JP2003090249A - Spark ignition type direct injection internal combustion engine - Google Patents

Spark ignition type direct injection internal combustion engine

Info

Publication number
JP2003090249A
JP2003090249A JP2001283806A JP2001283806A JP2003090249A JP 2003090249 A JP2003090249 A JP 2003090249A JP 2001283806 A JP2001283806 A JP 2001283806A JP 2001283806 A JP2001283806 A JP 2001283806A JP 2003090249 A JP2003090249 A JP 2003090249A
Authority
JP
Japan
Prior art keywords
fuel
during
amount
compression stroke
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001283806A
Other languages
Japanese (ja)
Inventor
Koji Hiratani
康治 平谷
Koichi Yamaguchi
浩一 山口
Atsushi Terachi
淳 寺地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001283806A priority Critical patent/JP2003090249A/en
Publication of JP2003090249A publication Critical patent/JP2003090249A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To improve torque by suppressing generation of knocking, in a low rotation and high load region. SOLUTION: In an operating region in which low rotation and a high load are generated, a fuel injection amount is set so as to generate a mixture of stoic or rich as a total unit in a combustion chamber. In the case of injecting the set fuel injection amount, dividing it into during an intake stroke and during compression stroke, most part of fuel is injected during the intake stroke.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、筒内に直接燃料を
噴射する火花点火式直噴内燃機関に関し、特に、ノッキ
ングを回避する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spark ignition type direct injection internal combustion engine for directly injecting fuel into a cylinder, and more particularly to a technique for avoiding knocking.

【0002】[0002]

【従来の技術】従来から、燃料を吸気行程中と圧縮行程
中に分割して噴射する内燃機関が知られている。例え
ば、特開平10−213744号公報には、中・高負荷
時の特定運転領域で圧縮行程中に燃料を噴射して層状燃
焼を行う機関において、圧縮行程中の燃料噴射に先立っ
て吸気行程中に自己着火し得ない量の燃料を噴射する技
術が開示されている。
2. Description of the Related Art Conventionally, there is known an internal combustion engine in which fuel is divided and injected during an intake stroke and a compression stroke. For example, Japanese Patent Laid-Open No. 10-213744 discloses that in an engine that performs stratified combustion by injecting fuel during a compression stroke in a specific operation region at medium and high loads, the intake stroke is performed prior to fuel injection during the compression stroke. Discloses a technique of injecting an amount of fuel that cannot self-ignite.

【0003】また、特開平10−212987号公報に
は、触媒が活性温度よりも低い冷機時に、燃料を吸気行
程と圧縮行程とに分割して噴射することで、点火プラグ
付近に理論空燃比若しくはリッチな混合気を形成すると
共に、その周囲にリーンな混合気を形成する技術が開示
されている。
Further, in Japanese Unexamined Patent Publication (Kokai) No. 10-212987, when the catalyst is cold when the temperature is lower than the activation temperature, fuel is divided into an intake stroke and a compression stroke and injected, so that the stoichiometric air-fuel ratio or A technique of forming a rich air-fuel mixture and forming a lean air-fuel mixture around the air-fuel mixture is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかし、前者は、ノッ
キングを回避しつつトルクを増大できるものの、設定さ
れた燃料の大部分(60〜90%)を圧縮行程の後半に
噴射するので、混合気の混合時間が短く、点火プラグま
わりの混合気がリッチになりすぎるため、未燃燃料の排
出やスモークの排出が増加するおそれがある。
However, although the former can increase the torque while avoiding knocking, most of the set fuel (60 to 90%) is injected in the latter half of the compression stroke, so that the air-fuel mixture is mixed. Since the mixing time is short and the air-fuel mixture around the spark plug becomes too rich, the unburned fuel discharge and smoke discharge may increase.

【0005】さらに、スモークを排出するような運転条
件で運転を継続すると、燃焼室内にカーボン・デポジッ
トが堆積し、機関の実質圧縮比が上がって長期的には耐
ノッキング性能を悪化させる(すなわち、機関トルクを
低下させる)こととなる。一方、後者は、吸気行程中の
噴射量を、圧縮行程中に噴射量よりも大きくする制御を
行っているが、ノッキングの発生し難い冷機時の触媒の
暖機を目的とするものでノッキング回避制御とは無関係
な技術である。
Further, when the engine is continuously operated under the operating condition of exhausting smoke, carbon deposits are accumulated in the combustion chamber, and the substantial compression ratio of the engine is increased to deteriorate the knocking resistance performance in the long term (that is, Engine torque will be reduced). On the other hand, the latter controls the injection amount during the intake stroke to be larger than the injection amount during the compression stroke, but it is intended to warm up the catalyst when the engine is cold, where knocking is unlikely to occur, and avoids knocking. It is a technology unrelated to control.

【0006】本発明は、以上のような従来の問題を解決
するためになされたものであり、ノッキングが発生し易
い低回転高負荷領域において、ノッキングを抑制しつ
つ、トルクの向上を効果的に行うことのできる火花点火
式直噴式内燃機関を提供することを目的とする。
The present invention has been made in order to solve the above conventional problems, and effectively suppresses knocking and improves torque in a low rotation and high load region where knocking easily occurs. An object of the present invention is to provide a spark ignition type direct injection internal combustion engine that can be performed.

【0007】[0007]

【課題を解決するための手段】そのため、請求項1に係
る発明は、低回転・高負荷となる運転領域において、燃
焼室内全体としての混合気がストイキ又はリッチとなる
ように燃料噴射量を設定し、設定した燃料噴射量を吸気
行程中と圧縮行程中とに分割して噴射する際に、吸気行
程中に圧縮行程中より多くの燃料を噴射することを特徴
とする。
Therefore, in the invention according to claim 1, the fuel injection amount is set so that the air-fuel mixture in the entire combustion chamber becomes stoichiometric or rich in the operating region where the rotation speed is low and the load is high. However, when the set fuel injection amount is divided and injected during the intake stroke and the compression stroke, more fuel is injected during the intake stroke than during the compression stroke.

【0008】請求項2に係る発明は、前記吸気行程中に
噴射される燃料量を、前記設定された燃料噴射量の90
%以上とすることを特徴とする。請求項3に係る発明
は、前記圧縮行程中に噴射する燃料量及び噴射時期を制
御することにより、点火プラグまわりに形成される混合
気の当量比を1.0よりも大きく1.2より小さくする
ことを特徴とする。
According to a second aspect of the present invention, the amount of fuel injected during the intake stroke is 90% of the set fuel injection amount.
% Or more. The invention according to claim 3 controls the amount of fuel injected during the compression stroke and the injection timing to make the equivalence ratio of the air-fuel mixture formed around the spark plug larger than 1.0 and smaller than 1.2. It is characterized by doing.

【0009】請求項4に係る発明は、前記圧縮行程中に
噴射する燃料量及び噴射時期を制御することにより、点
火プラグまわりに形成される混合気の容積を燃焼室容積
の半分以下とすることを特徴とする。請求項5に係る発
明は、前記圧縮行程中に噴射する燃料量を、機関の回転
速度が低いほど多く設定することを特徴とする。
According to a fourth aspect of the present invention, the volume of the air-fuel mixture formed around the spark plug is controlled to be half or less of the combustion chamber volume by controlling the amount of fuel injected and the injection timing during the compression stroke. Is characterized by. The invention according to claim 5 is characterized in that the fuel amount injected during the compression stroke is set to be larger as the rotational speed of the engine is lower.

【0010】請求項6に係る発明は、前記圧縮行程中の
噴射時期を、機関の回転速度が高いほど遅く設定するこ
とを特徴とする。
The invention according to claim 6 is characterized in that the injection timing during the compression stroke is set to be slower as the rotational speed of the engine is higher.

【0011】[0011]

【発明の効果】請求項1に係る発明によれば、低回転・
高負荷領域のようなノッキングが発生しやすい運転条件
において、燃焼室全体としての混合気がストイキ又はリ
ッチとなるように設定された燃料を、吸気行程中と圧縮
行程中とに分割して噴射する。
According to the invention of claim 1, the low rotation speed
Under operating conditions where knocking is likely to occur, such as in the high load region, the fuel set so that the air-fuel mixture in the combustion chamber becomes stoichiometric or rich is injected separately during the intake stroke and the compression stroke. .

【0012】これにより、燃焼室内の周辺混合気がリー
ン化されて耐ノッキング性能が向上し、点火時期を進角
させることができるので、トルクを向上できる。ここ
で、吸気行程中に圧縮行程中よりも多くの燃料を噴射す
ることで、圧縮行程中の噴射により形成される点火プラ
グまわりの混合気(リッチ混合気)が、リッチになりす
ぎるような事態を回避して、未燃燃料の増加に伴うトル
ク低下、燃費性能及び排気性能の悪化を防止できる。
As a result, the peripheral air-fuel mixture in the combustion chamber is made lean, the knocking resistance is improved, and the ignition timing can be advanced, so that the torque can be improved. Here, by injecting more fuel during the intake stroke than during the compression stroke, the mixture (rich mixture) around the spark plug formed by the injection during the compression stroke becomes too rich. By avoiding the above, it is possible to prevent a decrease in torque due to an increase in unburned fuel, and deterioration of fuel efficiency and exhaust performance.

【0013】請求項2に係る発明によれば、前記吸気行
程中に噴射される燃料量を、前記設定された燃料噴射量
全体の90%以上とする。これにより、前記リッチ混合
気がリッチになりすぎるような事態を確実に防止できる
と共に、耐ノッキング性能の向上によるトルク向上効果
を確実に得ることができる。
According to the second aspect of the present invention, the amount of fuel injected during the intake stroke is 90% or more of the total fuel injection amount set. As a result, it is possible to reliably prevent a situation in which the rich air-fuel mixture becomes too rich, and it is possible to reliably obtain the torque improving effect by improving the knocking resistance performance.

【0014】請求項3に係る発明によれば、前記圧縮行
程中に噴射する燃料量及び噴射時期を制御することによ
り、点火プラグまわりに形成される混合気の当量比を
1.0よりも大きく1.2より小さくする。これによ
り、スモークの排出を確実に防止できると共に、通常の
均質燃焼時よりも最大トルクを高めることができ、燃料
の分割噴射を効果的に実行できる。
According to the third aspect of the present invention, the equivalence ratio of the air-fuel mixture formed around the spark plug is made larger than 1.0 by controlling the amount of fuel injected and the injection timing during the compression stroke. Make it smaller than 1.2. As a result, smoke discharge can be reliably prevented, the maximum torque can be increased more than that during normal homogeneous combustion, and fuel split injection can be effectively performed.

【0015】請求項4に係る発明によれば、前記圧縮行
程中に噴射する燃料量及び噴射時期を制御することによ
り、点火プラグまわりに形成される混合気の容積を燃焼
室容積の半分以下とする。これにより、未燃燃料の排出
を抑制すると共に、通常の均質燃焼時よりも最大トルク
を高めることができ、燃料の分割噴射を効果的に実行で
きる。
According to the invention of claim 4, by controlling the amount of fuel injected during the compression stroke and the injection timing, the volume of the air-fuel mixture formed around the spark plug is reduced to less than half the volume of the combustion chamber. To do. As a result, it is possible to suppress the discharge of unburned fuel, increase the maximum torque as compared with the time of normal homogeneous combustion, and execute the fuel split injection effectively.

【0016】請求項5に係る発明によれば、前記圧縮行
程中に噴射する燃料量を、機関の回転速度が低いほど多
く設定するので、これに伴い吸気行程中に噴射する燃料
により形成される燃焼室周辺部の比較的リーンな混合気
をよりリーン化できる。これにより、高温高圧下に曝さ
れる時間が長くなる低回転領域においても耐ノッキング
性能の悪化を防止し、燃料の分割噴射を効果的に実行で
きる。
According to the fifth aspect of the present invention, the amount of fuel injected during the compression stroke is set to be higher as the engine speed is lower, so that the amount of fuel injected during the intake stroke is formed. A relatively lean air-fuel mixture around the combustion chamber can be made leaner. As a result, the knocking resistance can be prevented from deteriorating even in the low rotation region where the time of exposure to high temperature and high pressure becomes long, and the divided injection of fuel can be effectively executed.

【0017】請求項6に係る発明によれば、前記圧縮行
程中の噴射時期を、機関の回転速度が高いほど遅く設定
する。これは、機関の回転速度が高くなるほど圧縮行程
噴射の最適時期が遅角側になることが実験により確認さ
れているからであり、これにより、燃料の分割噴射を効
果的に実施できる。
According to the sixth aspect of the invention, the injection timing during the compression stroke is set to be slower as the rotational speed of the engine is higher. This is because it has been confirmed by an experiment that the optimum timing of the compression stroke injection is retarded as the engine speed increases, and thus the fuel split injection can be effectively performed.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施形態を図に基
づいて説明する。図1において、機関の燃焼室1は、シ
リンダヘッド2、シリンダブロック3及びピストン4に
より画成されており、該燃焼室1には吸気ポート5及び
排気ポート6が接続されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, a combustion chamber 1 of the engine is defined by a cylinder head 2, a cylinder block 3 and a piston 4, and an intake port 5 and an exhaust port 6 are connected to the combustion chamber 1.

【0019】シリンダヘッド2には、燃焼室1内に燃料
を直接噴射する燃料噴射弁11と燃焼室1内の混合気に
火花点火を行う点火プラグ12とが、燃焼室1に臨んで
配設されている。ピストン4の冠面には、燃料噴射弁1
1により噴射された燃料を点火プラグ12周辺に輸送す
るための凹部が形成されている。
A fuel injection valve 11 for directly injecting fuel into the combustion chamber 1 and an ignition plug 12 for spark ignition of a mixture gas in the combustion chamber 1 are arranged in the cylinder head 2 so as to face the combustion chamber 1. Has been done. On the crown surface of the piston 4, the fuel injection valve 1
1 is formed with a recess for transporting the fuel injected by No. 1 around the spark plug 12.

【0020】吸気ポート5の燃焼室1側の開口端には、
吸気用カム9によって開閉駆動される吸気弁7が設けら
れ、排気ポート6の燃焼室1側の開口端には、排気用カ
ム10によって開閉駆動される排気弁8が設けられてい
る。コントロールユニット(C/U)13は、図示しな
い各種センサ(クランク角センサ、エアーフローメー
タ、アクセル開度センサ等)からの信号に基づいて機関
の運転状態を把握すると共に、所定の演算処理を行い燃
料噴射弁11による燃料噴射制御(噴射量、噴射時
期)、点火プラグ12による点火時期制御等を行う。
At the open end of the intake port 5 on the combustion chamber 1 side,
An intake valve 7 that is opened and closed by an intake cam 9 is provided, and an exhaust valve 8 that is opened and closed by an exhaust cam 10 is provided at an opening end of the exhaust port 6 on the combustion chamber 1 side. The control unit (C / U) 13 grasps the operating state of the engine based on signals from various sensors (crank angle sensor, air flow meter, accelerator opening sensor, etc.) (not shown), and performs predetermined arithmetic processing. Fuel injection control (injection amount, injection timing) by the fuel injection valve 11 and ignition timing control by the spark plug 12 are performed.

【0021】そして、前記燃料噴射弁11は、C/U1
3からの駆動信号により開弁し、その開弁時期及び時間
が制御されることで設定された時期に設定された量の燃
料を噴射する。燃料を吸気行程中に噴射すると、噴射さ
れた燃料が拡散して燃焼室1全体に均質な混合気を形成
でき、燃料を圧縮行程中に噴射すると、点火プラグ12
まわりに集中的な(成層化された)混合気を形成でき
る。
The fuel injection valve 11 has a C / U1
The valve is opened in response to the drive signal from No. 3, and the valve opening timing and time are controlled to inject a set amount of fuel at the set timing. When the fuel is injected during the intake stroke, the injected fuel diffuses to form a homogeneous air-fuel mixture throughout the combustion chamber 1. When the fuel is injected during the compression stroke, the spark plug 12
A concentrated (stratified) mixture can be formed around.

【0022】従って、燃料噴射制御と空燃比制御とを組
み合わせることにより、成層リーン燃焼、均質リーン燃
焼、均質ストイキ燃焼等が可能であり、機関の運転状態
(機関回転速度、目標トルク)に応じていずれかの燃焼
方式が設定される。なお、本実施形態では、通常運転時
においては、混合気が理論空燃比(ストイキ)となるよ
うな量の燃料を吸気行程中に燃料を噴射して均質ストイ
キ燃料を行い、低回転・低負荷領域においては、燃焼室
1全体としての混合気がリーンとなるような量の燃料を
圧縮行程中に噴射することで成層リーン燃焼を行う。
Therefore, by combining the fuel injection control and the air-fuel ratio control, stratified lean combustion, homogeneous lean combustion, homogeneous stoichiometric combustion, etc. are possible, depending on the operating condition of the engine (engine rotation speed, target torque). Either combustion method is set. In the present embodiment, during normal operation, the fuel is injected during the intake stroke in an amount such that the air-fuel mixture has a stoichiometric air-fuel ratio (stoichiometric ratio) to perform homogeneous stoichiometric fuel, and low rotation speed and low load. In the region, stratified lean combustion is performed by injecting an amount of fuel such that the air-fuel mixture of the entire combustion chamber 1 becomes lean during the compression stroke.

【0023】また、ノッキングが発生しやすい低回転・
高負荷領域においては、燃料室1全体としての混合気が
ストイキ又はリッチとなるような量の燃料を設定し、こ
れを吸気行程中と圧縮行程中とに分割して噴射すること
にしている。このように設定された燃料を分割して噴射
することで、吸気行程中に設定される燃料噴射によって
燃焼室1内には均質な混合気が形成され、圧縮行程中に
設定される燃料噴射によって点火プラグ12まわりに集
中的な混合気が形成されることになる。
Also, low rotation, which tends to cause knocking,
In the high load region, the amount of fuel is set so that the air-fuel mixture in the fuel chamber 1 as a whole becomes stoichiometric or rich, and the fuel is divided and injected during the intake stroke and the compression stroke. By splitting and injecting the fuel set in this way, a homogeneous air-fuel mixture is formed in the combustion chamber 1 by the fuel injection set during the intake stroke, and by the fuel injection set during the compression stroke. A concentrated air-fuel mixture is formed around the spark plug 12.

【0024】これにより、設定された量の燃料全てを吸
気行程中に噴射する場合(以下、通常の均質燃焼とい
う)に比べて、前記集中的な混合気(の燃料)の分だ
け、燃焼室1内の周辺混合気(エンドガス)の当量比が
リーン化するので、機関全負荷時において、耐ノッキン
グ性能が向上する。この結果、ノッキング限界点火時期
も早まるので設定点火時期を進角させることができ、通
常の均質燃焼を行ったときよりも機関トルクを増加させ
ることができる。
As a result, as compared with the case where all of the set amount of fuel is injected during the intake stroke (hereinafter referred to as normal homogeneous combustion), only the amount of (the fuel of) the concentrated air-fuel mixture is increased in the combustion chamber. Since the equivalence ratio of the peripheral air-fuel mixture (end gas) in 1 becomes lean, the knocking resistance performance is improved at the full load of the engine. As a result, since the knocking limit ignition timing is also advanced, the set ignition timing can be advanced, and the engine torque can be increased more than when normal homogeneous combustion is performed.

【0025】以下、本発明に係る燃料の分割噴射につい
て説明する。図2は、圧縮行程中に噴射した燃料が形成
する点火プラグ12まわりの集中的な混合気(成層混合
気のリッチ部分、以下、単にリッチ混合気という)の当
量比、機関全負荷トルク及びスモーク発生量の関係を示
す図であり、実験により求めたものである。
The split fuel injection according to the present invention will be described below. FIG. 2 shows the equivalence ratio of the concentrated air-fuel mixture around the spark plug 12 (rich portion of the stratified air mixture, hereinafter simply referred to as rich air-fuel mixture) formed by the fuel injected during the compression stroke, engine full load torque and smoke. It is a figure which shows the relationship of generation amount, and is calculated | required by experiment.

【0026】なお、図2において、リッチ混合気は燃焼
室1で点火プラグ12を中心に同一の容積を占めてお
り、また、リッチ混合気の当量比が大きくなるほど(リ
ッチになるほど)、吸気行程中に噴射される燃料量が少
なく設定される。すなわち、燃焼室1内全体としての平
均当量比は同じであるが、リッチ混合気の当量比を増加
させるほど、燃焼室内周辺部の比較的リーンな混合気の
当量比との差が大きくなる。
In FIG. 2, the rich air-fuel mixture occupies the same volume in the combustion chamber 1 with the spark plug 12 as the center, and the intake stroke increases as the equivalence ratio of the rich air-fuel mixture increases (becomes richer). A small amount of fuel is injected inside. That is, the average equivalence ratio of the entire combustion chamber 1 is the same, but the greater the equivalence ratio of the rich mixture, the greater the difference from the relatively lean equivalence ratio of the periphery of the combustion chamber.

【0027】図に示すように、リッチ混合気の当量比を
増加させていくと、未燃燃料が増加するため機関全負荷
トルクが減少すると共に、スモークの発生量が増加す
る。従って、燃料の分割噴射を効果的に実行するには、
吸気行程中に噴射する燃料量を、圧縮行程中に噴射する
燃料量よりも多く設定する必要があり、もっと言えば、
設定された燃料の大部分を吸気行程中に噴射し、残りの
燃料を圧縮行程中に噴射するようにする。
As shown in the figure, when the equivalence ratio of the rich air-fuel mixture is increased, unburned fuel increases, so that the engine full load torque decreases and the amount of smoke generation increases. Therefore, in order to effectively execute the split fuel injection,
It is necessary to set the amount of fuel injected during the intake stroke to be larger than the amount of fuel injected during the compression stroke.
Most of the set fuel is injected during the intake stroke, and the remaining fuel is injected during the compression stroke.

【0028】また、リッチ混合気の当量比が1.0より
大きく、かつ、約1.2よりも小さい場合に、機関全負
荷トルクが、設定されたすべての燃料を吸気行程中に噴
射する通常の均質燃焼時のトルクを上回る。従って、ノ
ッキングにより点火時期が遅角側に制限されてトルクが
低下する低回転・高負荷領域においては、コントロール
ユニット13は、リッチ混合気の当量比が1.0よりも
大きく1.2より小さくなるように圧縮行程中に噴射す
る燃料量及び噴射時期を設定する。
When the equivalence ratio of the rich air-fuel mixture is larger than 1.0 and smaller than about 1.2, the engine full load torque normally injects all the set fuel during the intake stroke. Exceeds the torque during homogeneous combustion. Therefore, in the low rotation / high load region where the ignition timing is limited to the retard side due to knocking and the torque decreases, the control unit 13 causes the equivalence ratio of the rich mixture to be larger than 1.0 and smaller than 1.2. The amount of fuel injected during the compression stroke and the injection timing are set so that

【0029】これにより、スモークの発生を防止しつ
つ、燃料の分割噴射を効果的に実行できる。すなわち、
一般的には、分割噴射を行った場合よりもすべての燃料
を吸気行程中に噴射する通常の均質燃焼時の方が、最大
トルクが高いのであるが、低回転・高負荷領域において
は、上述したような分割噴射を実行することで、耐ノッ
キング性能を向上させ、これに伴う点火時期の進角によ
り、通常の均質燃焼時の最大トルクよりも大きなトルク
を得ることができるのである。
This makes it possible to effectively carry out the split injection of fuel while preventing the generation of smoke. That is,
Generally, the maximum torque is higher during normal homogeneous combustion in which all fuel is injected during the intake stroke than when split injection is performed. By executing the divided injection as described above, it is possible to improve the anti-knocking performance and to obtain a torque larger than the maximum torque during normal homogeneous combustion by advancing the ignition timing accordingly.

【0030】図3は、燃焼室1容積に対するリッチ混合
気容積の割合、機関全負荷トルク及び未燃混合気の割合
の関係を示す図であり、図2と同様に、実験により求め
たものである。図3において、燃焼室1内全体の平均当
量比、リッチ混合気の当量比は同じである。すなわち、
リッチ混合気の燃焼室容積に占める割合が増加するほ
ど、燃焼室内周辺部の比較的リーンな混合気の当量比と
の差が大きくなる。
FIG. 3 is a diagram showing the relationship among the ratio of the rich air-fuel mixture volume, the engine full load torque, and the ratio of the unburned air-fuel mixture to one volume of the combustion chamber, which is obtained by an experiment similar to FIG. is there. In FIG. 3, the average equivalence ratio of the entire combustion chamber 1 and the equivalence ratio of the rich mixture are the same. That is,
As the ratio of the rich air-fuel mixture in the volume of the combustion chamber increases, the difference from the relatively lean equivalence ratio of the peripheral portion of the combustion chamber increases.

【0031】図に示すように、燃焼室1容積に対するリ
ッチ混合気容積の割合が増加すると機関全負荷トルクが
減少し、燃焼室1容積の半分以上をリッチ混合気が占め
るようになると、機関全負荷トルクが通常の均質燃焼時
のトルクを下回る。従って、ノッキングにより点火時期
が遅角側に制限されてトルクが低下する低回転・高負荷
領域においては、コントロールユニット13は、リッチ
混合気容積が燃焼室1容積の半分以下となるように、圧
縮行程中に噴射する燃料量及び噴射時期を設定する。
As shown in the figure, when the ratio of the rich air-fuel mixture volume to the combustion chamber 1 volume increases, the engine full load torque decreases, and when the rich air-fuel mixture occupies more than half of the combustion chamber 1 volume, the entire engine The load torque is lower than the torque during normal homogeneous combustion. Therefore, in the low rotation / high load region where the ignition timing is limited to the retard side due to knocking and the torque decreases, the control unit 13 compresses the rich mixture volume to half or less of the combustion chamber 1 volume. The amount of fuel injected during the stroke and the injection timing are set.

【0032】これにより、未燃燃料の増加を防止しつ
つ、燃料の分割噴射を効果的に実行できる。以上をまと
めて、燃焼室1容積に対するリッチ混合気の割合と、リ
ッチ混合気の当量比と、機関全負荷トルクとの関係を図
4に示す。図に示すように、トルク及び燃費が悪化する
低回転・高負荷領域においては、機関の運転状態に応じ
て設定された燃料噴射量の90%以上を吸気行程中に噴
射し、その残りの燃料噴射によって形成されるリッチ混
合気の当量比が1.2よりも小さく、かつ、リッチ混合
気容積が燃焼室1容積の半分以下となるように圧縮行程
中の噴射時期を設定するのが好ましい。
As a result, it is possible to effectively execute the split injection of fuel while preventing an increase in unburned fuel. Summarizing the above, FIG. 4 shows the relationship between the ratio of the rich mixture to the volume of the combustion chamber, the equivalence ratio of the rich mixture, and the engine full load torque. As shown in the figure, in the low rotation speed / high load region where the torque and fuel consumption deteriorate, 90% or more of the fuel injection amount set according to the operating state of the engine is injected during the intake stroke, and the remaining fuel is injected. It is preferable to set the injection timing during the compression stroke so that the equivalence ratio of the rich mixture formed by the injection is smaller than 1.2 and the volume of the rich mixture is half or less of the volume of the combustion chamber.

【0033】このようにすれば、ノッキングの発生しや
すい低回転・高負荷領域において、ノッキングを回避し
つつ、分割噴射によるトルク向上効果を最大限に得るこ
とができる。次に、前記圧縮行程中に噴射する燃料量及
び噴射時期について説明する。図5は、機関回転速度
と、リッチ混合気の最適当量比との関係を示すものであ
る。
In this way, in the low rotation / high load region where knocking is likely to occur, knocking can be avoided while maximizing the torque improving effect by the split injection. Next, the amount of fuel injected during the compression stroke and the injection timing will be described. FIG. 5 shows the relationship between the engine speed and the optimum equivalence ratio of the rich mixture.

【0034】機関回転速度が低いほど、燃焼室内の周辺
混合気が高温高圧下に曝される時間が長くなり、耐ノッ
キング性能は低下する。このため、低回転速度側にある
ほど成層度を高める必要があり、最適なリッチ混合気の
当量比がリッチとなる。従って、コントロールユニット
13は、機関回転速度が低いほど圧縮行程中に噴射する
燃料量を多く設定する。
The lower the engine speed, the longer the time the ambient air-fuel mixture in the combustion chamber is exposed to high temperature and high pressure, and the lower the knocking resistance. For this reason, it is necessary to increase the degree of stratification toward the lower rotation speed side, and the optimum equivalence ratio of the rich mixture becomes rich. Therefore, the control unit 13 sets a larger amount of fuel to be injected during the compression stroke as the engine speed is lower.

【0035】図6は、圧縮行程中の燃料噴射時期(圧縮
行程噴射時期)、機関全負荷トルク及び機関回転速度の
関係を示すものであり、実験により求めたものである。
図に示すように、圧縮行程噴射時期には機関全負荷トル
クが最大となる最適噴射時期が存在する。すなわち、最
適噴射時期よりも早い時期に圧縮行程中の燃料噴射を行
うと、混合気の成層度が低下して耐ノッキング性能が悪
化する。このため、設定点火時期を遅角せざるを得なく
なり、機関全負荷トルクが低下してしまうのである。
FIG. 6 shows the relationship between the fuel injection timing during the compression stroke (compression stroke injection timing), the engine full load torque, and the engine rotation speed, which was obtained by experiments.
As shown in the figure, the compression stroke injection timing has an optimum injection timing that maximizes the engine full load torque. That is, if the fuel injection during the compression stroke is performed earlier than the optimum injection timing, the stratification degree of the air-fuel mixture decreases and the knocking resistance performance deteriorates. For this reason, the set ignition timing must be retarded, and the engine full load torque is reduced.

【0036】一方、最適噴射時期よりも遅い時期に圧縮
行程中の燃料噴射を行うと、混合気の成層度が強くなり
すぎ、未燃燃料の割合が増加したりスモークが発生した
りして、機関全負荷トルクが低下する。また、機関回転
速度が高くなるほど、最適噴射時期が遅角側となること
も実験により確認されている。
On the other hand, if the fuel injection during the compression stroke is performed later than the optimum injection timing, the stratification degree of the air-fuel mixture becomes too strong, the proportion of unburned fuel increases, and smoke is generated. Engine full load torque decreases. It has also been confirmed by experiments that the optimum injection timing is retarded as the engine speed increases.

【0037】従って、コントロールユニット13は、前
記圧縮行程噴射時期を、機関の回転速度が高いほど、遅
角側に設定する。
Therefore, the control unit 13 sets the compression stroke injection timing to the retard side as the engine speed increases.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態を示すシステム図。FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】実施形態におけるリッチの当量比、機関全負荷
トルク及びスモーク発生量の関係を示す図。
FIG. 2 is a diagram showing a relationship between a rich equivalence ratio, an engine full load torque, and a smoke generation amount in the embodiment.

【図3】実施形態における燃焼室容積に対するリッチ混
合気容積の割合、機関全負荷トルク及び未燃混合気の割
合の関係を示す図。
FIG. 3 is a diagram showing a relationship among a ratio of a rich mixture volume to a combustion chamber volume, an engine full load torque, and a ratio of an unburned mixture in the embodiment.

【図4】実施形態における燃焼室容積に対するリッチ混
合気の割合、リッチ混合気の当量比及び機関全負荷トル
クとの関係を示す図。
FIG. 4 is a diagram showing a relationship between a ratio of a rich mixture to a combustion chamber volume, an equivalence ratio of the rich mixture, and an engine full load torque in the embodiment.

【図5】実施形態における機関回転速度とリッチ混合気
の最適当量比との関係を示す。
FIG. 5 shows the relationship between the engine speed and the optimum equivalence ratio of the rich mixture in the embodiment.

【図6】実施形態における圧縮行程噴射時期、機関全負
荷トルク及び機関回転速度の関係を示す図。
FIG. 6 is a diagram showing a relationship among a compression stroke injection timing, an engine full load torque, and an engine rotation speed in the embodiment.

【符号の説明】[Explanation of symbols]

1 燃焼室 2 シリンダヘッド 3 シリンダブロック 4 ピストン 5 吸気ポート 6 排気ポート 7 吸気バルブ 8 排気バルブ 11 燃料噴射弁 12 点火プラグ 13 コントロールユニット(C/U) 1 combustion chamber 2 cylinder head 3 cylinder block 4 pistons 5 intake ports 6 exhaust port 7 intake valve 8 exhaust valve 11 Fuel injection valve 12 Spark plug 13 Control unit (C / U)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺地 淳 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3G023 AA02 AA06 AB01 AC04 AD02 AD09 AG01 3G301 HA01 HA04 HA16 JA22 JA24 KA06 KA08 KA09 KA23 KA24 KA25 LB04 MA01 MA11 MA18 MA23 NE12 PA01Z PE03Z PF03Z    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Jun Terachi             Nissan, Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan             Inside the automobile corporation F-term (reference) 3G023 AA02 AA06 AB01 AC04 AD02                       AD09 AG01                 3G301 HA01 HA04 HA16 JA22 JA24                       KA06 KA08 KA09 KA23 KA24                       KA25 LB04 MA01 MA11 MA18                       MA23 NE12 PA01Z PE03Z                       PF03Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】低回転・高負荷となる運転領域において、 燃焼室内全体としての混合気がストイキ又はリッチとな
るように燃料噴射量を設定し、 設定した燃料噴射量を吸気行程中と圧縮行程中とに分割
して噴射する際に、吸気行程中に圧縮行程中より多くの
燃料を噴射することを特徴とする火花点火式直噴内燃機
関。
1. A fuel injection amount is set so that the air-fuel mixture in the entire combustion chamber becomes stoichiometric or rich in an operating region where low rotation and high load occur, and the set fuel injection amount is set during the intake stroke and the compression stroke. A spark ignition type direct injection internal combustion engine characterized by injecting a larger amount of fuel during an intake stroke than during a compression stroke when the fuel is divided into medium and divided injections.
【請求項2】前記吸気行程中に噴射される燃料量を、前
記設定された燃料噴射量の90%以上とすることを特徴
とする請求項1記載の火花点火式直噴内燃機関。
2. The spark ignition type direct injection internal combustion engine according to claim 1, wherein an amount of fuel injected during the intake stroke is 90% or more of the set fuel injection amount.
【請求項3】前記圧縮行程中に噴射する燃料量及び噴射
時期を制御することにより、点火プラグまわりに形成さ
れる混合気の当量比を1.0よりも大きく1.2より小
さくすることを特徴とする請求項1又は請求項2記載の
火花点火式直噴内燃機関。
3. The equivalence ratio of the air-fuel mixture formed around the spark plug is controlled to be larger than 1.0 and smaller than 1.2 by controlling the amount of fuel injected during the compression stroke and the injection timing. The spark ignition type direct injection internal combustion engine according to claim 1 or 2.
【請求項4】前記圧縮行程中に噴射する燃料量及び噴射
時期を制御することにより、点火プラグまわりに形成さ
れる混合気の容積を燃焼室容積の半分以下とすることを
特徴とする請求項1から請求項3のいずれか1つに記載
の火花点火式直噴内燃機関。
4. The volume of the air-fuel mixture formed around the spark plug is reduced to half or less of the combustion chamber volume by controlling the amount of fuel injected and the injection timing during the compression stroke. The spark ignition type direct injection internal combustion engine according to any one of claims 1 to 3.
【請求項5】前記圧縮行程中に噴射する燃料量を、機関
の回転速度が低いほど多く設定することを特徴とする請
求項1から請求項4のいずれか1つに記載の火花点火式
直噴内燃機関。
5. The spark ignition type direct injection according to claim 1, wherein the fuel amount injected during the compression stroke is set to be larger as the engine speed is lower. Internal combustion engine.
【請求項6】前記圧縮行程中の噴射時期を、機関の回転
速度が高いほど遅く設定することを特徴とする請求項1
から請求項5のいずれか1つに記載の火花点火式直噴内
燃機関。
6. The injection timing during the compression stroke is set to be slower as the engine speed is higher.
6. The spark ignition type direct injection internal combustion engine according to claim 5.
JP2001283806A 2001-09-18 2001-09-18 Spark ignition type direct injection internal combustion engine Pending JP2003090249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001283806A JP2003090249A (en) 2001-09-18 2001-09-18 Spark ignition type direct injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001283806A JP2003090249A (en) 2001-09-18 2001-09-18 Spark ignition type direct injection internal combustion engine

Publications (1)

Publication Number Publication Date
JP2003090249A true JP2003090249A (en) 2003-03-28

Family

ID=19107252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001283806A Pending JP2003090249A (en) 2001-09-18 2001-09-18 Spark ignition type direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP2003090249A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329158A (en) * 2005-05-30 2006-12-07 Toyota Motor Corp Controller for spark ignition type cylinder injection type internal combustion engine
JP2010053717A (en) * 2008-08-26 2010-03-11 Toyota Motor Corp Control device of internal combustion engine
JP2011214448A (en) * 2010-03-31 2011-10-27 Mazda Motor Corp Method and device for controlling spark ignition engine
CN113217203A (en) * 2021-04-15 2021-08-06 联合汽车电子有限公司 Engine super knock suppression method, storage medium, controller and system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329158A (en) * 2005-05-30 2006-12-07 Toyota Motor Corp Controller for spark ignition type cylinder injection type internal combustion engine
JP2010053717A (en) * 2008-08-26 2010-03-11 Toyota Motor Corp Control device of internal combustion engine
JP2011214448A (en) * 2010-03-31 2011-10-27 Mazda Motor Corp Method and device for controlling spark ignition engine
CN113217203A (en) * 2021-04-15 2021-08-06 联合汽车电子有限公司 Engine super knock suppression method, storage medium, controller and system
CN113217203B (en) * 2021-04-15 2023-09-22 联合汽车电子有限公司 Engine super knock suppression method, storage medium, controller and system

Similar Documents

Publication Publication Date Title
JP4475221B2 (en) engine
JP3677954B2 (en) Control device for internal combustion engine
JP4122630B2 (en) Compression self-ignition gasoline engine
JP3569120B2 (en) Combustion control device for lean burn internal combustion engine
JP4253986B2 (en) In-cylinder injection engine control device
JP2009024599A (en) Controller of internal combustion engine
JP2007016685A (en) Internal combustion engine control device
JP3893909B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP2007177731A (en) Cylinder injection type internal combustion engine and fuel injection method
JP2002339848A (en) Control apparatus for direct injection spark ignition type engine
JP5282636B2 (en) Control device for internal combustion engine
JP2003090249A (en) Spark ignition type direct injection internal combustion engine
JP3648864B2 (en) Lean combustion internal combustion engine
JPH10184418A (en) Exhaust purifying device for lean combustion engine
JP2002242714A (en) 4-cycle engine for automobile
JPH10274070A (en) Cylinder injection type engine with mechanical supercharger
JP3882630B2 (en) Control device for spark ignition direct injection engine
JP4200356B2 (en) Fuel control apparatus for in-cylinder internal combustion engine
JP2006328980A (en) Ignition control device of internal combustion engine with exhaust turbo supercharger
JP2004263633A (en) Knocking restraining device for internal combustion engine
JP2006132399A (en) Control device and control method for an engine with supercharger
JPH10212986A (en) In-cylinder injection type engine
JP3572372B2 (en) Fuel injection control device for direct injection spark ignition engine
JP2005105974A (en) Controller of spark ignition engine
JP3758014B2 (en) In-cylinder internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060613