JPH0832426B2 - Molding method of thermoplastic resin sheet - Google Patents

Molding method of thermoplastic resin sheet

Info

Publication number
JPH0832426B2
JPH0832426B2 JP62312583A JP31258387A JPH0832426B2 JP H0832426 B2 JPH0832426 B2 JP H0832426B2 JP 62312583 A JP62312583 A JP 62312583A JP 31258387 A JP31258387 A JP 31258387A JP H0832426 B2 JPH0832426 B2 JP H0832426B2
Authority
JP
Japan
Prior art keywords
electrode
present
thermoplastic resin
blade
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62312583A
Other languages
Japanese (ja)
Other versions
JPH01152031A (en
Inventor
俊文 滝澤
憲司 加藤
直彦 吉澤
正路 渡辺
Original Assignee
ダイアホイルヘキスト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイアホイルヘキスト株式会社 filed Critical ダイアホイルヘキスト株式会社
Priority to JP62312583A priority Critical patent/JPH0832426B2/en
Publication of JPH01152031A publication Critical patent/JPH01152031A/en
Publication of JPH0832426B2 publication Critical patent/JPH0832426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9165Electrostatic pinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱可塑性樹脂シートの成形方法に関し、更に
詳しくは静電印加冷却法の改良に関するものである。
TECHNICAL FIELD The present invention relates to a method for molding a thermoplastic resin sheet, and more particularly to an improvement in an electrostatic charge cooling method.

(従来技術および発明が解決しようとする問題点) 熱可塑性樹脂をフィルム化するに際しては、延伸の有
無にかかわらず、その厚み班の程度は回転冷却体上で溶
融物を冷却、固化する際に決定的になることが知られて
いる。
(Problems to be Solved by the Prior Art and Invention) When forming a thermoplastic resin into a film, the degree of the thickness plaque is irrespective of whether or not the film is stretched when the melt is cooled and solidified on the rotary cooling body. It is known to be decisive.

この厚み斑を改良するには、例えば特公昭37−6142号
公報記載のように、シート状に冷却、固化させる際に、
該シート表面に静電荷を与え該シートを冷却面に密着さ
せる、いわゆる静電印加冷却法が効果的であることが知
られており、工業的に広く用いられている。
To improve this unevenness in thickness, for example, as described in JP-B-37-6142, when cooled and solidified into a sheet,
It is known that a so-called electrostatic applied cooling method, in which an electrostatic charge is applied to the surface of the sheet to bring the sheet into close contact with the cooling surface, is effective, and is widely used industrially.

しかしながら、この静電印加冷却法において生産性を
高める目的で回転冷却体の速度を高めると、フィルムと
回転冷却体との間の密着力が減少し、いわゆる束縛気泡
が生じるようになるが、これは製品に要求される品質特
性としては許容されないものである。
However, when the speed of the rotary cooling body is increased for the purpose of increasing the productivity in this electrostatic applied cooling method, the adhesive force between the film and the rotary cooling body is reduced, and so-called bound bubbles are generated. Is not acceptable as a quality characteristic required for products.

これを改良するために種々の手法が提案されている。
例えば線状電極では、径を小さくしたり、ブレード電極
ではエッジ部を鋭くしたりする方法があるが、この手法
では破断強度が低下するため電極としての寿命が短いだ
けでなく、電極に高張力をかけられないため、イオン風
や機械の振動が電極に伝わり、厚み斑が悪化する。更に
そのような電極は製造が困難である。
Various techniques have been proposed to improve this.
For example, in the case of a linear electrode, there are methods to reduce the diameter and to sharpen the edge part in a blade electrode, but this method not only shortens the life as an electrode because the breaking strength decreases, but also increases the tension of the electrode. Since it cannot be applied, ion wind and mechanical vibrations are transmitted to the electrodes, resulting in deterioration of thickness unevenness. Moreover, such electrodes are difficult to manufacture.

(問題点を解決するための手段) 本発明者らは、上記問題点に鑑み、鋭意検討した結
果、ある特定の導電性ブレードを電極として用いること
により、生産性および厚み斑を向上できることを見出
し、本発明を完成するに至った。即ち、本発明の要旨は
溶融熱可塑性樹脂をダイから押出し、静電印加密着法に
より冷却固化してシートを成形する方法において、エッ
ジ部の厚みが50μm以下でかつ幅が0.1〜50mmであるア
モルファス金属を電極として用いることを特徴とする熱
可塑性樹脂シートの成形方法に存する。
(Means for Solving Problems) As a result of intensive studies in view of the above problems, the present inventors have found that by using a certain specific conductive blade as an electrode, productivity and thickness unevenness can be improved. The present invention has been completed. That is, the gist of the present invention is a method of extruding a molten thermoplastic resin from a die and cooling and solidifying it by an electrostatic application adhesion method to form a sheet. In this method, an amorphous material having a thickness of an edge portion of 50 μm or less and a width of 0.1 to 50 mm is used. A method of forming a thermoplastic resin sheet is characterized by using a metal as an electrode.

以下、本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

本発明に適用しうる熱可塑性樹脂としては、例えばポ
リエステル類、ポリエステルエーテル類、ポリアミド
類、ポリカーボネート類、ポリエステルカーボネート
類、ポリスルホン類、ポリエーテルスルホン類、ポリエ
ーテルイミド類、及びポリオレフィン類、例えばエチレ
ン、プロピレン、ブテン、4−メチルペンテン−1等の
ポリマーを挙げることができる。上記に挙げた熱可塑性
樹脂の中でも本発明は特にポリエステル類、例えばポリ
エチレンテレフタレート、その共重合体及びポリエチレ
ンナフタレートのフィルムを製造する際に有効である。
また、本発明は熱可塑性樹脂の溶融時の電気比抵抗に関
係なく有効であるので、ポリスルホン類及びポリアミド
類に対しても有効である。
Examples of the thermoplastic resin applicable to the present invention include polyesters, polyester ethers, polyamides, polycarbonates, polyester carbonates, polysulfones, polyether sulfones, polyetherimides, and polyolefins such as ethylene, Polymers such as propylene, butene and 4-methylpentene-1 can be mentioned. Among the thermoplastic resins listed above, the present invention is particularly effective in producing a film of polyesters such as polyethylene terephthalate, its copolymer and polyethylene naphthalate.
The present invention is also effective for polysulfones and polyamides because it is effective regardless of the electrical resistivity of the thermoplastic resin when it is melted.

次に本発明の詳細を図に従って説明する。 Next, details of the present invention will be described with reference to the drawings.

第1図は本発明における静電密着法の冷却固化装置の
概略図であり、第2図は電極付近の拡大図である。図中
の(t)及び(w)はブレード電極の厚さ及び幅であ
る。第1図においてダイより押出された溶融熱可塑性樹
脂のシート(1)は電気的に接地された金属製の回転冷
却体(2)により冷却・固化され引き取られる。この際
溶融シートが最初に回転冷却体に接触する近傍に、ブレ
ード状電極(3)を配置せしめ高電圧を印加する。ブレ
ード状電極はフィルムの流れの方向と直角の方向に、ダ
イよりわずかに離れてフィルムの上面側に配置させる。
ブレードの向きは特に定めないが、ブレード幅方向とド
ラム面が垂直に近い方が好ましい。
FIG. 1 is a schematic view of a cooling and solidifying apparatus of the electrostatic contact method according to the present invention, and FIG. 2 is an enlarged view of the vicinity of electrodes. (T) and (w) in the figure are the thickness and width of the blade electrode. In FIG. 1, a molten thermoplastic resin sheet (1) extruded from a die is cooled and solidified by an electrically grounded metal rotary cooling body (2) and then taken off. At this time, the blade-shaped electrode (3) is placed near the first contact of the molten sheet with the rotary cooling body, and a high voltage is applied. The blade-shaped electrode is arranged on the upper surface side of the film in a direction perpendicular to the flow direction of the film and slightly away from the die.
The direction of the blade is not particularly specified, but it is preferable that the blade width direction and the drum surface are close to vertical.

本発明のブレード電極の厚さはエッジ部において50μ
m以下であり、好ましくは40μm以下、更に好ましくは
30μm以下である。エッジ部の厚さが50μmを越えると
効果が少なく、ワイヤーと比較しても利点が少ない。ブ
レード電極の幅は0.1mm〜50mmであり、0.2mm〜40mmが好
ましい。ブレード電極の幅が0.1mm以下では強度的に弱
くなりすぎたり、また、ブレード電極の向きを一定に合
わせづらく、作業性も悪い。ブレード電極の幅が50mm以
上だと場所をとりすぎるので設置するのに不便である。
The thickness of the blade electrode of the present invention is 50μ at the edge portion.
m or less, preferably 40 μm or less, more preferably
It is 30 μm or less. If the thickness of the edge portion exceeds 50 μm, the effect is small and the advantage is small compared to the wire. The width of the blade electrode is 0.1 mm to 50 mm, preferably 0.2 mm to 40 mm. When the width of the blade electrode is 0.1 mm or less, the strength becomes too weak, and it is difficult to align the direction of the blade electrode uniformly, and the workability is poor. If the width of the blade electrode is 50 mm or more, it takes up too much space and is inconvenient to install.

本発明で用いるブレード電極の材質は各種アモルファ
ス金属である。
The material of the blade electrode used in the present invention is various amorphous metals.

アモルファス金属の組成は、鉄、コバルト、ニッケル
等の遷移金属の1種又は2種以上の金属を主成分とし、
ベリリウム、マグネシウム、アルミニウム、チタン、バ
ナジウム、クロム、マンガン、銅、亜鉛、ジルコニウ
ム、ニオブ、モリブデン、銀、インジウム、白金、金等
の金属群から選択される、1種又は2種以上の金属及び
/又はホウ素、炭素、ケイ素、リン、ゲルマニウム、ア
ンチモン等の非金属・半金属群から選択される、1種又
は2種以上の非金属・半金属を添加した、あるいは添加
をしない、単一元素又は多元素等であって、組成比は任
意のものを選択することができる。製造は公知のいずれ
の手法も採用することができる。主なものとしてガン
法、ピストンアンビル法、アトマイズ法、遠心急冷法、
双ロール法、単ロール法等があげられるが、いずれも、
溶融した金属又は合金を、該金属又は合金がアモルファ
ス化する臨界冷却速度以上の冷却速度で冷却するもので
あり、その条件を満足する製法であればどのような製法
でもかまわない。また、冷却後、熱処理等の後処理を行
っていてもなんら差しつかえない。
The composition of the amorphous metal is mainly composed of one or two or more kinds of transition metals such as iron, cobalt and nickel,
One or more metals selected from the group of metals such as beryllium, magnesium, aluminum, titanium, vanadium, chromium, manganese, copper, zinc, zirconium, niobium, molybdenum, silver, indium, platinum, and gold, and / or Or, a single element with or without addition of one or more non-metals / semi-metals selected from the group of non-metals / semi-metals such as boron, carbon, silicon, phosphorus, germanium and antimony, or The composition ratio can be selected from multiple elements and the like. For manufacturing, any known method can be adopted. Mainly gun method, piston anvil method, atomizing method, centrifugal quenching method,
The twin roll method, the single roll method, etc. can be mentioned.
The molten metal or alloy is cooled at a cooling rate higher than the critical cooling rate at which the metal or alloy becomes amorphous, and any manufacturing method may be used as long as the conditions are satisfied. Further, after cooling, post-treatment such as heat treatment may be performed.

このような製法により製造されるアモルファス金属又
はアモルファス合金の構造は、いわゆるガラス状をして
おり、構成原子の配列に実質的に何ら長周期の秩序をも
たない。従ってX線回折パターンはハロー状で結晶金属
とは明らかに異るパターンを示す。本発明で好ましく用
いられるアモルファスブレードは主として構造が非晶質
であって、50%以上が非晶質であることが好ましいが、
部分的に結晶構造をもっていてもかまわない。
The structure of the amorphous metal or amorphous alloy produced by such a production method is so-called glassy, and the arrangement of the constituent atoms has substantially no long-period order. Therefore, the X-ray diffraction pattern is halo-like and shows a pattern distinctly different from that of the crystalline metal. Amorphous blades preferably used in the present invention are mainly amorphous structure, preferably 50% or more is amorphous,
It may have a crystal structure partially.

以上のアモルファスブレードの組成の例として、FeCo
SiB、CoCrSiB、FeCoCrSiB、Fe75〜8515〜25、Fe
75〜8510〜164〜10、Fe59〜67Cr4〜9Mo1〜6
27〜29、Fe78B10Si12、Fe62Mo20C18、Fe62Cr12Mo8C18
Fe45Cr16Mo20C18、Co73Si15B12、Co56Cr25C18、Co44Mo
36C20、Co34Cr28Mo20C18、Ni34Cr24Mo24C18等があげら
れる。上記記号は元素記号で添字の数字は組成比(原子
%)又は組成比(原子%)の範囲を表わす。添字のない
ものは、任意の組成比(原子%)を表わす。しかし本発
明はこれに制限されるものではなく、本発明の要件を満
たす各種組成比のものが使われる。また、実用上必然的
に含まれる微量元素についても任意である。また、本発
明におけるブレード電極は、第1図に示すような電極の
供給−巻取装置を用い、昇華物、溶融樹脂等による電極
の汚染に応じ、適宜、連続的に清浄部分を供給できるも
のであることが好ましい。本発明のブレード電極は破断
応力が通常の金属より大きい特徴を有するため、電極の
取替等に要する時間のロスを大幅に短縮することができ
るが、かかる装置を用いることにより、更に連続使用が
可能となる。
As an example of the composition of the above amorphous blade, FeCo
SiB, CoCrSiB, FeCoCrSiB, Fe 75-85 B 15-25 , Fe
75-85 P 10-16 C 4-10 , Fe 59-67 Cr 4-9 Mo 1-6 B
27-29 , Fe 78 B 10 Si 12 , Fe 62 Mo 20 C 18 , Fe 62 Cr 12 Mo 8 C 18 ,
Fe 45 Cr 16 Mo 20 C 18 , Co 73 Si 15 B 12 , Co 56 Cr 25 C 18 , Co 44 Mo
Examples include 36 C 20 , Co 34 Cr 28 Mo 20 C 18 , Ni 34 Cr 24 Mo 24 C 18, and the like. The above symbols are element symbols, and the subscript numbers represent the composition ratio (atomic%) or the composition ratio (atomic%) range. Those without a subscript represent an arbitrary composition ratio (atomic%). However, the present invention is not limited to this, and various composition ratios satisfying the requirements of the present invention are used. Moreover, the trace elements that are inevitably contained in practice are also arbitrary. Further, the blade electrode in the present invention uses an electrode supply-winding device as shown in FIG. 1 and can appropriately and continuously supply a clean portion in accordance with contamination of the electrode by a sublimate, molten resin or the like. Is preferred. Since the blade electrode of the present invention has a characteristic that the breaking stress is larger than that of a normal metal, it is possible to significantly reduce the loss of time required for replacing the electrode, etc., but by using such a device, further continuous use is possible. It will be possible.

以上、本発明を説明したが、その骨子は厚さが50μm
以下のアモルファス金属ブレード電極に用いることによ
り、電極劣化によるロスが無く、連続運転が可能であ
り、静電密着力を高め、火花放電を抑え厚さ斑や欠陥の
ないフィルムを与え、ひいてはフィルム生産速度を向上
せしめることにある。従ってこの趣旨が損われない限
り、本発明は第1図の態様や、上述の内容に限定される
ものではない。例えば電極を複数にしたり、電極を加熱
したり、密着部に赤外線を照射したり、電極の上面又は
側面の少くとも一部にカバーを取付けたり、あるいは、
絶縁層を設けた回転を冷却体や梨地状に表面を粗面化し
た回転冷却体等を併用する等々、公知技術を組み合せて
用いてもよい。
The present invention has been described above, and its skeleton has a thickness of 50 μm.
By using the following amorphous metal blade electrode, there is no loss due to electrode deterioration, continuous operation is possible, electrostatic adhesion is enhanced, spark discharge is suppressed, and a film without thickness spots and defects is provided, and eventually film production. It is to improve speed. Therefore, the present invention is not limited to the embodiment shown in FIG. 1 and the contents described above, as long as this effect is not impaired. For example, a plurality of electrodes, heating the electrode, irradiating the contact portion with infrared rays, attaching a cover to at least a part of the upper surface or side surface of the electrode, or
It is also possible to use a combination of known techniques such as using a cooling body provided with an insulating layer in combination with a cooling body or a rotating cooling body having a roughened surface in a satin finish.

〔実施例〕〔Example〕

以下、実施例及び比較例により本発明を更に詳細に説
明するが、本発明はその要旨を越えない限り以下の実施
例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples unless it exceeds the gist.

実施例 極限粘度0.66のポリエチレンテレフタレートのペレッ
トを乾燥した後、押出機で290℃に加熱溶融し、第1図
に示す冷却固化装置を用いて急冷しフィルムを成型し
た。
Example A pellet of polyethylene terephthalate having an intrinsic viscosity of 0.66 was dried, then heated and melted at 290 ° C. by an extruder, and rapidly cooled using a cooling and solidifying apparatus shown in FIG. 1 to form a film.

この時、回転冷却体として、表面をクロムメッキし鏡
面に仕上げた直径600mmの電気的に接地してある金属製
の回転ロールを用いた。該回転冷却体より5mm離して厚
さ20μm幅2mmのCo34Cr28Mo28C18より成るブレードを電
極として用い、該電極に直流電圧6KVを印加しつつ、押
出量及び幅を調節し、厚さ200μmのフィルムを引き取
った。
At this time, as the rotary cooling body, a metal-made rotary roll having a diameter of 600 mm, the surface of which was chromium-plated and finished to be a mirror surface, was used. A blade made of Co 34 Cr 28 Mo 28 C 18 having a thickness of 20 μm and a width of 2 mm and being separated from the rotary cooling body by using a blade made of Co 34 Cr 28 Mo 28 C 18 while applying a DC voltage of 6 KV to the electrode and adjusting the extrusion amount and the width A 200 μm thick film was taken off.

冷却ロールの回転速度を上げていったところ65m/分ま
で欠陥のないフィルムが得られた。
When the rotation speed of the cooling roll was increased, a film having no defects was obtained up to 65 m / min.

電極は1ケ月間の使用で切断は皆無であった。 The electrode was used for one month and was never cut.

比較例 電極を厚さ20μm、巾2mmのNiより成るブレードにし
た他は実施例と同じ条件でテストを行なった。
Comparative Example A test was conducted under the same conditions as in the example except that the electrode was a blade made of Ni having a thickness of 20 μm and a width of 2 mm.

冷却ロールの回転速度を上げていったところ、64m/分
の時点でフィルムに束縛気泡が生じた。電極は1ケ月間
の使用で11回切断した。
When the rotation speed of the cooling roll was increased, binding bubbles were generated in the film at 64 m / min. The electrode was cut 11 times by using it for one month.

〔発明の効果〕〔The invention's effect〕

以上詳述した如く、本発明はエッジ部の厚さが50μm
以下のアモルファスブレード電極を行いることにより、
連続生産が可能であり、静電密着力が増強せしめ生産速
度を向上させ、生産性を飛躍的に向上せしめることが可
能で、本発明の工業的意義は大きい。
As described above in detail, the present invention has the edge thickness of 50 μm.
By performing the following amorphous blade electrode,
The continuous production is possible, the electrostatic adhesion is enhanced, the production speed can be improved, and the productivity can be dramatically improved, and the industrial significance of the present invention is great.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を実施する冷却固化装置の概略説明図で
ある。第2図は本発明の電極付近の拡大側面図である。 図中、(1)は溶融熱可塑性樹脂シート、(2)は回転
冷却体、(3)はブレード電極、(4)は電気絶縁チュ
ーブ、(5)は電極供給ロール、(6)は電極巻取りロ
ールを示す。また、(w)はブレード電極の幅、(t)
はブレード電極の厚みを示す。
FIG. 1 is a schematic explanatory view of a cooling and solidifying apparatus for carrying out the present invention. FIG. 2 is an enlarged side view of the vicinity of the electrode of the present invention. In the figure, (1) is a molten thermoplastic resin sheet, (2) is a rotary cooling body, (3) is a blade electrode, (4) is an electrically insulating tube, (5) is an electrode supply roll, and (6) is electrode winding. The taking roll is shown. Further, (w) is the width of the blade electrode, (t)
Indicates the thickness of the blade electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 正路 神奈川県横浜市緑区鴨志田町1000番地 ダ イアホイル株式会社研究所内 (56)参考文献 特公 昭37−6142(JP,B1) 増本健編著「アモルファス金属の基礎」 (昭和57年11月25日)株式会社オーム社 P.201−222 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Masaji Watanabe Inventor, Masaji Watanabe, 1000 Kamoshida-cho, Midori-ku, Yokohama-shi, Kanagawa Daifoil Co., Ltd. Research Laboratory (56) Basics of Amorphous Metals "(November 25, 1982) Ohmsha Co., Ltd. 201-222

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】溶融熱可塑性樹脂をダイから押出し、静電
印加密着法により冷却固化してシートを形成する方法に
おいて、エッジ部の厚みが50μm以下でかつ幅が0.1〜5
0mmであるアモルファス金属を電極として用いることを
特徴とする熱可塑性樹脂シートの成形方法。
1. A method of extruding a molten thermoplastic resin from a die and cooling and solidifying by an electrostatic application adhesion method to form a sheet, wherein an edge portion has a thickness of 50 μm or less and a width of 0.1 to 5;
A method for forming a thermoplastic resin sheet, characterized by using an amorphous metal having a thickness of 0 mm as an electrode.
JP62312583A 1987-12-10 1987-12-10 Molding method of thermoplastic resin sheet Expired - Fee Related JPH0832426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62312583A JPH0832426B2 (en) 1987-12-10 1987-12-10 Molding method of thermoplastic resin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62312583A JPH0832426B2 (en) 1987-12-10 1987-12-10 Molding method of thermoplastic resin sheet

Publications (2)

Publication Number Publication Date
JPH01152031A JPH01152031A (en) 1989-06-14
JPH0832426B2 true JPH0832426B2 (en) 1996-03-29

Family

ID=18030951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62312583A Expired - Fee Related JPH0832426B2 (en) 1987-12-10 1987-12-10 Molding method of thermoplastic resin sheet

Country Status (1)

Country Link
JP (1) JPH0832426B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3678186B2 (en) 2001-08-01 2005-08-03 東洋紡績株式会社 Heat-shrinkable polyester film roll

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
増本健編著「アモルファス金属の基礎」(昭和57年11月25日)株式会社オーム社P.201−222

Also Published As

Publication number Publication date
JPH01152031A (en) 1989-06-14

Similar Documents

Publication Publication Date Title
JPH0832426B2 (en) Molding method of thermoplastic resin sheet
EP0026028B1 (en) Apparatus and process for extruding and quenching a thermoplastics film
JP3548346B2 (en) Cooling device for molten resin sheet
JPH0460812B2 (en)
JPS6342832A (en) Manufacture of polyester film
JP4641673B2 (en) Method for producing polyamide film
JPH10100234A (en) Manufacture of thermoplastic resin sheet
JP3870746B2 (en) Method for producing thermoplastic resin sheet
DE2613094A1 (en) METHOD AND DEVICE FOR MANUFACTURING THERMOPLASTIC RESIN FILMS
JPH03147828A (en) Wire electrode for electrostatic application cooling method of thermoplastic resin sheet
JP2696886B2 (en) Manufacturing method of thermoplastic resin sheet
JPS63317316A (en) Molding method for thermoplastic resin sheet
EP0928676A1 (en) Method and apparatus for producing thermoplastic resin sheet
JPS6251730B2 (en)
JP2001158035A (en) Extrusion molding die and method for manufacturing film
JP2001219460A (en) Method for manufacturing polyamide film
CN101272894A (en) Method for manufacturing metal plate covered with organic resin and apparatus for manufacturing metal plate covered with organic resin
KR950005725B1 (en) Manufacturing method for thermoplastic polyester film
KR100269873B1 (en) Electrostatic-applying apparatus and manufacturing method of thermoplastic resin sheet using the same
KR0165832B1 (en) Manufacturing method of thermoplastic resin sheet
JPS6119415B2 (en)
JPH01156036A (en) Method for molding thermoplastic resin sheet
JPH07186243A (en) Manufacture of thermoplastic resin film
KR100269874B1 (en) Electrostatic-applying apparatus for manufacturing sheet
JPS631520A (en) Manufacture of plastic film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees