JPH08326548A - Lag closing mirror cycle engine - Google Patents

Lag closing mirror cycle engine

Info

Publication number
JPH08326548A
JPH08326548A JP7137789A JP13778995A JPH08326548A JP H08326548 A JPH08326548 A JP H08326548A JP 7137789 A JP7137789 A JP 7137789A JP 13778995 A JP13778995 A JP 13778995A JP H08326548 A JPH08326548 A JP H08326548A
Authority
JP
Japan
Prior art keywords
engine
intake
range
expansion ratio
closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7137789A
Other languages
Japanese (ja)
Inventor
Tomohito Shimogata
智史 下形
Kazuhisa Okamoto
和久 岡本
Fukuei Chiyou
福 ▲榮▼ 張
Fujio Shoji
不二雄 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP7137789A priority Critical patent/JPH08326548A/en
Publication of JPH08326548A publication Critical patent/JPH08326548A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/32Miller cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE: To improve the efficiency of a lag closing mirror cycle engine by a method wherein the closing period of an intake valve is set to a value in a specified range after a bottom dead center and an expansion ratio is set to a value in a specified range. CONSTITUTION: In an engine 1, a cylinder 11 having an inner wall over which a piston 13 coupled through a connecting rod 14 is slid is provided. A cylinder head 12 positioned at the upper part of the cylinder 11 and having an intake port 17 and an exhaust port 18 is provided. Further, an intake valve 15 and an exhaust valve 16 to open and close the opening parts of the intake port 17 and the exhaust port 18 are provided. The control system of the engine 1 is sets a control target value so that an air ratio is adjusted to 1.0. In addition to the above, the closing period of the intake valve 15 is set to a value within a range of 70-150 deg. after a bottom dead center. Further, an expansion ratio is set to a value in a range of 12-20. This constitution increases the expansion ratio and improve efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ピストンと、該ピスト
ンが内壁を摺動するシリンダと、該シリンダの上部に位
置し且つ吸気ポート及び排気ポートを有するシリンダヘ
ッドと、前記吸気ポート及び排気ポートの開口部をそれ
ぞれ開閉する吸気弁及び排気弁とを設け、該吸気弁は下
死点を経過してから所定の角度だけクランクが回転した
後に吸気ポートを閉鎖する遅閉じミラーサイクルエンジ
ンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piston, a cylinder on which the piston slides on an inner wall, a cylinder head located above the cylinder and having an intake port and an exhaust port, and the intake port and the exhaust port. The present invention relates to a late-closing Miller cycle engine in which an intake valve and an exhaust valve for opening and closing the respective openings are provided, and the intake valve closes the intake port after the crank rotates by a predetermined angle after the bottom dead center has passed.

【0002】[0002]

【従来の技術】内燃機関における熱効率の改善方法とし
て、燃焼ガスの持つエネルギを十分に膨張させて取り出
すミラーサイクルエンジンが知られている。そしてこの
ミラーサイクルエンジンには吸気早閉じ方式と、吸気遅
閉じ方式がある。
2. Description of the Related Art As a method for improving the thermal efficiency of an internal combustion engine, a Miller cycle engine is known in which the energy of combustion gas is sufficiently expanded and taken out. The Miller cycle engine has an intake early closing system and an intake late closing system.

【0003】吸気早閉じ方式は、図5(バルブリフト特
性図)のb線で示す様に、a線で示す通常の吸気弁のバ
ルブリフト特性に比較してバルブリフトの最大値は同じ
であるが、吸気弁を直接早く閉じるような特性となって
いる。しかし、その様な特性とした結果、吸気弁の着座
の速度、加速度が大きくなり、弁本体の強度や、弁座の
強度に問題が生ずる。ここで、吸気弁の着座の速度、加
速度を等しくするためには、同図中c線のようにバルブ
リフトを減少すれば良いが、バルブリフトを減少すれば
吸気効率が低下してしまう。
In the intake early closing system, as shown by the line b in FIG. 5 (valve lift characteristic diagram), the maximum value of the valve lift is the same as the valve lift characteristic of the normal intake valve shown by the line a. However, the characteristics are such that the intake valve closes directly and quickly. However, as a result of such characteristics, the seating speed and acceleration of the intake valve become large, and problems occur in the strength of the valve body and the strength of the valve seat. Here, in order to equalize the seating speed and acceleration of the intake valve, it is sufficient to reduce the valve lift as indicated by line c in the figure, but if the valve lift is reduced, intake efficiency will decrease.

【0004】これを避けるために、図6に示す様に、吸
気ポート17に至る吸気管2の途中に開閉手段、例えば
エンジン回転と同調して開閉するロータリバルブ6(ロ
ータリバルブのバルブリフト特性は図5のd線で示す)
や図示しないリード等、を介装する手法がとられる。
In order to avoid this, as shown in FIG. 6, an opening / closing means, for example, a rotary valve 6 which opens and closes in synchronization with the engine rotation in the middle of the intake pipe 2 reaching the intake port 17 (the valve lift characteristic of the rotary valve is (Indicated by d line in FIG. 5)
Alternatively, a method of interposing a lead or the like (not shown) may be used.

【0005】しかしながら、図6から明らかな様に、吸
気弁15とロータリバルブ6との間にむだ容積(D/
V)が存在してしまうことにより、ロータリバルブを閉
じた後も「むだ容積」(D/V)分の混合気が吸入され
てしまうという問題がある。また、吸気タイミングや吸
気管形状等について複雑な機構が必要となるため、コス
トの増加、耐久性の不安等も存在する。
However, as is apparent from FIG. 6, the dead volume (D / D) between the intake valve 15 and the rotary valve 6 is increased.
Due to the presence of V), there is a problem that the air-fuel mixture of “dead volume” (D / V) is sucked in even after the rotary valve is closed. Further, since a complicated mechanism is required for the intake timing, the intake pipe shape, etc., there are concerns such as an increase in cost and durability.

【0006】ここで、吸気早閉じ方式においては、図7
の指圧線図の線ABに示す様に吸気行程を途中で止め、
図6に戻り、更にそこからピストン13が下降するとシ
リンダ11内部の気体が膨張し、温度降下が起きる所謂
内部冷却サイクルが含まれるメリットを持つ一方、ロー
タリバルブ等は吸気抵抗になり圧力損失が生じるため、
より高い吸気圧力を必要とする。
Here, in the intake early closing system, as shown in FIG.
As shown by the line AB in the Shiatsu line diagram, the intake stroke is stopped midway,
Returning to FIG. 6, when the piston 13 further descends from there, the gas inside the cylinder 11 expands, which has the merit of including a so-called internal cooling cycle in which a temperature drop occurs. For,
Requires higher intake pressure.

【0007】これに対して、吸気遅閉じ方式を採用した
場合のバルブリフト特性を図8の特性曲線eで示す。そ
して吸気遅閉じ方式の場合、ピストンが下死点から上昇
に移っても、吸気バルブを開けたままであり、一旦シリ
ンダ内に流入した吸気は吸気ポート側に押し戻される
(吹き返し)。その後然るべきピストン位置で吸気バル
ブを閉じれば、そこからが実際の圧縮行程となる。
On the other hand, the valve lift characteristic when the late intake closing system is adopted is shown by the characteristic curve e in FIG. Then, in the case of the late intake closing method, even if the piston moves upward from the bottom dead center, the intake valve remains open, and the intake air once flowing into the cylinder is pushed back to the intake port side (blowback). After that, if the intake valve is closed at the proper piston position, the actual compression stroke starts from that point.

【0008】ここで、遅閉じミラーサイクルエンジンは
吸気カムの交換のみで実現可能であり、上述した早閉じ
方式の様にロータリバルブ等を設ける必要が無い。その
ため、低コストで耐久性、信頼性にも優れる。また、図
8のハッチングを付した領域の面積分だけバルブ流通面
積を稼げるため、吸気効率が向上し、吸気圧力を低くす
ることが出来る。そして、吸気圧力を高くすることが無
いのに起因して、エンジンの効率低下を防止することが
出来る。
Here, the late closing Miller cycle engine can be realized only by replacing the intake cam, and it is not necessary to provide a rotary valve or the like as in the above-described early closing system. Therefore, it is low in cost and excellent in durability and reliability. Further, since the valve flow area is increased by the area of the hatched region in FIG. 8, the intake efficiency is improved and the intake pressure can be lowered. Then, it is possible to prevent the efficiency of the engine from being lowered due to the fact that the intake pressure is not increased.

【0009】なお、従来の遅閉じミラーサイクルエンジ
ンにおいては、吸気弁が閉鎖する時期は下死点後40゜
から70゜の範囲である。
In the conventional late-closing Miller cycle engine, the time when the intake valve is closed is in the range of 40 ° to 70 ° after bottom dead center.

【0010】[0010]

【発明が解決しようとする課題】この様に、遅閉じミラ
ーサイクルエンジンは、吸気早閉じ方式を採用した場合
における欠点を解消することが出来る。しかし、遅閉じ
ミラーサイクルエンジンの効率を更に向上させたい、と
いう要請が存在する。そして本発明は、その様な要請に
鑑みて提案されたものである。
As described above, the late-closing Miller cycle engine can eliminate the drawbacks when the intake early closing system is adopted. However, there is a demand to further improve the efficiency of late closing Miller cycle engines. The present invention has been proposed in view of such a demand.

【0011】[0011]

【課題を解決するための手段】発明者は種々研究及び検
討の結果、遅閉じミラーサイクルエンジンにおいて、吸
気弁が閉鎖する時期を下死点後40゜から70゜の範囲
に限定する必要は無い旨を見出だした。
As a result of various researches and studies, the inventor need not limit the timing of closing the intake valve in the late-closing Miller cycle engine to a range of 40 ° to 70 ° after bottom dead center. I found out.

【0012】その様な知見に基づいて提案された本発明
のミラーサイクルエンジンは、ピストンと、該ピストン
が内壁を摺動するシリンダと、該シリンダの上部に位置
し且つ吸気ポート及び排気ポートを有するシリンダヘッ
ドと、前記吸気ポート及び排気ポートの開口部をそれぞ
れ開閉する吸気弁及び排気弁とを設け、該吸気弁は下死
点を経過してから所定の角度だけクランクが回転した後
に吸気ポートを閉鎖する遅閉じミラーサイクルエンジン
において、吸気弁閉時期が下死点後70゜から150゜
の範囲内であり、膨張比が12から20の範囲内である
ことを特徴としている。
The Miller cycle engine of the present invention proposed on the basis of such knowledge has a piston, a cylinder on which the piston slides on the inner wall, and an intake port and an exhaust port located above the cylinder. A cylinder head and an intake valve and an exhaust valve for opening and closing the openings of the intake port and the exhaust port, respectively, are provided, and the intake valve opens the intake port after the crank rotates by a predetermined angle after the bottom dead center has passed. The late-closing Miller cycle engine which is closed is characterized in that the intake valve closing timing is in the range of 70 ° to 150 ° after bottom dead center and the expansion ratio is in the range of 12 to 20.

【0013】ここで本発明は、ガスエンジン(理論空燃
比で燃焼するガスエンジン、希薄燃焼タイプのガスエン
ジンの双方を含む)、ディーゼルエンジン、ガソリンエ
ンジン等、ミラーサイクルが実施できるエンジンであれ
ば、全て適用可能である。
Here, the present invention provides a gas engine (including both a gas engine that burns at a stoichiometric air-fuel ratio and a lean-burn type gas engine), a diesel engine, a gasoline engine, or any other engine that can perform a Miller cycle. All are applicable.

【0014】本発明において、エンジンがガスエンジン
である場合には、吸気弁閉時期が下死点後70゜から1
40゜の範囲内であり、膨張比が12から16の範囲内
であるのが好ましい。ここで、ガスエンジンは理論空燃
比で燃焼するガスエンジンであっても、希薄燃焼タイプ
のガスエンジンであっても良い。
In the present invention, when the engine is a gas engine, the intake valve closing timing is 70 ° to 1 after bottom dead center.
It is preferably in the range of 40 ° and the expansion ratio is in the range of 12 to 16. Here, the gas engine may be a gas engine that burns at a stoichiometric air-fuel ratio or a lean burn type gas engine.

【0015】同様に、エンジンがガスエンジン(理論空
燃比で燃焼するガスエンジン、希薄燃焼タイプのガスエ
ンジンの双方を含む)である場合には、吸気弁閉時期が
下死点後100゜から150゜の範囲内であり、膨張比
が14から18の範囲内であるのが好ましい。
Similarly, when the engine is a gas engine (including both a gas engine that burns at a stoichiometric air-fuel ratio and a lean burn type gas engine), the intake valve closing timing is 100 ° to 150 after bottom dead center. Preferably, the expansion ratio is in the range of 14 to 18 and the expansion ratio is in the range of 14 to 18.

【0016】さらに、エンジンがガスエンジン(理論空
燃比で燃焼するガスエンジン、希薄燃焼タイプのガスエ
ンジンの双方を含む)である場合には、吸気弁閉時期が
下死点後110゜から150゜の範囲内であり、膨張比
が16から20の範囲内であるのも好ましい。
Further, when the engine is a gas engine (including both a gas engine that burns at a stoichiometric air-fuel ratio and a lean burn type gas engine), the intake valve closing timing is 110 ° to 150 ° after bottom dead center. It is also preferred that the expansion ratio is within the range of 16 to 20.

【0017】本発明の実施に際して、遅閉じミラーサイ
クルエンジンの吸気マニホルドと、シリンダヘッドの各
々の吸気ポートとの結合部に、該エンジンのシリンダ内
から吹き返された混合気を冷却するため、吹き返し吸気
冷却手段を設けるのが好ましい。
In the practice of the present invention, the blow-back intake air is cooled at the joint between the intake manifold of the late-closing Miller cycle engine and each intake port of the cylinder head in order to cool the air-fuel mixture blown back from inside the cylinder of the engine. It is preferable to provide cooling means.

【0018】[0018]

【作用】上述した様な構成を具備する本発明のミラーサ
イクルエンジンによれば、吸気弁閉時期が下死点後70
゜から150゜の範囲内、従来の遅閉じ方式を採用した
場合の吸気弁閉時期が下死点後40゜から70゜である
のと比較して、その遅れ角度が極めて大きい。それに伴
い、膨張比を12から20の範囲内に設定しており、こ
の膨張比も従来の遅閉じ方式の場合に比較して高い数値
となっている。
According to the Miller cycle engine of the present invention having the above-described structure, the intake valve closing timing is 70 after the bottom dead center.
In the range of ° to 150 °, the delay angle is extremely large compared to the case where the intake valve closing timing is 40 ° to 70 ° after bottom dead center when the conventional late closing system is adopted. Along with this, the expansion ratio is set within the range of 12 to 20, and this expansion ratio is also a higher value than in the case of the conventional slow-closing method.

【0019】ここで、本発明では上述した通り遅れ角度
が極めて大きいため、膨張比が大きくなっても圧縮比は
それ程高い数値とはならない。従って、圧縮比をノッキ
ングを起こさない範囲に押さえつつ、膨張比を大きくし
て効率改善することが可能となるのである。
Here, in the present invention, since the delay angle is extremely large as described above, the compression ratio does not become so high even if the expansion ratio becomes large. Therefore, it is possible to increase the expansion ratio and improve the efficiency while suppressing the compression ratio to a range that does not cause knocking.

【0020】また、種々の実験及びシミュレーションの
結果、従来の遅閉じ方式(遅れ角度が40゜−70゜)
のものに比較して、本発明(遅れ角度が70゜−150
゜で膨張比が12−20、好ましくは、遅れ角度が70
゜−140゜で膨張比が12−16、遅れ角度が100
゜−150゜で膨張比が14−18、遅れ角度が110
゜−150゜で膨張比が16−20)によれば、効率が
向上することが分かった。
As a result of various experiments and simulations, the conventional slow-closing method (delay angle is 40 ° -70 °)
According to the present invention (delay angle 70 ° -150
The expansion ratio is 12-20, preferably the delay angle is 70.
Expansion ratio of 12-16 and delay angle of 100 at -140 °
Expansion ratio of 14-18 and delay angle of 110 at -150 °
It has been found that the efficiency is improved when the expansion ratio is 16-20) at -150 °.

【0021】なお、ガスエンジンのシリンダ内から吹き
返された混合気を冷却するため、吹き返し吸気冷却手段
を設ければ、吹き返し吸気が冷却され、次の吸気行程に
は充填効率の高い冷えた吸気が得られるので、運転効率
が更に向上する。
In order to cool the air-fuel mixture blown back from the cylinder of the gas engine, if a blow-back intake air cooling means is provided, the blow-back intake air is cooled, and the cool intake air with high filling efficiency is provided in the next intake stroke. As a result, the operating efficiency is further improved.

【0022】ここで、吸気弁の遅れ角度を70゜以上と
したのは、それ以下であるとノッキング発生の恐れがあ
り、且つ、従来の遅閉じ方式と差異が無くなってしまう
からである。一方、遅れ角度が150゜以下であるの
は、150゜を越えると熱損失が急激に増えることがシ
ミュレーションにより確かめられていることと、この角
度が余りにも大きくなると(例えば180゜以上)エン
ジンの作動が不可能となる。
Here, the reason why the delay angle of the intake valve is set to 70 ° or more is that if it is less than 70 °, knocking may occur, and the difference from the conventional slow closing system is eliminated. On the other hand, the reason why the delay angle is 150 ° or less is that it has been confirmed by simulation that the heat loss sharply increases above 150 °, and that if this angle becomes too large (for example, 180 ° or more), It becomes impossible to operate.

【0023】[0023]

【実施例】以下、図1乃至図4に基づいて、本発明の実
施例について説明する。なお、図示の実施例では、理論
空燃比で燃焼するガスエンジンについて説明する。図1
において、エンジン1において、内壁をコネクティング
ロッド14で連結されたピストン13が摺動するシリン
ダ11と、該シリンダ11の上部に位置し吸気ポート1
7と排気ポート18を有するシリンダヘッド12と、前
記吸気ポート17と前記排気ポート18の開口部を開閉
する吸気弁15及び排気弁16が設けられている。そし
て、図示しない空気取り入れ口から前記シリンダヘッド
の吸気ポート17に至る吸気系統には吸気管2が設けら
れ、吸気管2には、ターボチャージャ4、インタクーラ
3が介装されている。なお、図1において符号5で示す
様に、吹き返し吸気冷却手段である吹き返し吸気冷却用
クーラ5を介装することが好ましい。但し、図2以下の
実施例では、吹き返し吸気冷却用クーラ5は介装されて
いない。
Embodiments of the present invention will be described below with reference to FIGS. In the illustrated embodiment, a gas engine that burns at a stoichiometric air-fuel ratio will be described. FIG.
In the engine 1, the cylinder 11 on which the piston 13 connected to the inner wall by the connecting rod 14 slides, and the intake port 1 located above the cylinder 11.
7, a cylinder head 12 having an exhaust port 18 and an intake valve 15 and an exhaust valve 16 for opening and closing the openings of the intake port 17 and the exhaust port 18 are provided. An intake pipe 2 is provided in the intake system from an air intake port (not shown) to the intake port 17 of the cylinder head, and the intake pipe 2 is provided with a turbocharger 4 and an intercooler 3. In addition, as shown by reference numeral 5 in FIG. 1, it is preferable to interpose a cooler 5 for blow-back intake cooling, which is a blow-back intake cooling means. However, in the embodiment shown in FIG. 2 and the subsequent drawings, the blow-back intake air cooling cooler 5 is not provided.

【0024】図1では明確には図示されていないが、エ
ンジン1の排気系(図示せず)には図示しない三元触媒
が介装されている。そして、エンジン1に供給される混
合気における空気比が1.0前後となる様に、図示しな
い制御系で運転されている。換言すれば、エンジン1の
制御系は、空気比が1.0となる様に制御目標値が設定
されている。これに加えて、吸気弁15の閉鎖時期は、
下死点後70゜から150゜の範囲内に設定されてお
り、膨張比が12から20の範囲内(例えば、遅れ角度
が70゜−140゜で膨張比が12−16か、遅れ角度
が100゜−150゜で膨張比が14−18か、或い
は、遅れ角度が110゜−150゜で膨張比が16−2
0)に設定されている。但し、吸気弁15の閉鎖時期
(遅れ角度)と膨張比との関係は個々のエンジン毎に相
違する。そして、図示の実施例における遅れ角度と膨張
比は、上記範囲から適宜選択された組み合わせとなる。
Although not clearly shown in FIG. 1, an exhaust system (not shown) of the engine 1 is provided with a three-way catalyst (not shown). The engine is operated by a control system (not shown) so that the air ratio in the air-fuel mixture supplied to the engine 1 becomes around 1.0. In other words, the control target value of the control system of the engine 1 is set so that the air ratio becomes 1.0. In addition to this, the closing timing of the intake valve 15 is
It is set in the range of 70 ° to 150 ° after bottom dead center, and the expansion ratio is in the range of 12 to 20 (for example, if the delay angle is 70 ° -140 ° and the expansion ratio is 12-16, the delay angle is The expansion ratio is 14-18 at 100 ° -150 °, or the expansion ratio is 16-2 at a delay angle of 110 ° -150 °.
It is set to 0). However, the relationship between the closing timing (delay angle) of the intake valve 15 and the expansion ratio differs for each engine. The delay angle and the expansion ratio in the illustrated embodiment are a combination appropriately selected from the above range.

【0025】図2は、図1の実施例における遅れ角度と
効率との関係を示しており、シミュレーション及び実験
結果から導かれた特性図である。なお、図2において、
塗り潰されたプロットは実験結果を示している。この図
2から明らかな様に、100゜−150゜の範囲で効率
の極大値(最大値)を得ることが出来た。
FIG. 2 shows the relationship between the delay angle and the efficiency in the embodiment of FIG. 1, and is a characteristic diagram derived from the results of simulations and experiments. In addition, in FIG.
The filled plots show experimental results. As is clear from FIG. 2, the maximum value (maximum value) of efficiency could be obtained in the range of 100 ° -150 °.

【0026】この場合、従来では考えられなかった膨張
比18(四角形のプロットの特性曲線)では非常に高い
効率を得ることが出来る。そして、膨張比16の特性曲
線(三角形のプロット)、膨張比14の特性曲線(円形
のプロット)と比較すれば明らかな様に、膨張比を高く
する程、効率は向上している。
In this case, a very high efficiency can be obtained with the expansion ratio 18 (characteristic curve of a square plot) which has not been considered in the past. As is clear from comparison with the characteristic curve of the expansion ratio 16 (triangle plot) and the characteristic curve of the expansion ratio 14 (circular plot), the higher the expansion ratio, the higher the efficiency.

【0027】なお、図3において点線で示す直線Nはノ
ッキング発生の臨界線であり、該直線よりも遅れ角度が
小さい側(図3では左側)にエンジン特性を設定したな
らば、ノッキングが発生する。そして、遅れ角度が12
0゜−150゜の範囲では、図3の3本の特性曲線はい
ずれもノッキングを起こす可能性がある領域には存在し
ていない。但し、遅れ角度と膨張比との組合わせによ
り、ノッキングを起こす可能性がある領域に存在するか
否かが定まるため、遅れ角度が70゜−120゜であっ
ても膨張比如何によってはノッキングは起こさない。
A straight line N shown by a dotted line in FIG. 3 is a critical line for knocking occurrence, and knocking occurs if the engine characteristic is set on the side where the delay angle is smaller than the straight line (left side in FIG. 3). . And the delay angle is 12
In the range of 0 ° to 150 °, none of the three characteristic curves in FIG. 3 exists in the region where knocking may occur. However, the combination of the delay angle and the expansion ratio determines whether or not there is a region where knocking may occur, so even if the delay angle is 70 ° -120 °, knocking may occur depending on the expansion ratio. Do not wake up.

【0028】次に、図3を参照して、図1の実施例にお
ける遅れ角度と膨張比、圧縮比の関係について説明す
る。図3において、符号1−2間は吸気行程、符号2−
2´間は下死点後に吸気弁が開いている行程すなわち遅
れ角度に対応する行程であり、符号2−2´間の行程で
は吸気弁が開放しているため、シリンダ内の混合気が吸
気系に押し出されてしまう。この際に図示の例では、吹
き返し吸気冷却用クーラ5により、該押し出された混合
気(吹き返し吸気)を冷却している。
Next, the relationship between the delay angle and the expansion ratio and compression ratio in the embodiment of FIG. 1 will be described with reference to FIG. In Fig. 3, reference numeral 1-2 indicates an intake stroke, reference numeral 2-
Between 2'is a stroke corresponding to the stroke in which the intake valve is open after bottom dead center, that is, the delay angle, and the intake valve is open in the stroke between 2-2 ', so that the air-fuel mixture in the cylinder is intaken. It will be pushed out by the system. At this time, in the illustrated example, the blowback intake air cooling cooler 5 cools the extruded mixture (blowback intake air).

【0029】符号2´−3は圧縮行程、符号3−4は燃
焼行程、符号4−5は膨張行程、符号5−7は排気行程
である。ここで、図1の実施例では遅れ角度が従来のも
のに比較して極めて大きいので、符号2−2´の行程が
長くなり、それに対応して符号2´−3の圧縮行程は短
くなる。一方、符号4−5の膨張行程は従来の遅閉じ方
式の場合と同様である。その結果、図1の実施例では、
符号4−5(図3)の膨張行程が符号2´−3の圧縮行
程に比較して十分に長く、ノッキングしない範囲に圧縮
比を抑えつつ、膨張比を向上することが出来るのであ
る。
Reference numeral 2'-3 is a compression stroke, reference numeral 3-4 is a combustion stroke, reference numeral 4-5 is an expansion stroke, and reference numeral 5-7 is an exhaust stroke. Here, in the embodiment of FIG. 1, since the delay angle is extremely large compared to the conventional one, the stroke of reference numeral 2-2 'becomes long and the compression stroke of reference numeral 2'-3 becomes correspondingly short. On the other hand, the expansion stroke of reference numeral 4-5 is the same as that in the case of the conventional slow-closing method. As a result, in the embodiment of FIG.
The expansion stroke indicated by reference numeral 4-5 (FIG. 3) is sufficiently longer than the compression stroke indicated by reference numeral 2'-3, and the expansion ratio can be improved while suppressing the compression ratio within a range where knocking does not occur.

【0030】この様な作用効果は、遅れ角度を40゜−
70゜に限定していた従来の遅閉じ方式を採用したエン
ジンでは得ることが出来ない。その程度では図3の符号
2−2´の行程が比較的短く、符号2´−3の圧縮行程
が比較的長くなってしまうからである。
Such an effect is obtained by setting the delay angle to 40 °-
It cannot be obtained with an engine that adopts the conventional late closing method that was limited to 70 °. This is because the stroke of reference numeral 2-2 'in FIG. 3 is relatively short and the compression stroke of reference numeral 2'-3 is relatively long.

【0031】図4は、遅れ角度と熱損失との関係を示し
ており、シミュレーションにより作成されている。ここ
で、特性曲線のプロットと膨張比との関係等は、図2と
同様である。図4から明らかな様に、遅れ角度が100
゜−150゜の範囲で、熱損失の極小値(最小値)を得
ることが出来た。
FIG. 4 shows the relationship between the delay angle and the heat loss, which is created by simulation. Here, the relationship between the plot of the characteristic curve and the expansion ratio is the same as in FIG. As is clear from FIG. 4, the delay angle is 100
It was possible to obtain the minimum value (minimum value) of heat loss in the range of ° -150 °.

【0032】図示の実施例では、理論空燃比で燃焼する
ガスエンジンについて説明されているが、本発明はそれ
に限定されるものではなく、希薄燃焼タイプのガスエン
ジンにも適用出来る。また、ガスエンジンのみならず、
ディーゼルエンジン、ガソリンエンジン、その他、ミラ
ーサイクルが実施できるエンジンであれば、全て適用可
能である旨をも付記する。
In the illustrated embodiment, a gas engine that burns at a stoichiometric air-fuel ratio is described, but the present invention is not limited to this and can be applied to a lean burn type gas engine. In addition to the gas engine,
It should also be noted that any diesel engine, gasoline engine, or any other engine that can perform a Miller cycle can be applied.

【0033】[0033]

【発明の効果】以上の説明した様に、本発明のミラーサ
イクルガスエンジンによれば、吸気弁閉時期が下死点後
70゜から150゜で膨張比が12−20(好ましく
は、遅れ角度が70゜−140゜で膨張比が12−16
か、遅れ角度が100゜−150゜で膨張比が14−1
8か、或いは、遅れ角度が110゜−150゜で膨張比
が16−20)に設定した結果、従来の遅閉じ方式にお
ける吸気弁閉時期の限定とは無関係に、最適な遅れ角度
を選択することが可能となった。
As described above, according to the Miller cycle gas engine of the present invention, when the intake valve closing timing is 70 ° to 150 ° after the bottom dead center and the expansion ratio is 12-20 (preferably the delay angle). Is 70 ° -140 ° and the expansion ratio is 12-16
Or, the delay angle is 100 ° -150 ° and the expansion ratio is 14-1.
8 or a delay angle of 110 ° -150 ° and an expansion ratio of 16-20), the optimum delay angle is selected regardless of the limitation of the intake valve closing timing in the conventional slow closing system. It has become possible.

【0034】また、本発明では遅れ角度が極めて大きい
ため、膨張比が大きくなっても圧縮比はそれ程高い数値
とはならず、ノッキングを起こさない範囲に圧縮比を押
さえつつ、膨張比を大きくして効率改善することが可能
となる。
Further, in the present invention, since the delay angle is extremely large, the compression ratio does not become such a high value even if the expansion ratio becomes large, and the expansion ratio is increased while suppressing the compression ratio to the range where knocking does not occur. It is possible to improve efficiency.

【0035】さらに、本発明において吹き返し吸気冷却
手段を設ければ、体積効率が向上し、熱効率がより一層
向上する。
Further, if the blow-back intake air cooling means is provided in the present invention, the volumetric efficiency is improved and the thermal efficiency is further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】図1の実施例の作用を示す遅れ角度と効率との
特性図。
FIG. 2 is a characteristic diagram of a delay angle and efficiency showing an operation of the embodiment of FIG.

【図3】図1の実施例の燃焼サイクルを示すPV線図。FIG. 3 is a PV diagram showing the combustion cycle of the embodiment of FIG.

【図4】図1の実施例の作用を示す遅れ角度と熱損失と
の特性図。
FIG. 4 is a characteristic diagram of a delay angle and heat loss showing the operation of the embodiment of FIG.

【図5】早閉じミラーサイクルのバルブリフト特性図。FIG. 5 is a valve lift characteristic diagram of an early closing Miller cycle.

【図6】ロータリバルブを用いた従来の早閉じミラーサ
イクルエンジンを示すブロック図。
FIG. 6 is a block diagram showing a conventional early closing Miller cycle engine using a rotary valve.

【図7】早閉じミラーサイクルのPV線図。FIG. 7 is a PV diagram of an early closing Miller cycle.

【図8】遅閉じミラーサイクルのバルブリフト特性図。FIG. 8 is a valve lift characteristic diagram of a late closing mirror cycle.

【符号の説明】[Explanation of symbols]

1・・・エンジン 2・・・吸気管 3・・・インタクーラ 4・・・ターボチャージャ 5、5A、5B・・・吹き返し吸気冷却用クーラ 6・・・ロータリバルブ 11・・・シリンダ 12・・・シリンダヘッド 13・・・ピストン 15・・・吸気弁 17・・・吸気ポート 20・・・吸気マニホルド 32・・・気筒 34・・・シリンダブロック DESCRIPTION OF SYMBOLS 1 ... Engine 2 ... Intake pipe 3 ... Intercooler 4 ... Turbocharger 5, 5A, 5B ... Cooler for blowback intake cooling 6 ... Rotary valve 11 ... Cylinder 12 ... Cylinder head 13 ... Piston 15 ... Intake valve 17 ... Intake port 20 ... Intake manifold 32 ... Cylinder 34 ... Cylinder block

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ピストンと、該ピストンが内壁を摺動す
るシリンダと、該シリンダの上部に位置し且つ吸気ポー
ト及び排気ポートを有するシリンダヘッドと、前記吸気
ポート及び排気ポートの開口部をそれぞれ開閉する吸気
弁及び排気弁とを設け、該吸気弁は下死点を経過してか
ら所定の角度だけクランクが回転した後に吸気ポートを
閉鎖する遅閉じミラーサイクルエンジンにおいて、吸気
弁閉時期が下死点後70゜から150゜の範囲内であ
り、膨張比が12から20の範囲内であることを特徴と
する遅閉じミラーサイクルエンジン。
1. A piston, a cylinder on which the piston slides on an inner wall, a cylinder head located above the cylinder and having an intake port and an exhaust port, and opening and closing openings of the intake port and the exhaust port, respectively. An intake valve and an exhaust valve are provided, and the intake valve closes at the time of bottom dead in a late-closing Miller cycle engine in which the intake valve is closed after the crank has rotated a predetermined angle after the bottom dead center has passed. A late-closing Miller cycle engine characterized by an expansion ratio in the range of 20 to 150 ° and an expansion ratio in the range of 12 to 20.
【請求項2】 エンジンはガスエンジンであり、吸気弁
閉時期が下死点後70゜から140゜の範囲内であり、
膨張比が12から16の範囲内である請求項1の遅閉じ
ミラーサイクルエンジン。
2. The engine is a gas engine, and the intake valve closing timing is within a range of 70 ° to 140 ° after bottom dead center,
The late-closing Miller cycle engine of claim 1, wherein the expansion ratio is in the range of 12 to 16.
【請求項3】 エンジンはガスエンジンであり、吸気弁
閉時期が下死点後100゜から150゜の範囲内であ
り、膨張比が14から18の範囲内である請求項1の遅
閉じミラーサイクルエンジン。
3. The delayed closing mirror according to claim 1, wherein the engine is a gas engine, the intake valve closing timing is within a range of 100 ° to 150 ° after bottom dead center, and the expansion ratio is within a range of 14 to 18. Cycle engine.
【請求項4】 エンジンはガスエンジンであり、吸気弁
閉時期が下死点後110゜から150゜の範囲内であ
り、膨張比が16から20の範囲内である請求項1の遅
閉じミラーサイクルエンジン。
4. The late-closing mirror according to claim 1, wherein the engine is a gas engine, the intake valve closing timing is in the range of 110 ° to 150 ° after bottom dead center, and the expansion ratio is in the range of 16 to 20. Cycle engine.
JP7137789A 1995-06-05 1995-06-05 Lag closing mirror cycle engine Pending JPH08326548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7137789A JPH08326548A (en) 1995-06-05 1995-06-05 Lag closing mirror cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7137789A JPH08326548A (en) 1995-06-05 1995-06-05 Lag closing mirror cycle engine

Publications (1)

Publication Number Publication Date
JPH08326548A true JPH08326548A (en) 1996-12-10

Family

ID=15206892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7137789A Pending JPH08326548A (en) 1995-06-05 1995-06-05 Lag closing mirror cycle engine

Country Status (1)

Country Link
JP (1) JPH08326548A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115024A (en) * 2007-11-08 2009-05-28 Mitsui Eng & Shipbuild Co Ltd Reciprocating internal combustion engine using isothermal compression cylinder
JP2010502887A (en) * 2006-09-08 2010-01-28 ナジ アミン アタラ Apparatus and method for improving the efficiency of an internal combustion engine
US7823550B2 (en) 2007-07-30 2010-11-02 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Engine equipped with adjustable valve timing mechanism
US7918090B2 (en) * 2007-06-26 2011-04-05 Hitachi, Ltd. Method and apparatus for controlling an internal combustion engine
KR20150020082A (en) * 2013-08-13 2015-02-25 캐터필라 모토렌 게엠베하 운트 코. 카게 Operating internal combustion engines
JP2017533381A (en) * 2014-11-01 2017-11-09 クリスタニ フィリップKRISTANI, Filip 4-cycle internal combustion engine with shortened intake process
KR20190003990A (en) * 2016-06-07 2019-01-10 폭스바겐 악티엔 게젤샤프트 Method for operating internal combustion engine and internal combustion engine
KR20200011364A (en) * 2018-07-24 2020-02-03 폭스바겐 악티엔 게젤샤프트 Method for the open-loop and/or closed-loop control of the operation of an internal combustion engine, especially an internal combustion engine of a motor vehicle, especially which works at least partially according to the miller method
JP2020037906A (en) * 2018-09-04 2020-03-12 トヨタ自動車株式会社 Miller cycle engine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170008883A (en) * 2006-09-08 2017-01-24 나지 아민 아탈라 Apparatus to improve the efficiency of internal combustion engines
KR20170140430A (en) * 2006-09-08 2017-12-20 나지 아민 아탈라 Apparatus to improve the efficiency of internal combustion engines
JP2015222079A (en) * 2006-09-08 2015-12-10 ナジ アミン アタラ Apparatus to improve efficiency of internal combustion engines, and method thereof
JP2013213507A (en) * 2006-09-08 2013-10-17 Naji Amin Atalla Apparatus to improve efficiency of internal combustion engines, and method thereof
JP2010502887A (en) * 2006-09-08 2010-01-28 ナジ アミン アタラ Apparatus and method for improving the efficiency of an internal combustion engine
US10036336B2 (en) 2006-09-08 2018-07-31 Hawar Technologies Limited Apparatus to improve the efficiency of internal combustion engines, and method therefor
JP2012112393A (en) * 2006-09-08 2012-06-14 Naji Amin Atalla Device and method for improving efficiency of internal combustion engine
US7918090B2 (en) * 2007-06-26 2011-04-05 Hitachi, Ltd. Method and apparatus for controlling an internal combustion engine
US7823550B2 (en) 2007-07-30 2010-11-02 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Engine equipped with adjustable valve timing mechanism
JP2009115024A (en) * 2007-11-08 2009-05-28 Mitsui Eng & Shipbuild Co Ltd Reciprocating internal combustion engine using isothermal compression cylinder
KR20150020082A (en) * 2013-08-13 2015-02-25 캐터필라 모토렌 게엠베하 운트 코. 카게 Operating internal combustion engines
JP2017533381A (en) * 2014-11-01 2017-11-09 クリスタニ フィリップKRISTANI, Filip 4-cycle internal combustion engine with shortened intake process
KR20190003990A (en) * 2016-06-07 2019-01-10 폭스바겐 악티엔 게젤샤프트 Method for operating internal combustion engine and internal combustion engine
US11118521B2 (en) 2016-06-07 2021-09-14 Volkswagen Aktiengesellschaft Method for operating an internal combustion engine, and internal combustion engine
KR20200011364A (en) * 2018-07-24 2020-02-03 폭스바겐 악티엔 게젤샤프트 Method for the open-loop and/or closed-loop control of the operation of an internal combustion engine, especially an internal combustion engine of a motor vehicle, especially which works at least partially according to the miller method
JP2020037906A (en) * 2018-09-04 2020-03-12 トヨタ自動車株式会社 Miller cycle engine

Similar Documents

Publication Publication Date Title
US5224460A (en) Method of operating an automotive type internal combustion engine
JP4314595B2 (en) Exhaust catalyst control of 6-cycle engine
JP4171000B2 (en) Multi-cylinder diesel engine with variable drive valve
JP4122504B2 (en) Exhaust control device for internal combustion engine
WO2010116546A1 (en) Cam for lifting/lowering exhaust valve, 4-cycle engine equipped with supercharger, and method for controlling valve timing
JPH08326548A (en) Lag closing mirror cycle engine
JPH08291715A (en) Intake mechanism for mirror cycle engine
US7237540B2 (en) Method of modifying exhaust valve timing to improve engine performance
JP5589763B2 (en) Internal combustion engine
US5372108A (en) Engine charge control system and method
JPH07259655A (en) Exhaust gas circulating device
JP2002242714A (en) 4-cycle engine for automobile
JPH08218879A (en) Intake structure of four-cycle engine
JP5344101B2 (en) In-cylinder internal combustion engine
JP2566232B2 (en) Valve timing controller for engine with supercharger
JPH0642410A (en) Internal combustion engine provided with exhaust gas reflux device
JP2003090249A (en) Spark ignition type direct injection internal combustion engine
JPS60150406A (en) Cylinder number controlling engine
JPH11132066A (en) Spark ignition type internal combustion engine
JP2717960B2 (en) Engine combustion chamber
JPH0988729A (en) Egr device for internal combustion engine
JPS61205325A (en) Intake device of internal-combustion engine
JPH0783011A (en) Rotary valve for engine
JPH09268930A (en) Intake valve control device for internal combustion engine and intake valve controlling method
JPH03185232A (en) Exhaust timing control device of engine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090213

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100213

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 12