JPH08321274A - Active vibration resisting device of electron microscope - Google Patents

Active vibration resisting device of electron microscope

Info

Publication number
JPH08321274A
JPH08321274A JP12622395A JP12622395A JPH08321274A JP H08321274 A JPH08321274 A JP H08321274A JP 12622395 A JP12622395 A JP 12622395A JP 12622395 A JP12622395 A JP 12622395A JP H08321274 A JPH08321274 A JP H08321274A
Authority
JP
Japan
Prior art keywords
vibration
electron microscope
data
actuator member
active vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12622395A
Other languages
Japanese (ja)
Inventor
Hitoshi Isoya
仁 礒谷
Masaki Kurihara
雅樹 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12622395A priority Critical patent/JPH08321274A/en
Publication of JPH08321274A publication Critical patent/JPH08321274A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To enhance the vibration resisting performance and reduce the costs through omission of a horizontal direction sensor by controlling an actuator member using a two-dimensional dislocation amount acquired from the vibration data from sensor and the image data. CONSTITUTION: The vertical vibration data acquired from a vibration sensor 12 fixed on a surface reference plate 5 is fed to a DSP member 17 via an A/D converter 16a. The horizontal dislocation amount acquired from the image data taken in by a scanning image sensor 13 of an electron microscope 23 is also fed to the DSP member 17 via another A/D converter 16b and an image processing device 22. The control signal calculated at a high speed by the member 17 is passed through a D/A converter 18 and amplifier 19 to control an actuator member 3. Thereby the sensing data of dislocation amount is made accurate to lead to enhancement of the vibration resisting performance. Sensing points in the horizontal direction are lesser required to allow decreasing the number of sensors in provision.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子顕微鏡のアクティブ
除振装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active vibration isolator for an electron microscope.

【0002】[0002]

【従来の技術】電子顕微鏡のような精密機器では、一般
に、機器が設置される床面の振動が原因で画像精度ある
いは性能が低下する恐れがあるため、除振装置で支持さ
れた定盤上に設置される。除振装置は、上下及び水平方
向に剛性の低い弾性体のばね部材、例えば、コイルば
ね,空気ばね、もしくは防振ゴムなどと、減衰効果を有
する粘性ダンパ等の振動減衰部材等のパッシブな部材の
組み合わせが用いられていることが多い。除振装置は床
面からの微振動を振動絶縁することによって、定盤及び
これに搭載された機器の応答の絶対加速度を低減(除
振)する装置である。しかし、バッシブ除振装置は必ず
固有振動数を持ち、しかもその固有振動数を下げるには
限度がある。一般に、バッシブ除振装置の固有振動数は
1〜3Hz程度となり、1.5〜4Hz 以下の床振動に
対してはパッシブ除振装置による振動絶縁効果は得られ
ず、むしろ増幅してしまう可能性が有り、これがパッシ
ブ除振装置の問題点である。
2. Description of the Related Art In a precision instrument such as an electron microscope, image accuracy or performance may be deteriorated due to vibration of a floor on which the instrument is installed. Is installed in. The vibration isolation device is a passive member such as an elastic spring member having low rigidity in the vertical and horizontal directions, such as a coil spring, an air spring, or a vibration damping rubber, and a vibration damping member such as a viscous damper having a damping effect. A combination of is often used. The vibration isolation device is a device for reducing (vibrating) the absolute acceleration of the response of the surface plate and the equipment mounted on the surface plate by vibrating and insulating minute vibrations from the floor surface. However, the passive vibration isolator always has a natural frequency, and there is a limit to lowering the natural frequency. Generally, the natural frequency of the passive vibration isolation device is about 1 to 3 Hz, and the vibration isolation effect of the passive isolation device cannot be obtained for floor vibrations of 1.5 to 4 Hz or less, and it may rather be amplified. There is a problem with the passive vibration isolator.

【0003】そこで、この様な問題点を解決する方法と
して、床振動の微振動に対して定盤の振動を能動的(ア
クティブ)に抑制する方法が考えられ、この方法の従来
技術は、例えば、特開平2−246382 号公報に記載されて
いるように、アクチュエータを用い、定盤の振動量をフ
ィードバックして能動的に定盤及び機器の振動を抑制す
るアクティブ除振装置がある。
Therefore, as a method of solving such a problem, a method of actively suppressing the vibration of the surface plate against a slight vibration of the floor vibration is considered, and the conventional technique of this method is, for example, As described in Japanese Patent Application Laid-Open No. 2-246382, there is an active vibration isolation device that uses an actuator to feed back the amount of vibration of the surface plate to actively suppress the vibration of the surface plate and equipment.

【0004】[0004]

【発明が解決しようとする課題】電子顕微鏡にアクティ
ブ除振装置を適用した場合に、精度向上のために定盤だ
けでなく機器の上下及び水平方向の振動量を検出し、こ
の検出された振動量をフィードバックすることによって
電子顕微鏡の振動の抑制効果を向上させることができ
る。しかし、この方法のアクティブ除振装置では加速度
データ及び変位データを得るための検出器を電子ビーム
に直接取り付けることが不可能なため近似の測定点に取
り付けることになる。そのため検出器から得られたデー
タの精度は悪くなる。また、これらのデータを得るため
の検出器の数が複数個必要となるため、アクティブ除振
装置のコストが増加してしまう。
When an active vibration isolator is applied to an electron microscope, not only the surface plate but also the vertical and horizontal vibration amounts of the equipment are detected to improve the accuracy, and the detected vibration is detected. By feeding back the amount, the effect of suppressing the vibration of the electron microscope can be improved. However, in the active vibration isolator of this method, it is impossible to directly attach the detector for obtaining the acceleration data and the displacement data to the electron beam, so that the detector is attached at an approximate measurement point. Therefore, the accuracy of the data obtained from the detector becomes poor. Further, since a plurality of detectors are required to obtain these data, the cost of the active vibration isolator increases.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は電子顕微鏡が有している定盤と架台の間
に設けたアクチュエータ部材と、弾性体であるばね部材
あるいはこのばね部材と振動減衰部材からなるハッシブ
除振部材と、定盤に配置してこれらの加速度あるいは変
位を検出する検出器更に、これらの検出器から検出され
たデータ及びビームと試料台との間の水平方向のずれ量
を示す画像データに基づいてアクチュエータ部材を制御
するコントローラからなるアクティブ除振装置を設け
る。
In order to solve the above-mentioned problems, the present invention provides an actuator member provided between a surface plate and a mount of an electron microscope, a spring member which is an elastic body, or this spring. Member and vibration damping member, and a detector that is placed on the surface plate to detect the acceleration or displacement of these members, and the data detected by these detectors and the horizontal between the beam and the sample stage. An active vibration isolation device including a controller that controls an actuator member based on image data indicating a deviation amount in a direction is provided.

【0006】[0006]

【作用】本発明では、アクティブ除振装置が支持する定
盤及び機器の振動データと画像データから得られる電子
ビームと試料間の2次元的なずれ量をコントローラにフ
ィードバックして、アクティブ除振装置のアクチュエー
タ部材を制御する。このずれ量は電子顕微鏡の画像デー
タから直接得られた高精度な変位データであるため除振
性能が向上する。また水平方向の検出器が省略できるた
め、アクティブ除振装置の低コスト化にもなる。
According to the present invention, the two-dimensional shift amount between the electron beam and the sample obtained from the vibration data of the surface plate and equipment supported by the active vibration isolator and the image data is fed back to the controller to activate the active vibration isolator. Control the actuator member of. This displacement amount is highly accurate displacement data directly obtained from the image data of the electron microscope, so that the vibration isolation performance is improved. Further, since the detector in the horizontal direction can be omitted, the cost of the active vibration isolator can be reduced.

【0007】[0007]

【実施例】以下、本発明の実施例を図を参照して説明す
る。
Embodiments of the present invention will now be described with reference to the drawings.

【0008】まず本発明の実施例を図1により説明す
る。図1の実施例は、電子顕微鏡23に、本発明のデジ
タル化された画像データから得られる電子ビームと試料
間の2次元的ずれ量を直接取り込み、これをフィードバ
ックして制御をするアクティブ除振装置を適用した例で
ある。この実施例では、床1上に設置された架台2上に
複数個のアクチュエータ部材3とこれに並列に弾性体で
あるパッシブ除振部材4が設けられている。これらアク
チュエータ部材3とハッシブ除振部材4は、定盤5を支
持する。更に、定盤5上に電子顕微鏡23の本体が搭載
される。電子顕微鏡23の電磁レンズホルダ6内には、
電子ビームを放射する電子銃7と電子ビームを収束させ
る電磁レンズが設けられており、電磁レンズホルダ6内
は、真空ポンプ8bにより真空にされる。また、チャン
バ9内にある試料台11をチャンバ9の外部から任意の
水平及び上下方向に移動させるためのステージ10がチ
ャンバ9に設けられており、チャンバ9は真空ポンプ8
aにより真空にされる。また、アクチュエータ部材3を
制御するために、例えば、図1に示すように、アクチュ
エータ部材3に設置されている定盤5上の点の振動量を
解出する検出器12を必要に応じて複数個設ける。ま
た、取り込んだ画像データから得られる水平方向成分の
ずれ量を検出する走査画像検出器13を設ける。検出器
12から得られたデータをA/D変換器16aを通し、
また走査画像検出器13より取り込んだ画像データから
得られる水平方向成分のずれ量はA/D変換器16b,
画像処理装置22を通って、共にDSP部材17に入力
され、このDSP部材17にはアクチュエータ部材3を
制御する実行用プログラムが書き込まれており、DSP
部材17で高速に計算された信号はD/A変換器18,
増幅器19を経てアクチュエータ部材3を制御する。な
お、ROM部材20はアクチュエータ部材3の制御を開
始あるいは終了する場合等にその指令信号をDSP部材
17に送る機能をもつ。
First, an embodiment of the present invention will be described with reference to FIG. In the embodiment shown in FIG. 1, active vibration isolation is performed in which the electron microscope 23 directly takes in the two-dimensional shift amount between the electron beam and the sample, which is obtained from the digitized image data of the present invention, and feeds back this amount for control. It is an example to which the device is applied. In this embodiment, a plurality of actuator members 3 and a passive vibration isolation member 4 which is an elastic body are provided in parallel with a pedestal 2 installed on the floor 1. The actuator member 3 and the hash vibration damping member 4 support the surface plate 5. Further, the main body of the electron microscope 23 is mounted on the surface plate 5. In the electromagnetic lens holder 6 of the electron microscope 23,
An electron gun 7 that emits an electron beam and an electromagnetic lens that converges the electron beam are provided, and the inside of the electromagnetic lens holder 6 is evacuated by a vacuum pump 8b. Further, a stage 10 for moving the sample stage 11 in the chamber 9 from outside the chamber 9 in any horizontal and vertical directions is provided in the chamber 9, and the chamber 9 includes a vacuum pump 8
A vacuum is applied by a. Moreover, in order to control the actuator member 3, for example, as shown in FIG. Provide one. Further, a scanning image detector 13 for detecting the deviation amount of the horizontal component obtained from the captured image data is provided. The data obtained from the detector 12 is passed through the A / D converter 16a,
Further, the shift amount of the horizontal direction component obtained from the image data captured by the scanning image detector 13 is calculated by the A / D converter 16b,
Through the image processing device 22, both are input to the DSP member 17, and an execution program for controlling the actuator member 3 is written in the DSP member 17,
The signal calculated at high speed by the member 17 is the D / A converter 18,
The actuator member 3 is controlled via the amplifier 19. The ROM member 20 has a function of sending the command signal to the DSP member 17 when starting or ending the control of the actuator member 3.

【0009】図2は本発明におけるずれ量の検出方法の
概念を示した説明図である。画像O点が微小時間後に画
像O′点に移動した場合、ずれ量OO′のX方向のずれ
量をΔXと、Y方向のずれ量をΔYとする。これらのず
れ量ΔX,ΔYの検出方法は次のようである。すなわ
ち、画像データ取込み時の画面にX軸,Y軸方向にそれ
ぞれ画素番号(i),ライン番号(j)が決っており、
元の位置と微小時間後の位置を比較し、ずれた目盛の量
と画素間あるいはライン間の大きさとの積の演算をX
軸,Y軸方向にそれぞれに行うことにより、それぞれΔ
X,ΔYが得られる。
FIG. 2 is an explanatory view showing the concept of the deviation amount detecting method according to the present invention. When the image O point moves to the image O ′ point after a short time, the displacement amount OO ′ in the X direction is ΔX, and the displacement amount in the Y direction is ΔY. The method of detecting these deviation amounts ΔX and ΔY is as follows. That is, the pixel number (i) and the line number (j) are determined in the X-axis and Y-axis directions on the screen when capturing image data,
The original position is compared with the position after a short time, and the product of the amount of the shifted scale and the size between pixels or lines is calculated by X.
By performing each in the axis and Y-axis directions,
X and ΔY are obtained.

【0010】図3は本発明におけるずれ量の検出方法の
具体例である。電子顕微鏡23が床振動の影響を受けな
いときの画像を点線で示す。そして電子顕微鏡23が床
振動の影響を受けると実線で示す画像のようになる。す
なわち、床振動の影響で画像の境界線がぎざぎざにな
る。このぎざぎざが電子顕微鏡23における画像精度の
劣化となる。そこで、このぎざぎざの紙面の水平方向の
幅が画像のずれ量δを検出でき、X軸方向ではΔX、Y
軸方向ではΔYとして用いる。そして現在使用している
電子顕微鏡23の倍率で除算することで真のずれ量が検
出できる。なお、図3で加振方向は、図3中に示してい
る矢印の方向である。この方法では画像1枚全部を必要
とせず、ずれ量が生じている部分からずれ量を検出する
ことによって、ずれ量の検出時間の短縮化が図れる。
FIG. 3 shows a specific example of the method of detecting the amount of deviation according to the present invention. An image when the electron microscope 23 is not affected by floor vibration is shown by a dotted line. Then, when the electron microscope 23 is affected by floor vibration, an image shown by a solid line is obtained. That is, the boundary line of the image becomes jagged under the influence of floor vibration. This jaggedness deteriorates the image accuracy in the electron microscope 23. Therefore, the horizontal width of this jagged surface can detect the image shift amount δ, and ΔX, Y in the X-axis direction.
It is used as ΔY in the axial direction. Then, the true shift amount can be detected by dividing by the magnification of the electron microscope 23 currently used. The vibration direction in FIG. 3 is the direction of the arrow shown in FIG. In this method, the entire image is not required, and the deviation amount is detected from the portion where the deviation amount is generated, whereby the deviation amount detection time can be shortened.

【0011】実施例の作用の説明を図1,図2を用いて
説明する。床振動によりアクチュエータ部材3とバッシ
ブ部材4で支持される定盤5と電子顕微鏡23本体は、
水平及び上下方向に加振され一般に電子顕微鏡23は重
心で支持されていないため定盤5には水平面に対して傾
斜するモードが加わる。その結果、例えば、電磁レンズ
ホルダ6内の電子銃7と試料台11との間に相対変位が
生じようとする。このとき、アクチュエータ部材3が配
置されている定盤5の各点の振動量を検出する検出器1
2の出力信号をローパスフィルタ21,A/D変換器1
6aを通し、走査画像検出器13より検出された走査画
像信号をA/D変換器16b,画像処理装置22を通す
ことで得られた水平方向のずれ量ΔX,ΔYを共にDS
P部材17に入力し、これらの水平方向のずれ量ΔX,
ΔYとアクチュエータ部材3のパワーのそれぞれの2乗
値等を評価関数とし、この評価関数を最小にするように
決定したフィードバックゲインを用いてDSP部材17
はアクチュエータ部材3による制御力に対応した電圧を
瞬時に計算し、この計算された制御電圧はD/A変換器
18及び増幅器19を通してアクチュエータ部材3を駆
動する。このアクチュエータ部材3による制御力は、電
子顕微鏡23の画像の水平方向のずれ量ΔX,ΔYを低
減するように電子顕微鏡23を抑制する。
The operation of the embodiment will be described with reference to FIGS. The surface plate 5 supported by the actuator member 3 and the passive member 4 by the floor vibration and the electron microscope 23 main body are
Since the electron microscope 23 is oscillated horizontally and vertically, and the electron microscope 23 is not generally supported by the center of gravity, a mode is added to the surface plate 5 that is inclined with respect to the horizontal plane. As a result, for example, relative displacement tends to occur between the electron gun 7 in the electromagnetic lens holder 6 and the sample table 11. At this time, the detector 1 that detects the amount of vibration at each point of the surface plate 5 on which the actuator member 3 is arranged
The output signal of 2 is applied to the low-pass filter 21 and the A / D converter 1
6a, the scanning image signal detected by the scanning image detector 13 is passed through the A / D converter 16b and the image processing device 22, and the horizontal deviation amounts ΔX and ΔY are both DS.
Input to the P member 17, and these horizontal deviation amounts ΔX,
The squared value of each of ΔY and the power of the actuator member 3 is used as an evaluation function, and the DSP member 17 is used by using the feedback gain determined so as to minimize this evaluation function.
Instantaneously calculates a voltage corresponding to the control force by the actuator member 3, and the calculated control voltage drives the actuator member 3 through the D / A converter 18 and the amplifier 19. The control force of the actuator member 3 suppresses the electron microscope 23 so as to reduce the horizontal shift amounts ΔX and ΔY of the image of the electron microscope 23.

【0012】図4は上下方向の振動量を検出する検出器
12の代わりにレーザ測定器14を電磁レンズホルダ6
に取り付けた例である。上下方向の振動量を検出する方
法は、まず電磁レンズホルダ6にレーザ測定器を取り付
け、床振動の影響を受けていないときのレーザ測定器1
4と試料間の距離を設定する。次にこれと床振動の影響
を受けたときのレーザ測定器14と試料間の距離を測定
し、比較することによって補正する値を決め、アクチュ
エータ部材3を制御する。尚、このレーザ測定器14は
3本のレーザを1度にだすことができ、この3本のレー
ザで制御するため、電磁レンズホルダ6と試料間の平行
度を床振動の影響を受けていないときと同等の傾斜に保
つことが可能である。
In FIG. 4, instead of the detector 12 for detecting the amount of vibration in the vertical direction, a laser measuring device 14 is used as an electromagnetic lens holder 6.
It is an example attached to. The method of detecting the amount of vibration in the vertical direction is as follows. First, a laser measuring device is attached to the electromagnetic lens holder 6 and the laser measuring device 1 is used when it is not affected by floor vibration.
Set the distance between 4 and the sample. Next, the distance between the laser measuring device 14 and the sample under the influence of this and the floor vibration is measured, and the value to be corrected is determined by comparison and the actuator member 3 is controlled. The laser measuring device 14 can output three lasers at one time, and since the laser measuring device 14 controls the lasers by the three lasers, the parallelism between the electromagnetic lens holder 6 and the sample is not affected by the floor vibration. It is possible to keep the same inclination as when.

【0013】図5は上下方向の振動量を検出する検出器
12の代わりにレーザ測定器14を電磁レンズボルダ6
に取り付けると共に傾斜計15をステージ10に取り付
けた例である。上下方向の振動量を検出する方法は、ま
ず床振動の影響を受けていないときのレーザ測定器14
と試料間の距離と、傾斜計15a,15bの傾斜角を設
定する。次にこれと床振動の影響を受けたときの傾斜計
15a,15bの傾斜角を測定して、初期に設定した傾
斜角と比較することによって補正する値を決める。ある
いは、床振動の影響を受けていないときの傾斜計15
a,15bの比較を行い傾斜角の差を設定する。次にこ
れと床からの振動の影響を受けたときの傾斜計15a,
15bの傾斜角の差を測定し、比較することによって補
正する値を決める。この制御で電子ビームと試料台11
間の傾斜角は振動の影響を受けていないときと同等にな
り、電磁レンズホルダ6に取り付けているレーザ測定器
14で電磁レンズホルダ6と試料間の距離を補正する値
を決め、アクチュエータ部材3を制御する。尚、この実
施例で使用しているレーザ測定器14は1度に1本のレ
ーザをだす。
In FIG. 5, instead of the detector 12 for detecting the amount of vertical vibration, a laser measuring device 14 is used for the electromagnetic lens boulder 6.
It is an example in which the inclinometer 15 is attached to the stage 10 as well as to. The method of detecting the amount of vibration in the vertical direction is as follows. First, the laser measuring device 14 when not affected by floor vibration is used.
And the distance between the samples and the tilt angles of the inclinometers 15a and 15b are set. Next, the tilt angle of the inclinometers 15a and 15b when it is influenced by this and the floor vibration is measured, and the value to be corrected is determined by comparing with the tilt angle set in the initial stage. Alternatively, the inclinometer 15 when not affected by floor vibration
a and 15b are compared to set the difference between the inclination angles. Next, this and the inclinometer 15a when affected by the vibration from the floor,
The value to be corrected is determined by measuring the difference in the inclination angle of 15b and comparing them. With this control, the electron beam and sample stage 11
The inclination angle between them becomes the same as when not affected by vibration, and the laser measuring device 14 attached to the electromagnetic lens holder 6 determines a value for correcting the distance between the electromagnetic lens holder 6 and the sample, and the actuator member 3 To control. The laser measuring device 14 used in this embodiment emits one laser at a time.

【0014】[0014]

【発明の効果】本発明によれば、床振動入力を振動絶縁
する電子顕微鏡用のアクティブ除振装置において、画像
データから得られたずれ量を用いて制御することで高精
度化が図れ、水平方向の検出点が少なくなるため検出器
の個数を低減でき、低コストな電子顕微鏡のアクティブ
除振装置を提供することができる。
According to the present invention, in an active vibration isolator for an electron microscope which vibrationally isolates a floor vibration input, control can be performed by using a shift amount obtained from image data to achieve high accuracy and horizontal level. Since the number of detection points in the direction is reduced, the number of detectors can be reduced, and a low-cost active vibration isolation device for an electron microscope can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のアクティブ除振装置を電子顕微鏡装置
に適用した実施例のブロック図。
FIG. 1 is a block diagram of an embodiment in which an active vibration isolation device of the present invention is applied to an electron microscope device.

【図2】本発明の水平方向のずれ量の検出方法の原理の
説明図。
FIG. 2 is an explanatory view of the principle of the horizontal shift amount detecting method of the present invention.

【図3】本発明の水平方向のずれ量の検出方法の例を示
した説明図。
FIG. 3 is an explanatory diagram showing an example of a horizontal shift amount detection method of the present invention.

【図4】上下方向の振動量をレーザ測定器を用いて計測
する例を示した説明図。
FIG. 4 is an explanatory diagram showing an example of measuring a vertical vibration amount using a laser measuring device.

【図5】上下方向の振動量をレーザ測定器と傾斜計を用
いて計測する例を示した説明図。
FIG. 5 is an explanatory diagram showing an example in which the amount of vertical vibration is measured using a laser measuring device and an inclinometer.

【符号の説明】[Explanation of symbols]

1…床、2…架台、3…アクチュエータ部材、4…パッ
シブ部材、5…定盤、6…電磁レンズホルダ、7…電子
銃、8…真空ポンプ、9…チャンバ、10…ステージ、
11…試料台、12…検出器、13…走査画像検出器、
16…A/D変換器、17…DSP部材、18…D/A
変換器、19…増幅器、20…ROM部材、21…ロー
パスフィルタ、22…画像処理装置、23…電子顕微
鏡。
1 ... Floor, 2 ... Stand, 3 ... Actuator member, 4 ... Passive member, 5 ... Surface plate, 6 ... Electromagnetic lens holder, 7 ... Electron gun, 8 ... Vacuum pump, 9 ... Chamber, 10 ... Stage,
11 ... Sample stand, 12 ... Detector, 13 ... Scan image detector,
16 ... A / D converter, 17 ... DSP member, 18 ... D / A
Converter, 19 ... Amplifier, 20 ... ROM member, 21 ... Low-pass filter, 22 ... Image processing device, 23 ... Electron microscope.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】床と機器を搭載する定盤との間に設けたア
クチュエータ部材と、前記アクチュエータ部材を制御す
るために設けた検出器とコントローラからなるアクティ
ブ除振装置において、前記アクチュエータ部材の制御を
画像データから得られる電子ビームと試料間の2次元的
なずれ量をフィードバックすることを特徴とする電子顕
微鏡のアクティブ除振装置。
1. An active vibration isolator comprising an actuator member provided between a floor and a surface plate on which equipment is mounted, and a detector and a controller provided for controlling the actuator member, wherein the actuator member is controlled. An active vibration isolation device for an electron microscope, which feeds back a two-dimensional shift amount between an electron beam and a sample obtained from image data.
【請求項2】請求項1において、アクチュエータの制御
を水平方向を画像データから得られる電子ビームと試料
間の2次元的なずれ量、上下方向を振動検出器から得ら
れるデータをそれぞれフィードバックする電子顕微鏡の
アクティブ除振装置。
2. An electronic device according to claim 1, wherein the actuator is controlled by feeding back a two-dimensional shift amount between the electron beam obtained from the image data and the sample in the horizontal direction and the data obtained from the vibration detector in the vertical direction. Active vibration isolation device for microscopes.
【請求項3】請求項2において、上下方向の振動データ
を検出するために設けた振動検出器としてレーザ測定器
を用いる電子顕微鏡のアクティブ除振装置。
3. The active vibration isolation device for an electron microscope according to claim 2, wherein a laser measuring device is used as a vibration detector provided to detect vertical vibration data.
【請求項4】請求項2において、上下方向の振動データ
を検出するために設けた振動検出器としてレーザ測定器
と傾斜計を組み合わせて用いる電子顕微鏡のアクティブ
除振装置。
4. An active vibration isolation device for an electron microscope according to claim 2, wherein a laser measuring instrument and an inclinometer are used in combination as a vibration detector provided to detect vertical vibration data.
JP12622395A 1995-05-25 1995-05-25 Active vibration resisting device of electron microscope Pending JPH08321274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12622395A JPH08321274A (en) 1995-05-25 1995-05-25 Active vibration resisting device of electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12622395A JPH08321274A (en) 1995-05-25 1995-05-25 Active vibration resisting device of electron microscope

Publications (1)

Publication Number Publication Date
JPH08321274A true JPH08321274A (en) 1996-12-03

Family

ID=14929806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12622395A Pending JPH08321274A (en) 1995-05-25 1995-05-25 Active vibration resisting device of electron microscope

Country Status (1)

Country Link
JP (1) JPH08321274A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998050938A3 (en) * 1997-05-03 1999-04-29 Peter Heiland Imaging and/or scanning system with compensation of image degradations resulting from environmental factors
EP0922929A1 (en) * 1997-12-10 1999-06-16 Peter Heiland Scanning-probe device with compensation for the disturbing influence of mechanical vibrations on the scanning process
JP2005520281A (en) * 2001-07-13 2005-07-07 ナノファクトリー インストルメンツ アーベー Devices for reducing the effects of microscope distortion
JP2007324044A (en) * 2006-06-02 2007-12-13 Hitachi High-Technologies Corp Scanning charged particle beam device, image display method of same, and scanning microscope
JP2010261819A (en) * 2009-05-08 2010-11-18 Mitsutoyo Corp Thrust testing machine
KR101437154B1 (en) * 2011-12-22 2014-09-05 전형준 Scanning Electron Microscope of Measuring Error Correcting Method Thereof
JP2016051536A (en) * 2014-08-29 2016-04-11 株式会社日立ハイテクノロジーズ Charged particle beam device
WO2018020625A1 (en) * 2016-07-28 2018-02-01 株式会社 日立ハイテクノロジーズ Charged particle radiation device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998050938A3 (en) * 1997-05-03 1999-04-29 Peter Heiland Imaging and/or scanning system with compensation of image degradations resulting from environmental factors
US6884992B1 (en) 1997-05-03 2005-04-26 Peter Heiland Imaging and/or raster-mode scanning system provided with a device for compensating the image degradations resulting from environmental factors
EP0922929A1 (en) * 1997-12-10 1999-06-16 Peter Heiland Scanning-probe device with compensation for the disturbing influence of mechanical vibrations on the scanning process
JP2005520281A (en) * 2001-07-13 2005-07-07 ナノファクトリー インストルメンツ アーベー Devices for reducing the effects of microscope distortion
JP2007324044A (en) * 2006-06-02 2007-12-13 Hitachi High-Technologies Corp Scanning charged particle beam device, image display method of same, and scanning microscope
JP2010261819A (en) * 2009-05-08 2010-11-18 Mitsutoyo Corp Thrust testing machine
KR101437154B1 (en) * 2011-12-22 2014-09-05 전형준 Scanning Electron Microscope of Measuring Error Correcting Method Thereof
JP2016051536A (en) * 2014-08-29 2016-04-11 株式会社日立ハイテクノロジーズ Charged particle beam device
WO2018020625A1 (en) * 2016-07-28 2018-02-01 株式会社 日立ハイテクノロジーズ Charged particle radiation device
US20190311876A1 (en) * 2016-07-28 2019-10-10 Hitachi High-Technologies Corporation Charged Particle Radiation Device
US10840059B2 (en) 2016-07-28 2020-11-17 Hitachi High-Tech Corporation Charged particle radiation device

Similar Documents

Publication Publication Date Title
JP4833329B2 (en) A raster mode scanning device that compensates for the disturbance effects of mechanical vibrations on the scanning process.
EP0342040A2 (en) Workpiece supporting mechanism
JP2002533640A (en) Optical equipment mountings or mounting related enhancements
US4948971A (en) Vibration cancellation system for scanning electron microscopes
JPH08321274A (en) Active vibration resisting device of electron microscope
US5049745A (en) Phase-compensating vibration cancellation system for scanning electron microscopes
US6043490A (en) Vibration cancellation system for a charged particle beam apparatus
JP2019140018A (en) Charged particle beam equipment
JPH10288618A (en) Surface analyzing device
JP2012015227A (en) Method and apparatus for positioning electron beam device
JP6700642B2 (en) Image vibration suppressing device and image vibration suppressing method
JP4272043B2 (en) Charged particle beam equipment
JP6401598B2 (en) Active vibration isolator
JP3153099B2 (en) Positioning device
JPH08273570A (en) Device for performing precision work on sample
JP2007218677A (en) Scanning probe microscope
KR20180099501A (en) Lithography Machine and Method for Compensating Surface Profile of a Supporting Frame of a Lithography Machine
US11049688B2 (en) Charged particle beam irradiation apparatus
JPH06162982A (en) Scanning electron microscope
SU1112436A1 (en) Electrone-beam probe device
JPH08111364A (en) Electron beam lithography system
JPH08128498A (en) Active vibration eliminating device
JP2019124265A (en) Active vibration isolator
JP2001023885A (en) Aligner system
JPH01144553A (en) Electron beam microanalyzer