JPH0146304B2 - - Google Patents

Info

Publication number
JPH0146304B2
JPH0146304B2 JP59217521A JP21752184A JPH0146304B2 JP H0146304 B2 JPH0146304 B2 JP H0146304B2 JP 59217521 A JP59217521 A JP 59217521A JP 21752184 A JP21752184 A JP 21752184A JP H0146304 B2 JPH0146304 B2 JP H0146304B2
Authority
JP
Japan
Prior art keywords
film
cooling roll
polyamide
electrode
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59217521A
Other languages
Japanese (ja)
Other versions
JPS6195925A (en
Inventor
Junkichi Watanabe
Kenji Tsubochi
Shunichi Kawakita
Naoji Ichinose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP59217521A priority Critical patent/JPS6195925A/en
Publication of JPS6195925A publication Critical patent/JPS6195925A/en
Publication of JPH0146304B2 publication Critical patent/JPH0146304B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9165Electrostatic pinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はポリアミド系フイルムの製造方法に関
するもので、ダイから溶融押出成形されたポリア
ミド系フイルムを静電ピニング法により冷却ロー
ル密着させて急冷する方法において、作業の安全
性と得られたフイルムの均質性の改良を目的とす
るものである。 (従来の技術) ポリアミド系フイルムを静電ピニング法で急冷
製膜する方法は従来から知られており、例えば特
公昭59−23270号公報にはポリアミド系フイルム
を冷却するに際し、ストリーマコロナの状態のコ
ロナ放電を行い、高電流をフイルムに付与して冷
却ロールに密着させる方法が記載されている。 (発明が解決しようとする問題点) しかしながらこの方法では高電流を必要とする
ため作業の安全性に大きな問題を生じる。特公昭
59−23270号公報の実施例には90mm押出機で製膜
速度50m/minでポリアミドフイルムを静電ピニ
ング製膜する際の電流値は25mAと例示されてい
る。 従つてさらに大企模の生産スケール、例えば工
業的なポリアミド二軸延伸フイルムに製造設備で
一般的に使用される150〜250mmの押出機で広巾の
フイルムを製膜するときは、電流量は大体フイル
ム巾に比例するためさらに大きな電流値が必要と
なり例えば100mA程度にもなる。 静電ピニング用電極はTダイ近傍に設置される
が、その場所には例えば厚み調整のためTダイリ
ツプの調節ボルトを操作するため作業者がしばし
ば近づく。従つて誤つて電極に接触したり、ある
いは何かのトラブルで高圧リード線の端子がはず
れたりしたときに感電事故が生ずる危険がある。 直流高電圧の感電事故は極めて危険であり、30
mAを越えると重大な災害におよぶことが知られ
ており、100mAにもるとときには致命的な事故
になる。当然ながらこれらの事故を防ぐための
種々の安全対策は絶対的に必要となる。例えば作
業者が電極のそばに近づくときは電源を切る方
法、Tダイリツプの調節ボルトを遠隔操作する方
法などである。しかしながらTダイと冷却ロール
の間のフイルムの挙動はフイルム製造工程で最も
デリケートで重要であるため、これらの制約があ
ると運転操作上重大な障害となり、高品質フイル
ムを得ることができなくなる。 又いかに厳重な安全対策を施しても作業者のミ
スや装置の故障ということがあるため重大事故の
可能性は残る。 ポリアミド系フイルムを静電ピニング法で製膜
する方法における第二の問題はストリーマコロナ
の生成した部分のフイルム厚みが乱れることであ
る。特開昭56−105929号公報にはこれを防ぐため
に印加電流S〔mA〕とストリーマコロナを放電
する電極の放電点の数Nとの比S/Nを低く保
ち、局部的なストリーマコロナの強度を弱める方
法が記載されている。しかしこの方法は電極の精
度を極めて厳重に管理する必要があり、又製膜速
度が遅い場合や例えば帯電防止剤を練り込んだナ
イロン6のように比抵抗が104Ω−cm程度になる
とほとんど不可能な方法である。 すなわちポリアミド系フイルムを冷却するに際
し、ストリーマコロナ状態のコロナ放電を行い高
電流をフイルムに付与する従来の方法では作業上
の安全問題およびストリーマ放電点の厚さ乱れと
いう重大な問題があつた。本発明はこれらの問題
を解決するための方法に関するものである。 (問題点を解決するための手段) ポリアミド系フイルムのうち溶融状態の比抵抗
が3×105Ω・cm以下のフイルムに静電荷を印加
する場合、フイルムから冷却ロールへ漏洩する電
流が大きいためフイルムと冷却ロールとの間に電
気的引力を生ぜしめるために必要な量以上の電荷
をフイルムに付与することが必要となり、そのた
め高電流放電、すなわちストリーマコロナ状態の
放電が必要になると考えられる。 本発明質等は電極〜冷却ロール間に電気的抵抗
体を設けることにより漏洩電流を少なくする方法
を研究した結果、冷却ロールの表面に電気絶縁性
被覆を設けることにより、ストリーマ状態に到ら
ない低電流放電でポリアミド系フイルムの静電ピ
ニングが可能となることを知つて本発明に到達し
た。 ここに電気絶縁性被覆とはフツ素系樹脂、アク
リル系樹脂、ポリエステル系樹脂等の有機重合体
材料あるいはAl2O3のような電気絶縁性セラミツ
クス材料であり、通常はこれらの組み合わせが最
も適している。被覆層は絶縁破壊電圧5KV以上、
さらに好ましくは10KV以上の耐電圧を備えると
いう条件を第一に考慮して材質、厚みを選択す
る。これは製膜操作中に何かのトラブルでアーク
放電が生じた場合に被覆層が破損することを避け
なければならないからである。しかし電気絶縁性
被覆材料は一般に熱伝導度が低いため被覆層を厚
くしすぎると冷却ロールの冷却効率が悪くなると
いう問題がある。このため被覆層は絶縁破壊電圧
5KV以上15KV以下の範囲が綜合的には適してお
り、この範囲からポリマーの比抵抗、フイルム厚
み、速度、冷却ロール温度などの製膜条件に応じ
て最適なものを選択する。この際見掛けの印加密
度を2μC/cm2移下にすることが電気絶縁性被覆の
材質、厚みを選択する上での第二の基準である。 ここに見掛けの印加密度とは電極で消費される
電流値をフイルムの巾と速度の積で除した値で、
たとえば巾1m(100cm)のフイルムを速度40
m/min(66.7cm/sec)で製膜するときの電流値
が4mAであつたとすると見掛けの印加密度は
0.6μC/cm2である。見掛けの印加密度が低いほど
作業の安全上からは好ましいが、低くしすぎると
逆に製膜が難しくなる。安全性と製膜性と被覆層
形成の難易度のバランスから2μC/cm2以下の範囲
が適している。 電極は直径0.1〜0.3mmの鋼線、タングステン線
をフイルムが冷却ロールに接触する位置の上方で
フイルム面から1〜10mmの位置に配設する方法が
一般的である。電極には直流高電圧発生装置によ
り正又は負で5〜15KVの直流電圧を印加する。
極性は一般的には正負どちらでもよいが、絶縁被
覆材料とフイルムの帯電列から決定される被覆材
料の帯電極性と逆の極性電圧を電極に印加するの
がより好ましい場合が多い。 また、フイルムに接触する直前の絶縁被覆材料
に帯電むらがあると電界が乱れて、溶融ポリアミ
ドと冷却ロールの均一な密着が阻害さるため、カ
ーボンブラシ等を接触させて接地させることによ
り、絶縁被覆の表面電位を300V以下、さらに好
ましくは100V以下に徐電しておくことが必要で
ある。 (作用) 本発明方法を適用することにより、ストリーマ
コロナ放電域に到らない低電流でポリアミド系フ
イルムを冷却ロールに密着させて急冷製膜するこ
とが可能になる。その結果作業の安全性は改善さ
れ又ストリーマコロナ放電点で生じる厚さの乱れ
もなくなりフイルムの均一性は改良される。 本発明の適用を受けるポリアミド系フイルムと
はナイロン6、ナイロン66、ナイロン6−10、ナ
ンロン4−6等のホモポリマーあるいはこれらの
混合物よりなるフイルムおよびこれらのポリアミ
ドの基本的性質を変えない範囲の共重合物等より
なるフイルムであり、さらに可塑剤、滑剤、酸化
防止剤等の添加物が添加されたものを含み、溶融
状態における比抵抗が3×105Ω・cm以下のもの
である。 又本発明方法により従来法では難しかつた低比
抵抗ポリマー、特にポリアミド系フイルムに帯電
防止剤が添加されて溶融状態の比抵抗が104Ω−
cmのレベルまで低下したフイルムの静電ピニング
法製膜が可能になる。本発明方法により製膜した
ポリアミド系フイルムをさらに二軸延伸する場合
は厚み精度、光学的均一性等の改良された二軸延
伸ポリアミドフイルムが得られ本発明方法の効果
がさらに高まる。 実施例 1〜4 90mm押出機、400mm巾Tダイ、900mm径の冷却ロ
ール、600W(15KV×20mA)の直流高圧発生装
置よりなる製膜装置で150μのナイロン6フイル
ム(260℃で測定した溶融比抵抗1.7×105Ω・cm)
を製膜した。冷却ロールは表面とクロムメツキし
たもの(比較例)と表面にセラミツク(Al2O3
を0.15mm厚に被覆したもの(実施例)の二種類を
用いた。セラミツク被覆層の絶縁破壊電圧は
8.5KVであつた。また、被覆層の表面にはフイル
ムが接触する点より、30cm上流に冷却ロールの巾
と等しい長さを持つカーボンブラシを2列に並べ
て冷却ロールに接触させ、カーボンブラシのホル
ダーを接地することにより、セラミツク被覆層の
表面電位を100V以下に除電した。 電極は真鍮製で直径0.8mm、長さ8mmの針がピ
ツチ2.5mmで真鍮板に埋め込まれたもの(比較例)
と直径0.2mmのタングステン線(実施例)の二種
類を用いた。電極の有効巾はともに270mmで比較
例の場合は電極〜フイルム間距離7mm、電極〜冷
却ロール間距離15mm、実施例の場合はそれぞれ6
mm、8mm、の距離に電極を配置した。 表1に製膜条件と得られたフイルム厚さ変動量
(巾方向の最大厚と最小厚の差)を示す。 (発明の効果) 以上の説明から明らかなように本発明方法によ
り作業上安全な低電流でポリアミド系フイルムの
静電ピニング製膜が可能となり、さらに得られた
フイルムの均一性は、製膜速度の広い範囲で優れ
たものとなる。その結果製膜段階での速度が比較
的遅い場合の二軸延伸フイルム製造プロセスに静
電ピニング製膜法を適用しても均一性の優れたフ
イルムが得られるし、又製膜速度が高くなつて従
来法では作業上危険な電流量を必要とした場合で
も、本発明方法により安全な低電流で製膜可能と
なる。
(Industrial Application Field) The present invention relates to a method for producing a polyamide film, in which a polyamide film melt-extruded from a die is rapidly cooled by bringing it into close contact with cooling rolls by electrostatic pinning, which improves work safety. The purpose of this is to improve the homogeneity of the film obtained. (Prior art) A method of rapidly cooling and forming a polyamide film by electrostatic pinning has been known for a long time. A method is described in which a corona discharge is performed and a high current is applied to the film to bring it into close contact with a cooling roll. (Problems to be Solved by the Invention) However, this method requires a high current, which poses a major problem in work safety. Tokuko Akira
In the examples of Japanese Patent No. 59-23270, the current value when forming a polyamide film by electrostatic pinning using a 90 mm extruder at a film forming speed of 50 m/min is exemplified as 25 mA. Therefore, on a larger production scale, for example when producing a wide film using a 150 to 250 mm extruder, which is commonly used in production equipment for industrial polyamide biaxially oriented films, the amount of current is approximately Since it is proportional to the film width, a larger current value is required, for example, about 100 mA. The electrostatic pinning electrode is installed near the T-die, and a worker often approaches this location to operate the adjustment bolt of the T-die lip, for example, to adjust the thickness. Therefore, there is a risk of electric shock if the terminal of the high voltage lead wire comes off due to accidental contact with the electrode or due to some kind of trouble. DC high voltage electric shock is extremely dangerous and
It is known that if the current exceeds mA, it will cause a serious disaster, and if it exceeds 100mA, it will sometimes lead to a fatal accident. Naturally, various safety measures are absolutely necessary to prevent these accidents. For example, there is a method of turning off the power when the operator approaches the electrode, and a method of remotely controlling the adjustment bolt of the T-die lip. However, since the behavior of the film between the T-die and the cooling roll is the most delicate and important in the film manufacturing process, these restrictions pose a serious obstacle to operation and make it impossible to obtain a high-quality film. Furthermore, no matter how strict safety measures are taken, there is still the possibility of serious accidents due to operator error or equipment failure. The second problem with the method of forming a polyamide film by electrostatic pinning is that the thickness of the film is disturbed at the portion where the streamer corona is generated. In order to prevent this, JP-A-56-105929 discloses that the ratio S/N between the applied current S [mA] and the number N of discharge points of the electrode that discharges the streamer corona is kept low, and the local strength of the streamer corona is reduced. A method to weaken it is described. However, this method requires very strict control of the accuracy of the electrode, and if the film forming speed is slow or the specific resistance is around 10 4 Ω-cm, such as with nylon 6 mixed with an antistatic agent, the This is an impossible method. That is, when cooling a polyamide film, the conventional method of applying a high current to the film by performing corona discharge in a streamer corona state had serious problems such as operational safety problems and disturbances in the thickness of the streamer discharge point. The present invention relates to a method for solving these problems. (Means for solving the problem) When applying an electrostatic charge to a polyamide film whose specific resistance in the molten state is 3×10 5 Ω・cm or less, a large amount of current leaks from the film to the cooling roll. It is believed that it would be necessary to impart more charge to the film than is necessary to create an electrical attraction between the film and the chill roll, thus requiring a high current discharge, i.e., a streamer corona discharge. As a result of research into a method of reducing leakage current by providing an electrical resistor between the electrode and the cooling roll, the present invention found that by providing an electrically insulating coating on the surface of the cooling roll, a streamer state is prevented. The present invention was achieved by learning that electrostatic pinning of polyamide films is possible with low current discharge. The electrically insulating coating here refers to organic polymer materials such as fluororesin, acrylic resin, and polyester resin, or electrically insulating ceramic materials such as Al 2 O 3 , and usually a combination of these is most suitable. ing. The coating layer has a dielectric breakdown voltage of 5KV or more,
More preferably, the material and thickness are selected by first considering the condition of having a withstand voltage of 10 KV or more. This is because it is necessary to avoid damage to the coating layer if arc discharge occurs due to some trouble during the film forming operation. However, since electrically insulating coating materials generally have low thermal conductivity, there is a problem in that if the coating layer is made too thick, the cooling efficiency of the cooling roll will deteriorate. For this reason, the coating layer has a dielectric breakdown voltage
A range of 5KV or more and 15KV or less is generally suitable, and the optimum one is selected from this range depending on the film forming conditions such as the specific resistance of the polymer, film thickness, speed, and cooling roll temperature. At this time, setting the apparent applied density to 2 μC/cm 2 is the second criterion for selecting the material and thickness of the electrically insulating coating. The apparent applied density here is the value obtained by dividing the current consumed by the electrode by the product of the film width and velocity.
For example, a film with a width of 1 m (100 cm) can be filmed at a speed of 40
If the current value when forming a film at m/min (66.7 cm/sec) is 4 mA, the apparent applied density is
It is 0.6 μC/cm 2 . A lower apparent applied density is preferable from the viewpoint of work safety, but if it is too low, film formation becomes difficult. A range of 2 μC/cm 2 or less is suitable from the viewpoint of the balance between safety, film formability, and difficulty in forming the coating layer. The electrode is generally a steel wire or a tungsten wire with a diameter of 0.1 to 0.3 mm and is disposed at a position of 1 to 10 mm from the film surface above the position where the film contacts the cooling roll. A positive or negative DC voltage of 5 to 15 KV is applied to the electrodes by a DC high voltage generator.
Although the polarity may generally be either positive or negative, it is often more preferable to apply a polarity voltage to the electrode that is opposite to the charging polarity of the coating material determined from the charging series of the insulating coating material and the film. In addition, if there is uneven charging on the insulating coating material just before it comes into contact with the film, the electric field will be disturbed and the uniform adhesion between the molten polyamide and the cooling roll will be inhibited. It is necessary to reduce the surface potential to 300V or less, more preferably 100V or less. (Function) By applying the method of the present invention, it becomes possible to rapidly cool and form a polyamide film by bringing it into close contact with a cooling roll at a low current that does not reach the streamer corona discharge region. As a result, operational safety is improved and film uniformity is improved, with no thickness disturbances occurring at streamer corona discharge points. Polyamide films to which the present invention is applied include films made of homopolymers such as nylon 6, nylon 66, nylon 6-10, and nanlon 4-6, or mixtures thereof, and films that do not change the basic properties of these polyamides. A film made of a copolymer or the like, containing additives such as a plasticizer, a lubricant, and an antioxidant, and having a specific resistance of 3×10 5 Ω·cm or less in a molten state. Furthermore, by the method of the present invention, an antistatic agent is added to a low resistivity polymer, especially a polyamide film, which has been difficult to achieve with conventional methods, and the resistivity in the molten state can be reduced to 10 4 Ω.
It becomes possible to produce films using the electrostatic pinning method down to the cm level. When the polyamide film produced by the method of the present invention is further biaxially stretched, a biaxially stretched polyamide film with improved thickness accuracy, optical uniformity, etc. is obtained, and the effects of the method of the present invention are further enhanced. Examples 1 to 4 A 150μ nylon 6 film (melting ratio measured at 260°C) was produced using a film forming apparatus consisting of a 90mm extruder, a 400mm width T-die, a 900mm diameter cooling roll, and a 600W (15KV x 20mA) DC high pressure generator. Resistance 1.7×10 5 Ω・cm)
A film was formed. The cooling roll has a chrome-plated surface (comparative example) and a ceramic (Al 2 O 3 ) surface.
Two types were used: one coated with 0.15 mm thick (Example). The breakdown voltage of the ceramic coating layer is
It was 8.5KV. In addition, carbon brushes with a length equal to the width of the cooling roll were arranged in two rows 30 cm upstream from the point where the film contacts the surface of the coating layer, and were placed in contact with the cooling roll, and the carbon brush holder was grounded. , the surface potential of the ceramic coating layer was neutralized to below 100V. The electrode is made of brass and has needles with a diameter of 0.8 mm and a length of 8 mm embedded in a brass plate with a pitch of 2.5 mm (comparative example).
and a tungsten wire with a diameter of 0.2 mm (example). The effective widths of the electrodes are both 270 mm, the distance between the electrode and the film is 7 mm in the case of the comparative example, the distance between the electrode and the cooling roll is 15 mm, and the distance between the electrode and the cooling roll is 6 mm in the case of the example.
The electrodes were placed at a distance of 8 mm. Table 1 shows the film forming conditions and the variation in film thickness (difference between maximum and minimum thickness in the width direction). (Effects of the Invention) As is clear from the above explanation, the method of the present invention enables the electrostatic pinning formation of polyamide films with a low current that is safe for work, and the uniformity of the obtained film is improved by the film formation speed. It is excellent in a wide range of conditions. As a result, even if the electrostatic pinning film forming method is applied to a biaxially stretched film manufacturing process where the speed at the film forming stage is relatively slow, a film with excellent uniformity can be obtained, and the film forming speed can be increased. Even when the conventional method requires a dangerous amount of current, the method of the present invention makes it possible to form a film with a safe low current.

【表】【table】

【表】 面積速度=製膜速度×フイルム巾
印加密度=電流/面積速度
[Table] Area speed = Film forming speed x Film width Applied density = Current / Area speed

Claims (1)

【特許請求の範囲】[Claims] 1 比抵抗が3×105Ω・cm以下の溶融したポリ
アミド系樹脂をダイからフイルムとして押出し、
冷却ロール上にキヤステイングする際に、該フイ
ルムの上方に配設した電極によつて静電荷を与
え、接地された冷却ロールとの間に作用する電気
的引力によつて前記フイルムを冷却ロールに密着
させて冷却する方法において、冷却ロールの表面
に絶縁破壊電圧5KV以上の電気絶縁性被覆を設
け、かつフイルムに接触する直前の該被覆の表面
電位を300V以下に除電し、前記電極と溶融ポリ
アミドフイルムとの間に非ストリーマ状態のコロ
ナ放電を行い、見掛けの印加密度2μC/cm2以下の
電荷をフイルムに付与することを特徴とするポリ
アミド系フイルムの急冷製膜方法。
1 Extrude a molten polyamide resin with a specific resistance of 3×10 5 Ω・cm or less through a die as a film,
When casting onto a cooling roll, an electrostatic charge is applied to the film by an electrode placed above the film, and an electric attraction between the film and the grounded cooling roll causes the film to be cast onto the cooling roll. In the method of closely contacting and cooling, an electrically insulating coating with a dielectric breakdown voltage of 5 KV or more is provided on the surface of the cooling roll, and the surface potential of the coating is removed to 300 V or less just before contacting the film, and the electrode and molten polyamide are removed. A method for rapidly cooling and forming a polyamide film, characterized by applying a non-streamer corona discharge between the film and the film to impart a charge with an apparent applied density of 2 μC/cm 2 or less to the film.
JP59217521A 1984-10-17 1984-10-17 Quenching film-making method of polyamide series film Granted JPS6195925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59217521A JPS6195925A (en) 1984-10-17 1984-10-17 Quenching film-making method of polyamide series film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59217521A JPS6195925A (en) 1984-10-17 1984-10-17 Quenching film-making method of polyamide series film

Publications (2)

Publication Number Publication Date
JPS6195925A JPS6195925A (en) 1986-05-14
JPH0146304B2 true JPH0146304B2 (en) 1989-10-06

Family

ID=16705541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59217521A Granted JPS6195925A (en) 1984-10-17 1984-10-17 Quenching film-making method of polyamide series film

Country Status (1)

Country Link
JP (1) JPS6195925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116600A1 (en) 2017-12-14 2019-06-20 硬化クローム工業株式会社 Cooling roll and method for producing thermoplastic resin sheet using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997600A (en) * 1988-05-24 1991-03-05 Mitsubishi Monsanto Chemical Company, Ltd. Process for preparation of thermoplastic resin sheets

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829311A (en) * 1971-08-18 1973-04-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829311A (en) * 1971-08-18 1973-04-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116600A1 (en) 2017-12-14 2019-06-20 硬化クローム工業株式会社 Cooling roll and method for producing thermoplastic resin sheet using same

Also Published As

Publication number Publication date
JPS6195925A (en) 1986-05-14

Similar Documents

Publication Publication Date Title
DE68909676T2 (en) Process for the production of foils from thermoplastic materials.
US3686374A (en) Gas assisted electrostatic pinning
US4594203A (en) Method for producing a thermoplastic polymeric sheet
US5494619A (en) Improved electrostatic pinning method
US3427686A (en) Method and apparatus for quenching polymeric films
US4244894A (en) Process and apparatus for the manufacture of films by electrostatic application
JPS6241095B2 (en)
JPH0146304B2 (en)
US4309368A (en) Electrostatic pinning of extruded thermoplastic film
US3660549A (en) Electrostatic pinning of dielectric film
US3709964A (en) Process for producing polymeric film
US4166089A (en) Corona free pinning of extruded polymer film
CN111138744B (en) Insulating composite material, preparation method thereof and electrostatic air purifier
JPS6313815B2 (en)
US4310294A (en) Apparatus for corona free pinning of extruded polymer film
USRE27771E (en) Process for quenching extruded polymeric film
JP3564715B2 (en) Manufacturing method of thermoplastic resin film
JPS63154326A (en) Rapid cooling film-manufacture of polyamide multi-layer film
JP2818367B2 (en) Detecting method of film position corresponding to die
JP2600722B2 (en) Polypropylene film
KR20000029611A (en) Method and apparatus for producing thermoplastic resin sheet
JP2793061B2 (en) Casting method of thermoplastic polymer sheet
JPS637134B2 (en)
JPWO2019116600A1 (en) Cooling roll and method for producing thermoplastic resin sheet using the same
EP1020280A2 (en) Method and apparatus for producing thermoplastic resin sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees