己拡散現象(第12回 IEEE 国際半導
体レーザ国際会議、1990年9月、スイス・ダボス、
講演番号C−5)を利用して行ってもよい。該不燃物拡
散を終えると、該ウィンドウ領域4の該AlGaInP
ウェル層は無秩序状態となる。無秩序状態の該ウェル層
のバンドギャップエネルギーは約1.95eVである。
不純物拡散の制御性が向上した結果、該ウィンドウ領域
の活性層の光吸収は顕著に低減した。不純物拡散の後、
n−GaAsブロック層15を選択的に成長し、さらに
p−GaAsコンタクト層16を全面に成長し、n電極
17とp電極18を形成した。最後にレーザ端面6を劈
開により形成し、該レーザ端面のそれぞれに1射率およ
び高反射率の誘電体膜を形成し、半導体レーザが完成し
た。共振器長は700μmとした。該半導体レーザはガ
イド層を備えるため、活性層11が薄いにもかかわらず
発振閾値電流は60mAと低い。スポットサイズd/Γ
は0.32μmと従来の半導体レーザにほぼ等しい。該
半導体レーザは50mW出力で長時間安定動作した。
One of the embodiments of the semiconductor laser of the present invention will be shown below. First, on the n-GaAs substrate 7, n-GaAs
Buffer layer 8, 900 nm thick Si-doped n- (Al
0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer 9, 100n
m-thick Si-doped n- (Al 0.6 Ga 0.4 ) 0.5 In
0.5 P guide layer 10, active layer 11, 100 nm thick Zn
Doped p- (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P guide layer 12, 900 nm thick Zn-doped p- (Al 0.7 Ga
0.3 ) 0.5 In 0.5 P clad layer 13, 10 nm thick Z
The n-doped p-Ga 0.5 In 0.5 P layer 14 is sequentially formed by metalorganic vapor phase epitaxy (Metalorganic Vapor Deposition).
Phase epitaxy: MOVPE method). The crystal growth condition is a growth temperature of 650-750.
C, V / III ratio 50-500, growth rate 1-2 μm /
It was set to h. The crystal growth method is not limited to the MOVPE method but MBE
Method, MOMBE method, GSMBE method and the like. The active layer 11 has a thickness of 10 nm and is in a disordered state (Al 0.05 G
a 0.95 ) 0.5 In 0.5 P well layer and 5 nm thick (Al
This is a multiple quantum well layer composed of a 0.6 Ga 0.4 ) 0.5 In 0.5 P barrier layer. Disordered (Al 0.05 Ga 0.95 )
The band gap energy of 0.5 In 0.5 P is 1.88.
eV. The number of wells was 4. Disordered Ga
An InP well layer may be used. 50n in the active layer 11
Disordered AlGaInP or Ga with thickness less than m
An InP bulk layer may be used. p-GaInP layer 14
P-AlGaInP clad layer 1 after crystal growth up to
3 and a part of the p-GaInP layer 14 were removed to form a mesa-shaped stripe having a width of 3-6 μm, and the optical waveguide 1 was formed. Next, Zn impurities were diffused from the surface of the p-GaInP layer 14 in the window region 4 to the active layer 11 through the p-AlGaInP clad layer 13 and the p-AlGaInP guide layer 12. The impurity diffusion was performed by a thermal diffusion method using a ZnAs2 diffusion raw material and a diffusion mask, and the diffusion temperature was 600 to 700 ° C. and the diffusion time was less than 1 hour. The diffusion material is not limited to ZnAs2, but Zn2As3 or the like may be used. The impurity diffusion is not limited to the thermal diffusion method, but the self-diffusion phenomenon of Dopan Zn during crystal growth (12th IEEE International Semiconductor Laser International Conference, September 1990, Davos, Switzerland,
You may use the lecture number C-5). When the diffusion of the incombustibles is completed, the AlGaInP in the window region 4 is
The well layer is in a disordered state. The bandgap energy of the disordered well layer is about 1.95 eV.
As a result of improving the controllability of the impurity diffusion, the light absorption of the active layer in the window region was significantly reduced. After impurity diffusion,
The n-GaAs block layer 15 was selectively grown, and the p-GaAs contact layer 16 was further grown on the entire surface to form an n electrode 17 and ap electrode 18. Finally, the laser end face 6 was formed by cleavage, and a dielectric film having a single emissivity and a high reflectance was formed on each of the laser end faces to complete a semiconductor laser. The resonator length was 700 μm. Since the semiconductor laser includes the guide layer, the oscillation threshold current is as low as 60 mA even though the active layer 11 is thin. Spot size d / Γ
Is 0.32 μm, which is almost equal to that of a conventional semiconductor laser. The semiconductor laser operated stably at an output of 50 mW for a long time.

【0008】次に、本発明の半導体レーザの第2の実施
例を以下に示す。本実施例の構造および製造方法は既に
述べた第1の実施例と類似点が多いので、図2および図
3を参照して第1の実施例と異なる点だけを以下に述べ
る。まず、n−(Al0.7 Ga0.3 0.5 In0.5 Pク
ラッド層9を3μmと厚くし、n−(Al0.6
0. 4 0.5 In0.5 Pガイド層10を300nmとし
た。多重量子井戸活性層11のウェル数は6とした。p
−AlGaInPガイド層12は用いない。p−(Al
0.7 Ga0.3 0.5 In0.5 P層13を650nmと薄
くした。n側に厚いガイド層を設けたため該p−AlG
aInPクラッド層13が薄いにもかかわらずp−Ga
Asコンタクト層16への光の浸み出しは小さく、Ga
Asの光吸収に基づくモードロスは8cm−1と小さ
い。本半導体レーザのスポットサイズd/Γは0.30
μmと小さく、発振閾値電流は60mAと低かった。該
半導体レーザは50mW出力で長時間安定動作した。
Next, a second embodiment of the semiconductor laser of the present invention will be shown below. Since the structure and manufacturing method of this embodiment have many similarities to the first embodiment already described, only the points different from the first embodiment will be described below with reference to FIGS. 2 and 3. First, the n- (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 9 was thickened to 3 μm, and n- (Al 0.6 G 3
The a 0. 4) 0.5 In 0.5 P guiding layer 10 was set to 300 nm. The number of wells in the multiple quantum well active layer 11 was set to 6. p
The -AlGaInP guide layer 12 is not used. p- (Al
The 0.7 Ga 0.3 ) 0.5 In 0.5 P layer 13 was thinned to 650 nm. Since a thick guide layer is provided on the n side, the p-AlG
Although the aInP clad layer 13 is thin, p-Ga
Light seeping into the As contact layer 16 is small, and
The mode loss based on the light absorption of As is as small as 8 cm-1. The spot size d / Γ of this semiconductor laser is 0.30
It was as small as μm, and the oscillation threshold current was as low as 60 mA. The semiconductor laser operated stably at an output of 50 mW for a long time.

【0009】[0009]

【発明の効果】本発明によれば、半導体レーザの製造に
必要な不純物拡散工程の制御性を高め、該半導体レーザ
の高出力動作特性を改善することができる。
According to the present invention, it is possible to enhance the controllability of the impurity diffusion step required for manufacturing a semiconductor laser and improve the high output operation characteristics of the semiconductor laser.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体レーザの平面構造を示した図で
ある。
FIG. 1 is a diagram showing a planar structure of a semiconductor laser of the present invention.

【図2】本発明の半導体レーザの断面構造を示した図の
1つである。
FIG. 2 is one of the views showing the cross-sectional structure of the semiconductor laser of the present invention.

【図3】本発明の半導体レーザの断面構造を示したもう
1つの図である。
FIG. 3 is another diagram showing the cross-sectional structure of the semiconductor laser of the present invention.

【符号の説明】[Explanation of symbols]

1 光導波路 4 ウィンドウ領域 6 レーザ端面 7 n−GaAs基板 9 n−AlGaInPクラッド層 10 n−AlGaInPガイド層 11 活性層 12 p−AlGaInPガイド層 13 p−AlGaInPクラッド層 15 n−GaAsブロック層 16 p−GaAsコンタクト層 1 Optical Waveguide 4 Window Area 6 Laser End Face 7 n-GaAs Substrate 9 n-AlGaInP Clad Layer 10 n-AlGaInP Guide Layer 11 Active Layer 12 p-AlGaInP Guide Layer 13 p-AlGaInP Clad Layer 15 n-GaAs Block Layer 16 p- GaAs contact layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1伝導型のGaAs基板上に順次に形
成された第1伝導型のAlGaAsInPクラッド層
と、GaInPまたはAlGaInPからなる活性層
と、第2伝導型のAlGaInPクラッド層を少なくと
も含む多層エピタキシャル層と、一対のレーザ端面とを
備え、該活性層または該第2伝導型クラッド層の厚さが
充分に薄く、該レーザ端面近傍の活性層は無秩序状態で
あり、レーザー内部の活性層は秩序状態であることを特
徴とする半導体レーザ。
1. A multilayer including at least a first-conductivity-type AlGaAsInP clad layer sequentially formed on a first-conductivity-type GaAs substrate, an active layer made of GaInP or AlGaInP, and a second-conductivity-type AlGaInP clad layer. An epitaxial layer and a pair of laser end faces are provided, and the active layer or the second conduction type clad layer is sufficiently thin, the active layer near the laser end face is in a disordered state, and the active layer inside the laser is A semiconductor laser characterized by being in an ordered state.
【請求項2】 前記活性層がAlGaInPおよびGa
InPからなる多重量子井戸層でなり、該井戸層の厚さ
の合計が50nm以下であることを特徴とする請求項1
に記載の半導体レーザ。
2. The active layer comprises AlGaInP and Ga.
2. A multiple quantum well layer made of InP, wherein the total thickness of the well layers is 50 nm or less.
The semiconductor laser described in 1.
【請求項3】 前記活性層が厚さが50nm以下のGa
InPまたはAlGaInPバルク層でなることを特徴
とする請求項1に記載の半導体レーザ。
3. The active layer is Ga having a thickness of 50 nm or less.
The semiconductor laser according to claim 1, wherein the semiconductor laser comprises an InP or AlGaInP bulk layer.
【請求項4】 第2伝導型クラッド層の厚さが0.75
μm以下であることを特徴とする請求項乃至3に記載の
半導体レーザ。
4. The second conductivity type cladding layer has a thickness of 0.75.
The semiconductor laser according to claim 3, wherein the semiconductor laser has a thickness of not more than μm.
JP4280988A 1992-09-25 1992-09-25 Semiconductor laser diode Pending JPH06112586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4280988A JPH06112586A (en) 1992-09-25 1992-09-25 Semiconductor laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4280988A JPH06112586A (en) 1992-09-25 1992-09-25 Semiconductor laser diode

Publications (1)

Publication Number Publication Date
JPH06112586A true JPH06112586A (en) 1994-04-22

Family

ID=17632696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4280988A Pending JPH06112586A (en) 1992-09-25 1992-09-25 Semiconductor laser diode

Country Status (1)

Country Link
JP (1) JPH06112586A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997050158A1 (en) * 1996-06-24 1997-12-31 Matsushita Electric Industrial Co., Ltd. Semiconductor laser
US5987048A (en) * 1996-07-26 1999-11-16 Kabushiki Kaisha Toshiba Gallium nitride-based compound semiconductor laser and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997050158A1 (en) * 1996-06-24 1997-12-31 Matsushita Electric Industrial Co., Ltd. Semiconductor laser
US6185237B1 (en) 1996-06-24 2001-02-06 Matsushita Electric Industrial Co., Ltd. Semiconductor laser
US5987048A (en) * 1996-07-26 1999-11-16 Kabushiki Kaisha Toshiba Gallium nitride-based compound semiconductor laser and method of manufacturing the same
US6118801A (en) * 1996-07-26 2000-09-12 Kabushiki Kaisha Toshiba Gallium nitride-based compound semiconductor laser and method of manufacturing the same
US6359919B1 (en) 1996-07-26 2002-03-19 Kabushiki Kaisha Toshiba Gallium nitride-based compound semiconductor laser and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4635268A (en) Semiconductor laser device having a double heterojunction structure
JPH11274635A (en) Semiconductor light emitting device
JPH03208388A (en) Semiconductor laser, manufacture thereof and diffusion of impurity
JPH05275798A (en) Laser diode
JPH05243669A (en) Semiconductor laser element
JP2558744B2 (en) Semiconductor laser device and manufacturing method thereof
JPH0656906B2 (en) Semiconductor laser device
JPH05235470A (en) Laser diode
JP3585817B2 (en) Laser diode and manufacturing method thereof
JP2914430B2 (en) Method for manufacturing semiconductor laser device
JPH0856045A (en) Semiconductor laser device
JPH07226566A (en) Quantum well semiconductor laser and its manufacture
JP2001057459A (en) Semiconductor laser
JPH06112586A (en) Semiconductor laser diode
JPH02116187A (en) Semiconductor laser
JPH05211372A (en) Manufacture of semiconductor laser
JPH11354884A (en) Semiconductor laser and its manufacturing method
JP3239821B2 (en) Method for producing strained semiconductor crystal
JP2556270B2 (en) Strained quantum well semiconductor laser
JPH09275239A (en) Semiconductor laser device
JP3410959B2 (en) Semiconductor laser device and method of manufacturing the same
JP3648357B2 (en) Manufacturing method of semiconductor laser device
JP3820826B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor device
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof
JP3189900B2 (en) Semiconductor laser device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990316