JPS6119415B2 - - Google Patents

Info

Publication number
JPS6119415B2
JPS6119415B2 JP52100103A JP10010377A JPS6119415B2 JP S6119415 B2 JPS6119415 B2 JP S6119415B2 JP 52100103 A JP52100103 A JP 52100103A JP 10010377 A JP10010377 A JP 10010377A JP S6119415 B2 JPS6119415 B2 JP S6119415B2
Authority
JP
Japan
Prior art keywords
cooling body
wire
film
auxiliary electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52100103A
Other languages
Japanese (ja)
Other versions
JPS5434370A (en
Inventor
Toshifumi Oosawa
Hiroshi Noda
Norio Takagi
Sadao Kadokura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP10010377A priority Critical patent/JPS5434370A/en
Publication of JPS5434370A publication Critical patent/JPS5434370A/en
Publication of JPS6119415B2 publication Critical patent/JPS6119415B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9165Electrostatic pinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Moulding By Coating Moulds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、熱可塑性重合体を溶融押出し、回転
冷却表面に急冷せしめるフイルムの製造方法に係
る。更に詳しくは、回転冷却体を対向電極とし、
金属ワイヤに高電位の静電荷を印加し、フイルム
を回転冷却体表面に静電的に密着せしめ急冷せし
めるフイルムの製造方法の改良技術に関するもの
で、金属ワイヤに併せて接地せしめた導電性材質
からなる補助電極を設けて、フイルムを回転冷却
体表面に強固に密着せしめる重合体フイルムの製
造方法に係るものである。 熱可塑性重合体を溶融押出してフイルムに製造
するに際し、ダイと回転冷却体との間にワイヤ又
はナイフ状の電極を設け、回転冷却体を対向電極
とし、溶融状態のシート状物(フイルム)の表面
に静電荷を析出せしめ、フイルムを回転冷却体表
面に一様に密着させ、急冷せしめる所謂静電ピン
ニング法は、例えば特公昭37−6142号公報により
公知である。 然るに生産性向上のため、回転冷却体の周速を
高めると、この静電ピンニング法の密着効果は激
減する。即ち、回転冷却体周速度の増加に伴い、
冷却体表面のシート状物の単位面積当たりの析出
電荷量が低下し、その結果密着力の低下を生じ、
シート状物と冷却体表面との間に空気が巻き込ま
れる。この状態では、捕捉された空気層により、
熱が冷却体に効率的に伝達され難くなり、冷却効
率が減少する。またシート状物と冷却体との間に
束縛気泡が生じ、これは製品に要求される品質特
性としては許容されないものである。 密着力を増大するために、ワイヤ印加電圧を増
大する事を試みても、ワイヤと冷却体との間に発
生する火花放電が生じる傾向があり、印加電圧の
限界があることから、充分なピンニング効果が得
られていない。火花放電を起こすとシート状物に
ピンホールを生じ製品とならない。 静電ピンニング法によつて製膜されたシート状
物には、放電の不均一に起因すると推測されるフ
イルム厚さの斑が発生し、この厚さ斑はしばしば
周期性を伴う。 かかる静電ピンニング法の欠点を補うための
種々の提案がなされてきた。例えば英国特許第
1309644号明細書には、2個の電極を有する静電
固定装置が開示されていて、第1電極は高電位に
保たれた金属ワイヤであり、第2電極は接地さ
れ、かつ第1電極側に絶縁層が設けられ、この電
極間が電界となるものである。 また、特開昭51−114466号公報には、ワイヤの
寿命を長命化するためダイ側の部分を絶縁材また
は金属で遮蔽し、溶融重合体から昇華物のワイヤ
への附着を防止するものである。 これらの技術は、静電ピンニングに於ける密着
効果を高めるための電荷密度を増大させる観点か
らはなお不充分である。 本発明は、重合体フイルムの製膜工程において
金属ワイヤを主電極とし、回転冷却体を対向電極
とし、更に該金属ワイヤに対し回転冷却体と反対
側に補助電極を設け、電荷密度を高めるものであ
る。そしてこの補助電極は導電性材質例えばアル
ミ、銅等からなり、平板または弯曲状等の形状を
なし、接地されるものである。 本発明は、改良された静電ピンニング法を提供
するものであり、回転冷却体の周速度を高めるこ
とが可能となり、かつ均一厚さのフイルムが得ら
れる技術である。 本発明を説明する。 第1図は、製膜に際し静電ピンニングを施した
場合のワイヤ電極と回転冷却体(対向平板電極)
間に流れる電流を測定したものである。直線1は
補助電極を使用しない従来法の場合であり、曲線
2はアルミ製平板の補助電極、曲線3はアルミ製
円筒形状の傘(第2図A参照)の補助電極、曲線
4はアルミ製三角形状断面をもつ(第2図B参
照)補助電極を使用した場合である。いずれも金
属ワイヤと対向電極との間隔を6mm一定とし、金
属ワイヤと補助電極の距離を変化せしめて放電電
流を計測したものである。第1図から、イワイヤ
主電極に対し対向電極と反対側に接地した補助電
極を設置すると電界密度が増加し、放電電流が増
大すること;ロ補助電極の形状は平板、四角また
は三角形断面をもつもの、円弧状断面をもつもの
等いずれも効果があることが判る。 第2図は、本発明に供し得る代表的な補助電極
の例である。第2図Aは円弧状断面をもつ補助電
極11が金属ワイヤ主電極12を覆うように設け
られた状態を示す側面図である。また第2図
A′は対向電極(回転冷却体)方向から観た斜視
図(蛙観図)であつて、主電極12の両端は絶縁
材13で被覆され、傘状の半筒形状の補助電極1
1が設けられている。更に第2図B及びB′は断面
が三角形状の補助電極の例で、それぞれ側面図及
び斜視図である。 補助電極は、第2図に示した如き傘状の形状を
呈するか、又は平板である。そして主電極となる
金属ワイヤと傘の両端部を見込む角度が60゜以下
となると放電電流が減少する。従つてワイヤと補
助電極との距離には一定の限界が在る。 製膜に際し、金属ワイヤを設置する空間、即ち
ダイと回転冷却体間の空間が充分広く、ワイヤ周
辺の雰囲気温度が30℃程度であると良好なキヤス
テイングは期待できない。一方、ワイヤ近傍を遮
蔽して雰囲気温度を130℃程度に高めるとキヤス
テイングが良好となることは経験的に知られてい
る。 第3図は、ワイヤと対向電極(回転冷却体)間
でコロナ放電を発生せしめた時のワイヤ雰囲気温
度と有効放電電流との関係を示すもので、100℃
以上でのワイヤ雰囲気温度の上昇に伴ない、有効
放電電流は指数的に増大する事がわかる。第3図
の場合も金属ワイヤと対向電極(回転冷却体)と
の距離を6mmとし、ワイヤの有効長を50mmとした
例である。 静電ピンニング法による溶融重合体と回転冷却
体の密着の機構上、高速製膜時の空気の巻き込み
は密着力の不足、即ち、回転冷却体表面上で接
触、冷却固化する点での析出電荷量の不足に原因
するものである。従つて、前記放電電流の増大
は、この冷却固化する点での密着力の増大を生む
ものである。 即ち、1ワイヤに対し回転冷却体と対向する側
に近接して接地した導電性の補助電極を設置する
と、コロナ放電は低電圧でも生起し、放電電流の
増大が得られる。これは、コロナ放電が補助電
極、ワイヤ、回転冷却体が囲む全空間で発生し、
イオン濃度の増大が得られるためである。補助電
極の形状は平板、断面が四角、三角なる傘状のも
の、或は円筒状のものでも良い。ここで補助電極
としての効果が有効となるためには、ワイヤ・回
転冷却体間距離をr1、ワイヤ・補助電柱間の最短
距離をr2とすると、 r2/r1≦5 なる様に補助電極を配置する必要がある。又、ワ
イヤ・回転冷却体間で火花放電が発生する寸前の
電位で運転する場合、r2/r11でなければなら
ないのは自明であろう。 ()雰囲気温度は高温である程放電電流は大き
く、従つてワイヤ雰囲気温度は高くする必要があ
る。この機構は熱エネルギーにより、気体のコロ
ナイオン化が促進された事によるイオン密度の増
大が原因と考えられる。又、ワイヤ近傍に冷風が
吹き込み、雰囲気温度に空間的或は時間的変動が
生じた場合、放電電流は変動を生じ、これは即溶
融重合体と回転冷却体との密着力の変動につなが
る。従つて、ワイヤ近傍の温度はT≧100℃に安
定に保持する必要がある。 一方、ワイヤ対平板、或は針対平板電極系の様
な不均一な電界中でのコロナ放電には、ワイヤ或
は針から平板に向かうイオン風(コロナ風とも称
する)を伴うものであり、この風速は1〜2m/
secであつた。イオン風は前述の様に冷風をワイ
ヤ近傍にもたらす事により、雰囲気温度の影響で
放電電流を変動させ、又、ダイ・オリフイスから
回転冷却体上接触点間の空間に存在する溶融ポリ
マーの振動を引き起こす原因となる。 以上の様に、ワイヤ近傍の雰囲気の変動を極力
少なくする事が必要である。このためにワイヤ雰
囲気を外部と遮断し、イオン風等による雰囲気の
変動を少なくし、高温度に保持するために、補助
電極はワイヤを覆う様な形状、即ち傘状のものの
方が良い。補助電極のワイヤ側の面は、電界の集
中を防ぎ、火花放電を防止するため平滑にすべき
である事は言うまでもない。 傘の形状は、その断面が三角或は四角のもの、
円筒形のもの等で良いが、好ましくはワイヤ近傍
のコロナ雰囲気を均質とし、雰囲気を安定化する
ためにワイヤから傘までの距離の等しい同軸円筒
形とする。又、雰囲気を加熱し、オリゴマーの付
着を防止するためには、補助電極材料中にヒータ
を埋め込み、その温度を制御することも出来る。
この場合、ワイヤに面する側の補助電極の表面温
度Tは105℃以上で一定となる様に制御する。好
ましくはT≧150℃で恒温に制御する補助電極の
形状が傘状である場合には、その幾何学的焦点に
ワイヤが位置する様に傘の形状を決めるのが最適
である。これは傘からの輻射熱によりワイヤを加
熱し、オリゴマー等のワイヤへの付着を防止する
効果がある。 溶融重合体に電荷を付与するための傘の開口部
の幅には特に制限はないが、ワイヤが傘の両端と
を見込む角が60゜以下となると、放電電流は減少
してしまつて目的に合わない。 ワイヤを絶縁物を介して、傘に固定し、コロナ
帯電密着器とすると、ワイヤの最適位置調整の作
業上極めて有効である。 第4図は本発明の製膜状態を示す側面図(部分
図)である。溶融された熱可塑性重合体はダイ1
7から押出され、回転冷却体14の表面15にシ
ート状物16としてキヤステイングされる。キヤ
ステイングに際しシート状物に静電荷が析出され
るように金属ワイヤ12に高電圧供給電源18に
より高圧の静電気が印加され、対向電極となる回
転冷却体14との間でコロナ放電が起る。回転冷
却体と反対側に金属ワイヤを挟んで補助電極11
が設けられている。そして補助電極11と回転冷
却体14とは接地される。補助電極は金属ワイヤ
を少くとも60度以上の角度で覆うように設けられ
る。 本方法により製膜したフイルムの厚さは、従来
の静電ピンニング法に比べ、均一性に優れてい
た。これは雰囲気の安定の効果と共に、ワイヤ・
補助電極間の放電により、ワイヤ周辺の全空間が
コロナ雰囲気を形成するために、放電が均一化さ
れたための効果も考えられる。 この発明は、押出及び冷却によつて平滑なフイ
ルムに成形できるあらゆる熱可塑性重合体材料、
例えばポリスチレン、ポリアミド、塩化ビニルの
重合体と共重合体、ポリカーボネート、ポリプロ
ピレンの様なオレフインの重合体と共重合体及び
二塩基性の芳香族カルボン酸と二価アルコールか
ら縮重合されたポリエステルに適用できる。 この発明は、溶融ポリエチレンテレフタレート
フイルムを製膜する場合に、特に適当である。従
つて、ポリエチレンテレフタレートフイルムにつ
いて本発明の実施例を以下に示す。 比較例 A〜E 実質的に特公昭37−6142号公報に示されたのと
同様の束縛装置を用いて、ポリエチレン・テレフ
タレートのフイルムを押出し、冷却ドラム(回転
冷却体)上に静電的に束縛した。束縛装置に印加
する電圧は+60KVに統一した。この結果を第1
表に示すが、冷却ドラム周速度が45m/min以上
になると、密着力の不足により、ポリエチレンテ
レフタレートフイルムと冷却ドラム表面の間に空
気を巻き込み、気泡を生じる様になつた。 実施例 1〜5 本発明による溶融重合体の束縛装置(第4図)
により、ポリエチレンテレフタレートをフイルム
に押し出し、回転冷却体上に静電的に束縛した。
このとき金属ワイヤに印加する電圧は比較例と同
様に+6.0KVであり、補助電極の形状は円筒形で
ある。ワイヤと導電性の補助電極との距離r1とワ
イヤ・回転冷却体間距離r2との比はr2/r1=1.5で
ある。この結果を第2表に示す。回転冷却体の周
速度が50m/min以上では気泡を生じた。 実施例 6〜10 実施例1〜5と同様の装置(第4図)を用い、
補助電極内に具備したヒーターで補助電極の表面
温度を280℃に保持して、ポリエチレンフタレー
トフイルムを回転冷却体の表面に束縛した。この
とき、金属ワイヤに印加した電圧は+6.0KVであ
り、補助電極の形状は円筒形である。 また、r2/r1=2.0とした。この結果を第3表に
示す。回転冷却体の周速度は55m/minまで気泡
の発生は見られず、60m/min以上で初めて極め
て細かい気泡の発生が観測された。 比較例F及び実施例11 特公昭37−6142号公報に示された装置と実質的
に同様の装置を用いて製膜した場合と、本発明に
よる装置を用いて製膜した場合の原反フイルムの
厚み斑を比較して第4表に示した。本発明によつ
て製膜したフイルムの厚み斑は格段に改善されて
いる。
The present invention relates to a method of making a film in which a thermoplastic polymer is melt extruded and quenched onto a rotating cooling surface. More specifically, the rotary cooling body is used as a counter electrode,
This technology relates to an improved film manufacturing method in which a high potential electrostatic charge is applied to a metal wire, and the film is electrostatically adhered to the surface of a rotating cooling body and rapidly cooled. This invention relates to a method of manufacturing a polymer film in which an auxiliary electrode is provided to tightly adhere the film to the surface of a rotating cooling body. When producing a film by melt extruding a thermoplastic polymer, a wire or knife-shaped electrode is provided between the die and the rotating cooling body, and the rotating cooling body is used as a counter electrode to extrude the molten sheet material (film). A so-called electrostatic pinning method in which an electrostatic charge is deposited on the surface, the film is uniformly brought into close contact with the surface of the rotary cooling body, and the film is rapidly cooled is known, for example, from Japanese Patent Publication No. 37-6142. However, if the circumferential speed of the rotary cooling body is increased in order to improve productivity, the adhesion effect of this electrostatic pinning method will be drastically reduced. That is, as the circumferential speed of the rotary cooling body increases,
The amount of precipitated charge per unit area of the sheet on the surface of the cooling body decreases, resulting in a decrease in adhesion.
Air is caught between the sheet-like material and the surface of the cooling body. In this condition, the trapped air layer causes
It becomes difficult for heat to be efficiently transferred to the cooling body, and cooling efficiency decreases. Furthermore, trapped air bubbles are formed between the sheet-like material and the cooling body, which is not acceptable as a quality characteristic required for the product. Even if attempts are made to increase the voltage applied to the wire in order to increase adhesion, spark discharge tends to occur between the wire and the cooling body, and there is a limit to the applied voltage, so sufficient pinning cannot be achieved. No effect has been obtained. When a spark discharge occurs, pinholes are created in the sheet-like material and the product cannot be produced. In sheet materials formed by the electrostatic pinning method, unevenness in film thickness occurs, which is presumed to be caused by non-uniform discharge, and this unevenness in thickness often accompanies periodicity. Various proposals have been made to compensate for the drawbacks of such electrostatic pinning methods. For example, British patent no.
No. 1309644 discloses an electrostatic fixing device having two electrodes, the first electrode being a metal wire held at a high potential, the second electrode being grounded, and the first electrode being a metal wire held at a high potential. An insulating layer is provided between the electrodes, and an electric field is created between the electrodes. Furthermore, in order to extend the life of the wire, JP-A-51-114466 discloses a method in which the part on the die side is shielded with an insulating material or metal to prevent sublimate from adhering to the wire from the molten polymer. be. These techniques are still insufficient from the viewpoint of increasing the charge density to enhance the adhesion effect in electrostatic pinning. The present invention uses a metal wire as a main electrode, a rotary cooling body as a counter electrode, and further provides an auxiliary electrode on the opposite side of the metal wire to the rotary cooling body to increase charge density in a polymer film forming process. It is. The auxiliary electrode is made of a conductive material such as aluminum or copper, has a flat or curved shape, and is grounded. The present invention provides an improved electrostatic pinning method, which is a technique that makes it possible to increase the circumferential speed of a rotary cooling body and to obtain a film of uniform thickness. The present invention will be explained. Figure 1 shows the wire electrode and rotary cooling body (opposed flat plate electrode) when electrostatic pinning was applied during film formation.
This is a measurement of the current flowing between the two. Straight line 1 is the conventional method that does not use an auxiliary electrode, curve 2 is the auxiliary electrode made of an aluminum flat plate, curve 3 is the auxiliary electrode made of an aluminum cylindrical umbrella (see Figure 2 A), and curve 4 is the auxiliary electrode made of aluminum. This is the case when an auxiliary electrode with a triangular cross section (see FIG. 2B) is used. In both cases, the distance between the metal wire and the counter electrode was kept constant at 6 mm, and the distance between the metal wire and the auxiliary electrode was varied to measure the discharge current. From Figure 1, it can be seen that when a grounded auxiliary electrode is installed on the opposite side of the main electrode to the main electrode, the electric field density increases and the discharge current increases; (b) The auxiliary electrode has a flat, square or triangular cross section It can be seen that both materials, such as those with a circular cross section and those with an arcuate cross section, are effective. FIG. 2 is an example of a typical auxiliary electrode that can be used in the present invention. FIG. 2A is a side view showing a state in which the auxiliary electrode 11 having an arcuate cross section is provided so as to cover the metal wire main electrode 12. Also, Figure 2
A' is a perspective view (frog view) seen from the direction of the counter electrode (rotary cooling body), in which both ends of the main electrode 12 are covered with an insulating material 13, and the auxiliary electrode 1 has an umbrella-like semi-cylindrical shape.
1 is provided. Further, FIGS. 2B and 2B' show an example of an auxiliary electrode having a triangular cross section, and are a side view and a perspective view, respectively. The auxiliary electrode may have an umbrella-like shape as shown in FIG. 2, or it may be a flat plate. When the angle between the main electrode metal wire and both ends of the umbrella is less than 60 degrees, the discharge current decreases. Therefore, there is a certain limit to the distance between the wire and the auxiliary electrode. When forming a film, if the space in which the metal wire is installed, that is, the space between the die and the rotary cooling body, is sufficiently wide and the ambient temperature around the wire is about 30°C, good casting cannot be expected. On the other hand, it is known from experience that casting is improved by shielding the vicinity of the wire and raising the ambient temperature to about 130°C. Figure 3 shows the relationship between wire ambient temperature and effective discharge current when corona discharge is generated between the wire and the counter electrode (rotary cooling body).
It can be seen that the effective discharge current increases exponentially as the wire ambient temperature increases. The case in FIG. 3 is also an example in which the distance between the metal wire and the counter electrode (rotary cooling body) is 6 mm, and the effective length of the wire is 50 mm. Due to the mechanism of the close contact between the molten polymer and the rotary cooling body using the electrostatic pinning method, the entrainment of air during high-speed film formation results in insufficient adhesion, which means that the precipitated charges at the point where they come into contact on the surface of the rotary cooling body and solidify after being cooled. This is due to a lack of quantity. Therefore, the increase in the discharge current results in an increase in the adhesion at the point of cooling and solidification. That is, if a grounded conductive auxiliary electrode is installed close to the side facing the rotary cooling body for one wire, corona discharge will occur even at a low voltage, and an increase in discharge current can be obtained. This means that corona discharge occurs in the entire space surrounded by the auxiliary electrodes, wires, and rotating cooling body.
This is because an increase in ion concentration can be obtained. The shape of the auxiliary electrode may be a flat plate, an umbrella-shaped one with a square or triangular cross section, or a cylindrical one. Here, in order for the effect as an auxiliary electrode to be effective, if the distance between the wire and the rotating cooling body is r 1 and the shortest distance between the wire and the auxiliary utility pole is r 2 , then r 2 /r 1 ≦5. It is necessary to place an auxiliary electrode. Furthermore, when operating at a potential just before spark discharge occurs between the wire and the rotary cooling body, it is obvious that r 2 /r 1 must be 1. () The higher the ambient temperature, the larger the discharge current, and therefore the wire ambient temperature needs to be higher. This mechanism is thought to be caused by an increase in ion density due to the promotion of corona ionization of the gas by thermal energy. Furthermore, when cold air is blown near the wire and the ambient temperature changes spatially or temporally, the discharge current changes, which leads to changes in the adhesion between the quick-melting polymer and the rotating cooling body. Therefore, it is necessary to stably maintain the temperature near the wire at T≧100°C. On the other hand, corona discharge in a non-uniform electric field such as a wire-to-flat or needle-to-flat electrode system is accompanied by an ion wind (also called a corona wind) that moves from the wire or needle toward the flat plate. This wind speed is 1~2m/
It was hot in sec. As mentioned above, by bringing cold air near the wire, ion wind fluctuates the discharge current due to the influence of the ambient temperature, and also suppresses the vibration of the molten polymer existing in the space between the die orifice and the contact point on the rotating cooling body. cause it to occur. As described above, it is necessary to minimize fluctuations in the atmosphere near the wire. For this reason, in order to isolate the wire atmosphere from the outside, reduce fluctuations in the atmosphere due to ion wind, etc., and maintain a high temperature, the auxiliary electrode should preferably have a shape that covers the wire, that is, an umbrella-shaped one. It goes without saying that the wire-side surface of the auxiliary electrode should be smooth to prevent electric field concentration and spark discharge. The shape of the umbrella is triangular or square in cross section.
Although a cylindrical shape may be used, preferably a coaxial cylindrical shape with the same distance from the wire to the umbrella is used to make the corona atmosphere near the wire homogeneous and stabilize the atmosphere. Furthermore, in order to heat the atmosphere and prevent the adhesion of oligomers, a heater can be embedded in the auxiliary electrode material and its temperature can be controlled.
In this case, the surface temperature T of the auxiliary electrode on the side facing the wire is controlled to be constant at 105° C. or higher. Preferably, when the shape of the auxiliary electrode for controlling the constant temperature at T≧150° C. is umbrella-shaped, it is optimal to determine the shape of the umbrella so that the wire is located at its geometric focal point. This has the effect of heating the wire with radiant heat from the umbrella and preventing the attachment of oligomers and the like to the wire. There is no particular limit to the width of the opening of the umbrella for imparting a charge to the molten polymer, but if the angle between the wire and both ends of the umbrella is less than 60°, the discharge current will decrease and the purpose will not be achieved. Do not fit. If the wire is fixed to the umbrella via an insulator and used as a corona charging contact device, it is extremely effective for adjusting the optimum position of the wire. FIG. 4 is a side view (partial view) showing the film forming state of the present invention. The melted thermoplastic polymer is transferred to die 1.
7 and casted on the surface 15 of the rotary cooling body 14 as a sheet-like material 16. During casting, high-voltage static electricity is applied to the metal wire 12 by a high-voltage power supply 18 so that static charges are deposited on the sheet-like material, and corona discharge occurs between the metal wire 12 and the rotating cooling body 14 serving as a counter electrode. An auxiliary electrode 11 is placed on the opposite side of the rotary cooling body with a metal wire in between.
is provided. The auxiliary electrode 11 and the rotary cooling body 14 are grounded. The auxiliary electrode is provided so as to cover the metal wire at an angle of at least 60 degrees. The thickness of the film produced by this method was more uniform than that produced by the conventional electrostatic pinning method. This, along with the effect of stabilizing the atmosphere,
Another possible effect is that the discharge between the auxiliary electrodes forms a corona atmosphere in the entire space around the wire, making the discharge uniform. This invention covers any thermoplastic polymeric material that can be formed into a smooth film by extrusion and cooling;
For example, it is applicable to polystyrene, polyamide, vinyl chloride polymers and copolymers, olefin polymers and copolymers such as polycarbonate and polypropylene, and polyesters condensed from dibasic aromatic carboxylic acids and dihydric alcohols. can. This invention is particularly suitable for forming molten polyethylene terephthalate films. Therefore, examples of the present invention are shown below regarding polyethylene terephthalate films. Comparative Examples A to E Using a binding device substantially similar to that shown in Japanese Patent Publication No. 37-6142, a polyethylene terephthalate film was extruded and electrostatically placed on a cooling drum (rotary cooling body). I was tied up. The voltage applied to the restraint devices was unified at +60KV. This result is the first
As shown in the table, when the circumferential speed of the cooling drum exceeded 45 m/min, air was trapped between the polyethylene terephthalate film and the surface of the cooling drum due to insufficient adhesion, causing bubbles to form. Examples 1 to 5 Molten polymer binding device according to the present invention (Figure 4)
The polyethylene terephthalate was extruded into a film and electrostatically bound onto a rotating cooling body.
At this time, the voltage applied to the metal wire was +6.0 KV as in the comparative example, and the auxiliary electrode had a cylindrical shape. The ratio of the distance r 1 between the wire and the conductive auxiliary electrode to the distance r 2 between the wire and the rotating cooling body is r 2 /r 1 =1.5. The results are shown in Table 2. Bubbles were generated when the circumferential speed of the rotary cooling body was 50 m/min or more. Examples 6 to 10 Using the same apparatus as Examples 1 to 5 (Fig. 4),
The surface temperature of the auxiliary electrode was maintained at 280°C using a heater provided in the auxiliary electrode, and the polyethylene phthalate film was bound to the surface of the rotary cooling body. At this time, the voltage applied to the metal wire was +6.0 KV, and the shape of the auxiliary electrode was cylindrical. Further, r 2 /r 1 was set to 2.0. The results are shown in Table 3. No bubbles were observed until the circumferential speed of the rotary cooling body was 55 m/min, and extremely fine bubbles were observed for the first time at 60 m/min or higher. Comparative Example F and Example 11 Raw films produced using an apparatus substantially similar to the apparatus shown in Japanese Patent Publication No. 37-6142 and using an apparatus according to the present invention Table 4 shows a comparison of the thickness unevenness. The thickness unevenness of the film produced according to the present invention is significantly improved.

【表】【table】

【表】【table】

【表】【table】

【表】 縦方向の平均厚み
[Table] Average vertical thickness

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は補助電極を設けた場合(本発明)と設
けない場合(従来法)との放電電流量を示すグラ
フである。第2図は本発明に使用する補助電極を
示す側面図及び斜視図である。第3図は金属ワイ
ヤ雰囲気温度と放電電流量を示す本発明の実施例
となるグラフである。第4図は本発明の実施態様
を示す側面図(部分図)である。 図面において11は補助電極、12は金属ワイ
ヤ、14は回転冷却体、18は電源である。
FIG. 1 is a graph showing the amount of discharge current when an auxiliary electrode is provided (the present invention) and when the auxiliary electrode is not provided (the conventional method). FIG. 2 is a side view and a perspective view showing an auxiliary electrode used in the present invention. FIG. 3 is a graph showing the metal wire ambient temperature and discharge current amount according to an embodiment of the present invention. FIG. 4 is a side view (partial view) showing an embodiment of the present invention. In the drawings, 11 is an auxiliary electrode, 12 is a metal wire, 14 is a rotating cooling body, and 18 is a power source.

Claims (1)

【特許請求の範囲】[Claims] 1 溶融した熱可塑性重合体をダイから回転冷却
体上に押出し、該回転冷却体に近接して平行に張
られた金属ワイヤにより静電ピンニングを施しつ
つ冷却固化せしめるフイルムの製造方法におい
て、金属ワイヤの主電極と、該ワイヤに対し該回
転冷却体と対抗する側に設けかつ接地せしめた、
平板の導電性材質からなる補助電極または該ワイ
ヤを覆いかつ押出されたフイルムが該回転冷却体
に接触する位置の方向に開放口を有する形状の導
電性材質からなる補助電極とを用いてフイルムを
該回転冷却体に静電的に密着せしめることを特徴
とする重合体フイルムの製造方法。
1. A method for producing a film in which a molten thermoplastic polymer is extruded from a die onto a rotating cooling body, and is cooled and solidified while electrostatic pinning is performed using a metal wire stretched parallel to the rotating cooling body. a main electrode, and a main electrode provided on a side of the wire opposite to the rotary cooling body and grounded;
The film is made using a flat auxiliary electrode made of a conductive material or an auxiliary electrode made of a conductive material having a shape that covers the wire and has an open opening in the direction of the position where the extruded film contacts the rotary cooling body. 1. A method for producing a polymer film, which comprises electrostatically bringing the film into close contact with the rotary cooling body.
JP10010377A 1977-08-23 1977-08-23 Manufacture of polymer film Granted JPS5434370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10010377A JPS5434370A (en) 1977-08-23 1977-08-23 Manufacture of polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10010377A JPS5434370A (en) 1977-08-23 1977-08-23 Manufacture of polymer film

Publications (2)

Publication Number Publication Date
JPS5434370A JPS5434370A (en) 1979-03-13
JPS6119415B2 true JPS6119415B2 (en) 1986-05-17

Family

ID=14265045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10010377A Granted JPS5434370A (en) 1977-08-23 1977-08-23 Manufacture of polymer film

Country Status (1)

Country Link
JP (1) JPS5434370A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534918A (en) * 1983-10-27 1985-08-13 E. I. Du Pont De Nemours And Company Method and apparatus for the electrostatic pinning of polymeric webs
US5494619A (en) * 1994-10-18 1996-02-27 Eastman Kodak Company Improved electrostatic pinning method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033055U (en) * 1973-07-18 1975-04-10

Also Published As

Publication number Publication date
JPS5434370A (en) 1979-03-13

Similar Documents

Publication Publication Date Title
US4244894A (en) Process and apparatus for the manufacture of films by electrostatic application
US5494619A (en) Improved electrostatic pinning method
US4038354A (en) Process for extruding and quenching a polymeric film
JPS6320688B2 (en)
JPS6119415B2 (en)
US4111625A (en) Polymeric film production
JP2696886B2 (en) Manufacturing method of thermoplastic resin sheet
JP2818367B2 (en) Detecting method of film position corresponding to die
JP4082061B2 (en) Corona discharge treatment method, plastic film production method and apparatus
JPH0272923A (en) Manufacture of thermoplastic polymer film
JPS63317316A (en) Molding method for thermoplastic resin sheet
JPS6034826A (en) Preparation of thermoplastic polymer sheet
KR100269873B1 (en) Electrostatic-applying apparatus and manufacturing method of thermoplastic resin sheet using the same
JP2000263572A (en) Manufacture of thermoplastic resin sheet
JPS5941850B2 (en) Method for manufacturing thermoplastic film
JP2857214B2 (en) Method for producing polyamide sheet
JPS631520A (en) Manufacture of plastic film
KR100269874B1 (en) Electrostatic-applying apparatus for manufacturing sheet
JPH08142162A (en) Method and apparatus for producing sheet like article
JPS62202719A (en) Manufacture of thermoplastic polymer sheet
JPS59185627A (en) Manufacture of thermoplastic polymer sheet
JPH0146304B2 (en)
JP2004090510A (en) Method and apparatus for manufacturing film
JP2002273779A (en) Film manufacturing device
JPH0392323A (en) Manufacture of thermoplastic polymer sheet