JPH0831958A - Mos semiconductor device and its manufacture - Google Patents

Mos semiconductor device and its manufacture

Info

Publication number
JPH0831958A
JPH0831958A JP6180602A JP18060294A JPH0831958A JP H0831958 A JPH0831958 A JP H0831958A JP 6180602 A JP6180602 A JP 6180602A JP 18060294 A JP18060294 A JP 18060294A JP H0831958 A JPH0831958 A JP H0831958A
Authority
JP
Japan
Prior art keywords
film
gate insulating
insulating film
thin
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6180602A
Other languages
Japanese (ja)
Other versions
JP3429567B2 (en
Inventor
Makoto Tanaka
田中  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP18060294A priority Critical patent/JP3429567B2/en
Publication of JPH0831958A publication Critical patent/JPH0831958A/en
Application granted granted Critical
Publication of JP3429567B2 publication Critical patent/JP3429567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To suppress punch-through of a gate impurity at a thin gate insulation film and to prevent the electrical characteristics of a transistor from scattering by forming two types of gate insulation films, namely thin and thick gate insula tion films, on the same semiconductor substrate. CONSTITUTION:Sources/drains 4, 6, 12, and 14 are formed on a semiconductor substrate 2 due to impurity diffusion. Namely, two types of gate insulation films 8 and 16 with different film thicknesses are formed on the same substrate 2. The gate insulation film 8 with a thick film thickness is a lamination film of silicon oxide film and film thickness silicone film, and the thin gate insulation film 16 is a silicon nitride film or ONO lamination film of silicon oxide film, silicon nitride film, and silicon oxide film. The gate insulation films 8 and 16 with different film thicknesses constitute each element-separated MOS transistor, thus preventing or suppressing punch-through of the gate impurity by the thin gate insulation film 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はMOS半導体集積回路装
置とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOS semiconductor integrated circuit device and its manufacturing method.

【0002】[0002]

【従来の技術】MOS半導体集積回路装置は電源電圧V
ccとして5Vが一般に用いられているが、集積化が進
むと全体の発熱量が大きくなるため、消費電力低減の目
的で駆動電圧を3.3V、3V又はそれ以下というよう
な低電圧化の要求が高い。そこで、一般に入出力回路部
(I/O部)は従来の5Vで駆動し、内部の集積回路部
には降圧した3.3Vや3Vを用いるという手法が採ら
れている。この場合、入出力回路部と内部集積回路部と
でMOSトランジスタのゲート寸法やゲート絶縁膜の膜
厚は一般に異なり、高電圧がかかる入出力回路部の方が
内部集積回路部よりもMOSトランジスタのゲート寸法
やゲート絶縁膜の膜厚が大きく設定されている。
2. Description of the Related Art A MOS semiconductor integrated circuit device has a power supply voltage V
5V is generally used as cc, but the overall amount of heat generated increases as integration progresses, so a drive voltage of 3.3V, 3V or lower is required to reduce power consumption. Is high. Therefore, in general, a method is adopted in which the input / output circuit section (I / O section) is driven by the conventional 5V and the step-down 3.3V or 3V is used for the internal integrated circuit section. In this case, the gate size of the MOS transistor and the film thickness of the gate insulating film are generally different between the input / output circuit section and the internal integrated circuit section, and the input / output circuit section to which a high voltage is applied The gate size and the film thickness of the gate insulating film are set large.

【0003】ゲート絶縁膜について考えると、駆動電圧
の低下に比例してゲート絶縁膜の膜厚を薄くしなければ
ならないわけではないが、駆動電圧が大きいほどゲート
絶縁膜の膜厚を大きくしなければならないことは言え
る。一般に、許容できる印加電界は初期絶縁破壊(TZ
TB)や経時絶縁破壊(TDDB)などの信頼性から制
限されることがある。絶縁膜の膜厚が厚くなると膜中の
欠陥が増加するなどの問題が生じ、その許容電界が若干
低下することが知られており、駆動電圧に比例して絶縁
膜厚を厚くできるわけではない。実際には、更にしきい
値電圧の設定(ウエル濃度や基板チャネル濃度などの対
応も含む)や、回路スピードとの兼ね合いもゲート絶縁
膜の膜厚決定に寄与する。
Considering the gate insulating film, it is not necessary to reduce the film thickness of the gate insulating film in proportion to the decrease in the driving voltage. However, as the driving voltage increases, the film thickness of the gate insulating film must increase. I can say that I have to do. Generally, an acceptable applied electric field is the initial breakdown (TZ
It may be limited due to reliability such as TB) or dielectric breakdown over time (TDDB). It is known that when the thickness of the insulating film becomes thick, problems such as defects in the film increase and the permissible electric field thereof is slightly lowered. Therefore, the insulating film thickness cannot be increased in proportion to the driving voltage. . Actually, the setting of the threshold voltage (including the correspondence of the well concentration and the substrate channel concentration) and the balance with the circuit speed also contribute to the film thickness determination of the gate insulating film.

【0004】VLSIではゲート絶縁膜としてONO構
造(酸化膜/窒化膜/酸化膜)など、酸化膜と窒化膜を
組み合わせた絶縁膜が注目されている。窒化膜は酸化膜
に比べて誘電率が高いため、同じゲート容量をもたせる
場合に膜厚を厚くすることができ、許容印加電圧を高め
ることができるという利点がある。窒化にはアンモニア
(NH3)やヒドラジン(N24)などが用いられる
が、その窒化界面の状態や界面特性は一般にそれほど良
好とはいえない。窒化膜は誘電率が高いため膜厚を厚く
できるが、界面が荒れるためそれほど信頼性は向上しな
い。しかし、窒化の後で酸化を施すとその界面の荒れが
改善され、信頼性が向上することが知られている。ま
た、ONO構造の膜は、通常の酸化膜と電気伝導機構が
異なり、電子が高エネルギーになりにくいため、絶縁破
壊耐性や信頼性が向上するといわれ、最近注目を浴びて
いる。
In VLSI, an insulating film such as an ONO structure (oxide film / nitride film / oxide film) which is a combination of an oxide film and a nitride film is attracting attention as a gate insulating film. Since the nitride film has a higher dielectric constant than the oxide film, there is an advantage that the film thickness can be increased and the allowable applied voltage can be increased when the same gate capacitance is provided. Ammonia (NH 3 ) and hydrazine (N 2 H 4 ) are used for nitriding, but the state and interface characteristics of the nitriding interface are generally not so good. Since the nitride film has a high dielectric constant, the film thickness can be increased, but the reliability is not improved so much because the interface is rough. However, it is known that if oxidation is applied after nitriding, the roughness of the interface is improved and the reliability is improved. Further, the ONO structure film has a different electric conduction mechanism from that of a normal oxide film, and electrons are less likely to have high energy. Therefore, it is said that the dielectric breakdown resistance and the reliability are improved, and thus it has recently attracted attention.

【0005】また、窒化膜や絶縁膜中の窒素はゲート電
極中の不純物が基板へ拡散すること(ゲート不純物のゲ
ート絶縁膜突き抜け)を阻止あるいは抑制する効果のあ
ることが最近知られるようになった。ゲート不純物のゲ
ート絶縁膜突き抜けが起こると、基板チャネル濃度が変
化するため、しきい値電圧の変動やリーク電流の増加な
どの問題が起こる。これは、集積化が進むほど、すなわ
ちゲート絶縁膜の薄膜化が進むほど深刻な問題となるた
め、重要な課題の1つである。
Further, it has been recently known that nitrogen in a nitride film or an insulating film has an effect of preventing or suppressing diffusion of impurities in a gate electrode into a substrate (penetration of a gate impurity through a gate insulating film). It was When the gate impurity penetrates through the gate insulating film, the substrate channel concentration changes, which causes problems such as a change in threshold voltage and an increase in leak current. This is one of the important problems because it becomes a serious problem as the integration progresses, that is, the gate insulating film becomes thinner.

【0006】[0006]

【発明が解決しようとする課題】本発明の第1の目的
は、同一半導体基板に膜厚の厚いゲート絶縁膜と膜厚の
薄いゲート絶縁膜を有する半導体装置において、薄いゲ
ート絶縁膜でのゲート不純物の突き抜けを抑え、トラン
ジスタ電気的諸特性のばらつきを防止したり信頼性を向
上させることである。本発明の第2の目的はそのような
膜厚の薄いゲート絶縁膜を制御性よく形成する方法を提
供することである。
SUMMARY OF THE INVENTION A first object of the present invention is to provide a semiconductor device having a thick gate insulating film and a thin gate insulating film on the same semiconductor substrate in a thin gate insulating film. It is to prevent the penetration of impurities, prevent variations in various electrical characteristics of the transistor, and improve reliability. A second object of the present invention is to provide a method for forming such a thin gate insulating film with good controllability.

【0007】[0007]

【課題を解決するための手段】本発明のMOS半導体装
置では同一半導体基板に膜厚の異なる2種類のゲート絶
縁膜が形成されており、膜厚の厚い方のゲート絶縁膜は
シリコン酸化膜であり、膜厚の薄いゲート絶縁膜はシリ
コン酸化膜とシリコン窒化膜の積層膜又はシリコン酸化
膜、シリコン窒化膜及びシリコン酸化膜のONO積層膜
である。
In the MOS semiconductor device of the present invention, two types of gate insulating films having different film thicknesses are formed on the same semiconductor substrate, and the gate insulating film having the larger film thickness is a silicon oxide film. The thin gate insulating film is a laminated film of a silicon oxide film and a silicon nitride film or an ONO laminated film of a silicon oxide film, a silicon nitride film and a silicon oxide film.

【0008】請求項2に対応した一態様では、図1に示
されるように、膜厚の異なるゲート絶縁膜はそれぞれ素
子分離されたMOSトランジスタを構成している。そし
て、膜厚の厚いゲート絶縁膜をもつMOSトランジスタ
(右側)群は周辺回路部を構成し、膜厚の薄いゲート絶
縁膜をもつMOSトランジスタ(左側)群は内部回路部
を構成している。
According to one aspect of the second aspect, as shown in FIG. 1, the gate insulating films having different film thicknesses form MOS transistors each having an element isolation. The MOS transistor (right side) group having a thick gate insulating film constitutes a peripheral circuit section, and the MOS transistor (left side) group having a thin gate insulating film constitutes an internal circuit section.

【0009】図1で、周辺回路部のMOSトランジスタ
では、シリコン基板2に不純物拡散によりソース・ドレ
イン4,6が形成され、その間のチャネル領域上にはシ
リコン酸化膜8のゲート絶縁膜を介してポリシリコンゲ
ート電極10が形成されている。内部回路部のMOSト
ランジスタでは、シリコン基板2に不純物拡散によりソ
ース・ドレイン12,14が形成され、その間のチャネ
ル領域上にはゲート絶縁膜8よりも薄い膜厚のゲート絶
縁膜16を介してポリシリコンゲート電極18が形成さ
れている。この2つのMOSトランジスタはフィールド
酸化膜20又はその他の素子分離領域により互いに分離
されている。
In the MOS transistor of the peripheral circuit portion shown in FIG. 1, source / drains 4 and 6 are formed in a silicon substrate 2 by impurity diffusion, and a gate insulating film of a silicon oxide film 8 is formed on a channel region between them. A polysilicon gate electrode 10 is formed. In the MOS transistor of the internal circuit portion, the source / drain 12 and 14 are formed in the silicon substrate 2 by impurity diffusion, and the gate insulating film 16 having a film thickness smaller than that of the gate insulating film 16 is formed on the channel region between the source / drain 12 and 14. A silicon gate electrode 18 is formed. The two MOS transistors are isolated from each other by the field oxide film 20 or another element isolation region.

【0010】図で左側のMOSトランジスタはゲート絶
縁膜16としてONO構造のゲート絶縁膜であり、一般
に信頼性が低いとされる薄い方のゲート絶縁膜16に信
頼性の高いONO構造の絶縁膜を使用しているため、全
体として信頼性が高くなっている。膜厚の薄いゲート絶
縁膜16としては図1のONO構造に代えて酸化膜と窒
化膜の2層構造のものとしてもよい。
The MOS transistor on the left side of the drawing is a gate insulating film having an ONO structure as the gate insulating film 16, and a thin gate insulating film 16 which is generally considered to have low reliability is provided with an insulating film having a highly reliable ONO structure. Since it is used, it is highly reliable as a whole. The thin gate insulating film 16 may have a two-layer structure of an oxide film and a nitride film instead of the ONO structure of FIG.

【0011】膜厚の厚いゲート絶縁膜8の膜厚と膜厚の
薄いゲート絶縁膜16の膜厚との間には、請求項3に示
されるように、膜厚の厚いゲート絶縁膜8のMOSトラ
ンジスタが用いられる周辺回路部が電源電圧V1で駆動
され、膜厚の薄いゲート絶縁膜16のMOSトランジス
タが用いられる内部回路部がそれよりも低い電源電圧V
2で駆動されるとし、膜厚の厚いゲート絶縁膜8の膜厚
をT1、膜厚の薄いゲート絶縁膜16の膜厚をT2とした
とき、 1<T1/T2<V1/V2 の関係を満たすようにゲート絶縁膜の膜厚T1,T2が設
定されていることが好ましい。
Between the thickness of the thick gate insulating film 8 and the thickness of the thin gate insulating film 16, as shown in claim 3, the thick gate insulating film 8 is formed. The peripheral circuit section in which the MOS transistor is used is driven by the power supply voltage V 1 , and the internal circuit section in which the MOS transistor of the thin gate insulating film 16 is used is lower than the power supply voltage V 1.
When driven at 2 , assuming that the thickness of the thick gate insulating film 8 is T 1 and the thickness of the thin gate insulating film 16 is T 2 , 1 <T 1 / T 2 <V 1 It is preferable that the film thicknesses T 1 and T 2 of the gate insulating film are set so as to satisfy the relationship of / V 2 .

【0012】このようにゲート絶縁膜8と16の膜厚の
関係を設定するのは、集積化の高い内部回路部のゲート
絶縁膜に信頼性の高い膜構造の絶縁膜を用い、またその
絶縁膜には誘電率の高い窒化層を含んでいることを考慮
すると、しきい値電圧の設定などから要求される所望の
ゲート容量を満たす膜厚を酸化膜に比べて厚くすること
ができるからである。すなわち、膜厚の薄いゲート絶縁
膜16の膜厚T2は駆動電圧比から求められる値よりも
大きくすることができ、その結果、一層信頼性を向上さ
せることができる。
In this way, the relationship between the film thicknesses of the gate insulating films 8 and 16 is set by using an insulating film having a highly reliable film structure as the gate insulating film of the highly integrated internal circuit part and insulating the insulating film. Considering that the film contains a nitride layer having a high dielectric constant, the film thickness that satisfies the desired gate capacitance required for setting the threshold voltage can be made larger than that of the oxide film. is there. That is, the thickness T 2 of the thin gate insulating film 16 can be made larger than the value obtained from the driving voltage ratio, and as a result, the reliability can be further improved.

【0013】ここで、所望のゲート容量とはしきい値電
圧の設定値などから定められるものである。例えば集積
化の高いトランジスタでは短チャネル効果などによりオ
フ電流が大きくなるので、ウエル濃度を上げて作成する
が、このときのしきい値電圧の増加を防ぐためには、よ
り大きなゲート容量、すなわちより薄いゲート絶縁膜厚
が要求される。しかし、ゲート絶縁膜に窒化層を含んで
いるときは、酸化膜だけのゲート絶縁膜に比べて誘電率
が高い分だけゲート絶縁膜の膜厚を厚くして信頼性を高
めることができるのである。
Here, the desired gate capacitance is determined from the set value of the threshold voltage and the like. For example, in a highly integrated transistor, the off current becomes large due to the short channel effect, etc., so the well concentration is increased, but in order to prevent the increase in the threshold voltage at this time, a larger gate capacitance, that is, a thinner gate capacitance is used. Gate insulation film thickness is required. However, when the gate insulating film contains a nitride layer, the film thickness of the gate insulating film can be increased as much as the dielectric constant is higher than that of the gate insulating film including only the oxide film, so that the reliability can be improved. .

【0014】本発明が適用されるMOS半導体装置の他
の例は、請求項4に示されるように、膜厚の厚いゲート
絶縁膜と膜厚の薄いゲート絶縁膜が連続して形成されて
いる半導体素子を有するものである。その一例は、請求
項5に記載されているように、電気的に消去可能な半導
体メモリ素子であるEEPROMであり、膜厚の薄いゲ
ート絶縁膜がトンネル絶縁膜、膜厚の厚いゲート絶縁膜
がMOSトランジスタのゲート絶縁膜となっている。
In another example of the MOS semiconductor device to which the present invention is applied, as described in claim 4, a thick gate insulating film and a thin gate insulating film are continuously formed. It has a semiconductor element. An example thereof is an EEPROM, which is an electrically erasable semiconductor memory element, as described in claim 5, in which a thin gate insulating film is a tunnel insulating film and a thick gate insulating film is It is the gate insulating film of the MOS transistor.

【0015】図2は、そのような請求項5に対応したE
EPROMの一例を表わしたものである。シリコン基板
に形成されたP型ウエル22に形成されたソース・ドレ
イン24,30のチャネル領域上にゲート絶縁膜26が
形成され、ゲート絶縁膜26と連続してそれよりも膜厚
の薄いゲート絶縁膜28がソース領域上に形成されてい
る。ゲート絶縁膜28はトンネル絶縁膜であり、一例と
してONO膜である。36はポリシリコンのコントロー
ルゲート電極、34はフローティングゲート電極32と
コントロールゲート電極36の間の絶縁膜、38はフィ
ールド酸化膜である。一般に、フローティングゲート電
極32への電子の注入、放出はトンネル絶縁膜28から
行なう。トンネル絶縁膜28には窒化層を含んでいるの
で、厚いゲート酸化膜26に劣らない高い不純物拡散阻
止能力、高い信頼性、良好なトンネル電流特性を持たせ
ることができる。
FIG. 2 shows E corresponding to such claim 5.
It is an example of an EPROM. A gate insulating film 26 is formed on the channel regions of the source / drain 24, 30 formed in the P-type well 22 formed on the silicon substrate, and is continuous with the gate insulating film 26 and has a thinner film thickness than that. A film 28 is formed on the source region. The gate insulating film 28 is a tunnel insulating film, and is an ONO film as an example. 36 is a control gate electrode made of polysilicon, 34 is an insulating film between the floating gate electrode 32 and the control gate electrode 36, and 38 is a field oxide film. In general, injection and emission of electrons to the floating gate electrode 32 are performed from the tunnel insulating film 28. Since the tunnel insulating film 28 includes a nitride layer, it can have high impurity diffusion blocking capability comparable to the thick gate oxide film 26, high reliability, and good tunnel current characteristics.

【0016】図3は請求項6に対応して膜厚の異なるゲ
ート絶縁膜51(膜厚T2)とゲート絶縁膜48(膜厚
1)(T2<T1)を同一基板上に良好に形成するゲー
ト絶縁膜形成方法に関するものである。図3により説明
する。 (A)まず、薄いゲート絶縁膜51を形成する領域に、
適度な窒化処理がなされた膜44を形成する。ここで、
40はシリコン基板に形成されたウエル、42はフィー
ルド酸化膜、46は基板表面である。この窒化処理され
た膜44を形成するには、基板表面全面を軽く窒化した
後、レジストを塗布し、写真製版工程とエッチングによ
り薄いゲート絶縁膜を形成する領域にその窒化処理され
た膜44を残すようにパターン化した後、レジストを除
去する公知の技術を用いることができる。エッチングに
はダメージや表面荒れの少ないウエットエッチングが好
ましい。
In FIG. 3, a gate insulating film 51 (film thickness T 2 ) and a gate insulating film 48 (film thickness T 1 ) (T 2 <T 1 ) having different film thicknesses are formed on the same substrate in accordance with claim 6. The present invention relates to a method for forming a gate insulating film that is well formed. This will be described with reference to FIG. (A) First, in the region where the thin gate insulating film 51 is formed,
A film 44 that has been appropriately nitrided is formed. here,
40 is a well formed on a silicon substrate, 42 is a field oxide film, and 46 is a substrate surface. To form the nitrided film 44, the entire surface of the substrate is lightly nitrided, a resist is applied, and the nitrided film 44 is formed in a region where a thin gate insulating film is to be formed by a photolithography process and etching. Known techniques of removing the resist after patterning to leave can be used. Wet etching with less damage and surface roughness is preferable for etching.

【0017】(B)次に、ゲート酸化膜48が膜厚T1
になる条件でゲート酸化を行なう。このとき、表面が窒
化されていた部分では酸化速度が遅くなるため、予め適
度な窒化条件を求めておけば、1回の酸化で酸化膜48
の膜厚がT1で、窒化膜44の存在する領域の窒化膜4
4と酸化膜50の合計がT2(T2<T1)を有するゲー
ト絶縁膜51の形成が可能になる。酸化膜50形成の酸
化速度が酸化膜48の酸化速度より遅くなるため、酸化
膜50の膜厚制御は容易である。なお、窒化膜44の存
在する領域では酸化は窒化膜44と基板40との界面で
進行していく。
(B) Next, the gate oxide film 48 has a film thickness T 1
Gate oxidation is performed under the following conditions. At this time, the oxidation rate becomes slow in the portion where the surface is nitrided. Therefore, if an appropriate nitriding condition is obtained in advance, the oxide film 48 can be formed by one oxidation.
Has a thickness of T 1 and the nitride film 4 in the region where the nitride film 44 exists
4 and the oxide film 50 can form a gate insulating film 51 having T 2 (T 2 <T 1 ). Since the oxidation rate of the oxide film 50 is lower than that of the oxide film 48, the thickness of the oxide film 50 can be easily controlled. In the region where the nitride film 44 exists, the oxidation proceeds at the interface between the nitride film 44 and the substrate 40.

【0018】上記の窒化や酸化にはファーネス(石英の
酸化炉)法、RTO(Rapid Thermal Oxidation;ラン
プ加熱による急速熱酸化)法、RTN(Rapid Thermal
Nitridation;ランプ加熱による急速熱窒化)法などの
公知の技術を用いればよい。酸化の材料としては純酸素
の他、酸素を窒素やアルゴンで希釈したガスなどを用い
ることができ、窒化の材料としてはアンモニアNH3
ヒドラジンN24などを用いることができる。
For the above nitriding and oxidation, a furnace (quartz oxidation furnace) method, an RTO (Rapid Thermal Oxidation; rapid thermal oxidation by lamp heating) method, an RTN (Rapid Thermal) method are used.
Nitridation; rapid thermal nitriding by lamp heating) and other known techniques may be used. In addition to pure oxygen, a gas obtained by diluting oxygen with nitrogen or argon can be used as an oxidizing material, and ammonia NH 3 as a nitriding material,
Hydrazine N 2 H 4 or the like can be used.

【0019】一般にゲート絶縁膜が薄いと、後工程に幾
度となく行なわれる熱処理工程において、ゲート不純物
による基板チャネル部分への拡散が起こり、しきい値電
圧の変動やオフ電流の増加などを招き、デバイス設計が
困難になるが、本発明の製造方法によればゲート絶縁膜
形成工程中に用いた窒化膜をそのままゲート絶縁膜の一
部として残すことによって、薄い方の絶縁膜51に高い
ゲート不純物拡散阻止能力を持たせることができる。
In general, when the gate insulating film is thin, diffusion of gate impurities into the substrate channel portion occurs in a heat treatment step that is repeatedly performed in subsequent steps, which causes fluctuations in threshold voltage and increase in off current. Although the device design becomes difficult, according to the manufacturing method of the present invention, the nitride film used in the step of forming the gate insulating film is left as it is as a part of the gate insulating film. It can have the ability to prevent diffusion.

【0020】また、上記のエッチングされる部分が厚い
方の絶縁膜が形成される部分であるため、従来のように
厚い絶縁膜と薄い絶縁膜とで酸化を2回行なう手法に比
べて絶縁膜間の段差が小さくなる。これは、酸化を2回
行なって段差をつける場合には、薄い方の絶縁膜が形成
される部分をエッチングするため、段差が大きくなるか
らである。図3で、素子分離はフィールド酸化膜42に
限らず、他の手段でもよい。
Further, since the thicker insulating film is formed in the above-described etched portion, the insulating film can be compared with the conventional method in which the thick insulating film and the thin insulating film are oxidized twice. The step between them becomes smaller. This is because when the oxidation is performed twice to form a step, the step where the thin insulating film is formed is etched, and the step becomes large. In FIG. 3, element isolation is not limited to the field oxide film 42, and other means may be used.

【0021】図4は請求項7を説明するためのものであ
り、次にその説明を行なう。 (A)図3の(A)と同様に、薄いゲート絶縁膜63を
形成する領域に、適度な窒化処理がなされた膜44を形
成する。 (B)次に、もう一度全面に適度な軽い窒化を施す。5
2,58はそれぞれ窒化膜であるが、膜厚は窒化膜52
の方が厚くなっている
FIG. 4 is for explaining claim 7, which will be described next. (A) Similar to (A) of FIG. 3, a film 44 subjected to appropriate nitriding treatment is formed in a region where the thin gate insulating film 63 is to be formed. (B) Next, an appropriate light nitriding is applied to the entire surface once again. 5
Reference numerals 2 and 58 are nitride films, but the film thickness is nitride film 52.
Is thicker

【0022】(C)ゲート絶縁膜61,63がそれぞれ
所定の膜厚T1,T2になるようなゲート酸化を行なう。
この場合、表面が窒化されていた部分は酸化速度が遅く
なるため予め適当な窒化条件を求めておけば、1回の酸
化で所望の膜厚T1,T2(T2<T1)を有するゲート絶
縁膜61,63が形成される。
(C) Gate oxidation is performed so that the gate insulating films 61 and 63 have predetermined film thicknesses T 1 and T 2 , respectively.
In this case, the portion where the surface has been nitrided has a slower oxidation rate. Therefore, if suitable nitriding conditions are obtained in advance, the desired film thicknesses T 1 and T 2 (T 2 <T 1 ) can be obtained by one-time oxidation. The gate insulating films 61 and 63 which it has are formed.

【0023】ここでは、窒化を2度行なうことによって
ゲート絶縁膜63のみならずゲート絶縁膜61にも高い
ゲート不純物拡散阻止能力を持たせることができる。図
4の工程は図3の工程に比べて1工程多いが、窒化と酸
化は反応ガスを切り換えるだけで1バッチで行なえるた
め、スループットの低下は殆ど生じない。
Here, by performing nitriding twice, not only the gate insulating film 63 but also the gate insulating film 61 can have a high gate impurity diffusion blocking ability. The process of FIG. 4 has one more process than the process of FIG. 3, but the nitriding and the oxidation can be performed in one batch only by switching the reaction gas, so that there is almost no decrease in throughput.

【0024】請求項8に対応して、窒化処理をN2Oガ
スによる酸窒化処理で行なうと、N2Oの場合NH3やN
24に比べて窒化速度が遅いため、形成温度を高くし、
時間が長くなるなど強い酸窒化処理が必要となるなどの
不利な点がある反面、水素を含んでいないため形成され
るゲート絶縁膜の電荷捕獲特性が向上し、電気的特性の
変化が少なく信頼性が向上するなどの利点がある。
Corresponding to the eighth aspect, when the nitriding treatment is performed by oxynitriding treatment with N 2 O gas, NH 3 and N in the case of N 2 O
Since nitride is slow compared to the 2 H 4, to increase the formation temperature,
Although it has disadvantages such as strong oxynitriding process such as longer time, it does not contain hydrogen, so the charge trapping property of the gate insulating film formed is improved, and there is little change in electrical properties and reliability is high. There is an advantage such as improvement of the property.

【0025】N2Oを用いる窒化速度が遅い理由は、酸
窒化のキーラジカルが窒化膜中や酸化膜中を拡散すると
きの拡散係数がNH3やN24を用いるときのキーラジ
カルに比べて小さいことと、酸化が同時に進行するため
である。NH3やN24による窒化の場合に比べて電荷
捕獲特性などが向上する理由は、膜中のN−H結合(電
荷トラップサイトになる)が少ないためであると考えら
れる。また、N2Oによる酸窒化の場合、酸化の方が先
に進行し、窒化部分は若干基板界面寄りになるため、こ
の方法で得られるゲート絶縁膜は信頼性の高いONO構
造に近いものとなる。
The reason why the nitriding rate using N 2 O is slow is that the diffusion coefficient when the oxynitriding key radical diffuses in the nitride film or the oxide film is the key radical when using NH 3 or N 2 H 4. This is because it is smaller than the above and oxidation proceeds at the same time. It is considered that the reason why the charge trapping characteristics and the like are improved as compared with the case of nitriding with NH 3 or N 2 H 4 is that there are few N—H bonds (become charge trap sites) in the film. Further, in the case of oxynitriding with N 2 O, the oxidation progresses first and the nitrided portion is slightly closer to the substrate interface. Therefore, the gate insulating film obtained by this method is close to a highly reliable ONO structure. Become.

【0026】請求項9に対応して、第1の窒化処理の前
に適度な酸化処理を施すことにより、より信頼性の高い
ゲート絶縁膜の形成が可能になる。図5はこの方法を示
したものである。 (A)1回目の窒化の前に適度な酸化処理を施し、続い
てその1回目の窒化処理を施す。薄いゲート絶縁膜76
の形成領域のみにこの膜を残存させる。これは、全面を
酸化し、続いて軽く窒化した後、公知技術(レジスト塗
布、写真製版工程、エッチング、レジスト除去など)を
用いてパターンニングすればよい。エッチングはダメー
ジや表面荒れの少ないウエットエッチングを用いる方が
よい。66は先に形成された酸化膜、68は1回目の窒
化による窒化膜、70は基板表面である。
Corresponding to the ninth aspect, by performing an appropriate oxidation treatment before the first nitriding treatment, it becomes possible to form a more reliable gate insulating film. FIG. 5 shows this method. (A) Before the first nitriding, an appropriate oxidation treatment is performed, and then the first nitriding treatment is performed. Thin gate insulating film 76
This film is left only in the formation region of. This may be performed by oxidizing the entire surface, subsequently lightly nitriding, and then patterning using a known technique (resist coating, photoengraving process, etching, resist removal, etc.). For etching, it is better to use wet etching with less damage and surface roughness. Reference numeral 66 is an oxide film formed previously, 68 is a nitride film formed by the first nitriding, and 70 is a substrate surface.

【0027】(B)次に、厚いゲート絶縁膜の膜厚がT
1になるようなゲート酸化を行なう。72はその厚いゲ
ート絶縁膜のシリコン酸化膜、76は薄いゲート絶縁膜
であり、ゲート絶縁膜76は上層から酸化膜66、中間
に窒化膜68、基板との界面にゲート酸化で形成された
酸化膜74から構成されている。この方法では1回目の
窒化の前に適度な酸化処理を施すことによって、電気的
特性が良好で信頼性の高いONO構造のゲート絶縁膜の
形成が可能となる。この場合も、図3の方法より1工程
多いが、酸化と窒化は1バッチで行なえるため、スルー
プットの低下は殆どない。
(B) Next, the thickness of the thick gate insulating film is T
Gate oxidation is performed so that the value becomes 1 . 72 is a thick silicon oxide film of the gate insulating film, and 76 is a thin gate insulating film. The gate insulating film 76 is an oxide film 66 from the upper layer, a nitride film 68 in the middle, and an oxide formed by gate oxidation at the interface with the substrate. It is composed of a film 74. In this method, by performing an appropriate oxidation treatment before the first nitriding, it becomes possible to form a highly reliable gate insulating film having an ONO structure with good electrical characteristics. Also in this case, although the number of steps is one more than that of the method of FIG. 3, since the oxidation and the nitridation can be performed in one batch, there is almost no decrease in throughput.

【0028】[0028]

【実施例】図5に示した方法による実施例を示す。比抵
抗20ΩcmのP型シリコン基板上に1×1017〜2×
1017/cm3程度の濃度のPウエル、Nウエルを形成
し、素子分離のためのフィールド酸化膜を形成する。次
に、ウエハ全面にランプアニール装置を用いて1150
℃で10秒間の酸化を行ない、続いて950℃で5〜9
0秒のNH3窒化を行なう。その結果を図6(A)に示
す。横軸は窒化時間を表わし、縦軸は絶縁膜の膜厚(酸
化膜66と窒化膜68の合計膜厚)を表わしている。図
中にTaとして示した□印のデータはオージエ分析によ
り求めた実測膜厚(絶対膜厚)であり、Tbとして示し
た○印のデータは容量法に求めた酸化膜換算の膜厚であ
る。
EXAMPLE An example of the method shown in FIG. 5 will be described. 1 × 10 17 to 2 × on a P-type silicon substrate having a specific resistance of 20 Ωcm
A P well and an N well having a concentration of about 10 17 / cm 3 are formed, and a field oxide film for element isolation is formed. Next, 1150 is applied to the entire surface of the wafer by using a lamp annealing device.
Oxidation at 10 ° C for 10 seconds, followed by 5-9 at 950 ° C.
Perform NH 3 nitriding for 0 seconds. The result is shown in FIG. The horizontal axis represents the nitriding time, and the vertical axis represents the film thickness of the insulating film (the total film thickness of the oxide film 66 and the nitride film 68). In the figure, the data marked with □ is the measured film thickness (absolute film thickness) obtained by Auger analysis, and the data marked with ◯ is the film thickness calculated as the oxide film by the capacitance method. .

【0029】図6(A)から、最初の酸化では75Å
(エリプソメトリによる測定結果)の酸化膜が形成さ
れ、次の窒化では5〜90秒の窒化処理で1〜6Åの膜
厚増加(膜厚76〜81Å)が見られる程度であった
(Ta)。また、オージエ分析とSIMS分析より、窒
素原子は基板(ウエル)との界面でピーク値を示し、数
原子%以下であった。しかし、容量膜厚(Tb)を調べ
ると酸化膜厚に換算(基準酸化膜に換算、比誘電率を
3.7として計算した)して2〜13Å程度等価的に膜
厚が減少(酸化膜換算膜厚で74〜68Å)するのが見
てとれる。これは、窒化処理を行なったことにより絶縁
膜の誘電率が増加したためと考えてよい。
From FIG. 6 (A), it is 75Å in the first oxidation.
An oxide film (measurement result by ellipsometry) was formed, and in the next nitriding, a film thickness increase of 1 to 6Å (film thickness 76 to 81Å) was observed in 5 to 90 seconds of nitriding treatment (Ta). . Further, according to the Auger analysis and the SIMS analysis, the nitrogen atom showed a peak value at the interface with the substrate (well), and was several atomic% or less. However, when the capacitance film thickness (Tb) was examined, it was converted into an oxide film thickness (converted into a reference oxide film and calculated with a relative dielectric constant of 3.7) and the film thickness equivalently decreased by about 2 to 13Å (oxide film). It can be seen that the converted film thickness is 74 to 68Å). This may be because the nitriding treatment increased the dielectric constant of the insulating film.

【0030】次に、レジストを塗布し、写真製版工程、
ウエットエッチング工程、レジスト除去工程を経て、薄
い絶縁膜を形成する領域以外の酸化膜と窒化膜を除去
し、ランプアニール装置により厚い絶縁膜72の膜厚T
1が160Å(エリプソメトリによる測定結果の膜厚)
となるような条件(1150℃で50秒)で再度酸化を
行なう。その結果を図6(B)に示す。図6(B)か
ら、窒化処理時間が長かったもの程、ONO絶縁膜の膜
厚が薄くなっていることが明らかである。
Next, a resist is applied, a photoengraving process,
After the wet etching step and the resist removing step, the oxide film and the nitride film other than the region where the thin insulating film is formed are removed, and the thickness T of the thick insulating film 72 is set by the lamp annealing apparatus.
1 is 160Å (film thickness measured by ellipsometry)
Oxidation is carried out again under the conditions (1150 ° C. for 50 seconds). The result is shown in FIG. From FIG. 6B, it is clear that the film thickness of the ONO insulating film becomes thinner as the nitriding treatment time becomes longer.

【0031】次に、上の方法で作成したONO膜を用い
てMOSキャパシタを形成し、C−V法及びSIMS分
析によりゲート不純物の突き抜け特性(不純物拡散阻止
能力)を調べた。ポリシリコンゲート電極の膜厚は20
00Å、ゲート不純物はBF2で、ゲートポリシリコン
への注入条件は20KeVで5×1015/cm2、活性
化熱処理条件は900℃で30分間とした。比較のため
に、同じ膜厚の酸化膜の試料も用意した。突き抜けの差
は特に100Å以下のところで顕著に現れた。ONO膜
の場合、突き抜け濃度が1×1017/cm3以下であ
り、酸化膜の場合、1×1018/cm3以上見られた。
上記と同じサンプルでTDDB(経時絶縁破壊)信頼性
の相対評価を行なった。同じ膜厚でも酸化膜だけのもの
に比べて、窒化処理を行なったものは明らかに信頼性が
向上していることも確かめられた。
Next, a MOS capacitor was formed using the ONO film formed by the above method, and the punch-through property (impurity diffusion blocking ability) of the gate impurity was examined by the CV method and SIMS analysis. The thickness of the polysilicon gate electrode is 20
00 Å, the gate impurity was BF 2 , the implantation conditions into the gate polysilicon were 20 KeV and 5 × 10 15 / cm 2 , and the activation heat treatment conditions were 900 ° C. and 30 minutes. For comparison, an oxide film sample having the same film thickness was also prepared. The difference in punch-through was particularly noticeable at 100 Å or less. The penetration density was 1 × 10 17 / cm 3 or less in the case of the ONO film, and 1 × 10 18 / cm 3 or more in the case of the oxide film.
The same sample as above was subjected to relative evaluation of TDDB (dielectric breakdown over time) reliability. It was also confirmed that the reliability of the film subjected to the nitriding treatment was obviously improved as compared with the film having the same film thickness but having only the oxide film.

【0032】[0032]

【発明の効果】本発明の方法により形成された絶縁膜
は、厚い絶縁膜と薄い絶縁膜の間の段差が小さく、微細
パターンを形成する後工程に有利である。厚い絶縁膜と
薄い絶縁膜を同じ基板上に容易に形成することができ、
それと同時に、得られる膜に高いゲート不純物拡散阻止
能力(ボロン突き抜け耐性など)をもたせることができ
る。したがって、得られるMOSトランジスタのしきい
値電圧の変動やオフリーク電流の増加、特性ばらつきな
どを低く抑えることができる。厚い絶縁膜と薄い絶縁膜
を同じ基板上に容易に形成でき、またその過程において
薄い方のゲート絶縁膜を電気的特性(界面特性、トンネ
ル特性、高誘電率など)や信頼性(経時絶縁破壊耐性、
ホットキャリア劣化耐性など)に優れたONO構造など
にすることができる。すなわち、信頼性の高いトランジ
スタをより合理的なプロセスにより形成でき、しかも工
程が簡略化される。
The insulating film formed by the method of the present invention has a small step between the thick insulating film and the thin insulating film, and is advantageous in the subsequent process of forming a fine pattern. A thick insulating film and a thin insulating film can be easily formed on the same substrate,
At the same time, the obtained film can have a high gate impurity diffusion blocking capability (such as boron penetration resistance). Therefore, it is possible to suppress variations in the threshold voltage of the obtained MOS transistor, an increase in off-leakage current, and characteristic variations. A thick insulating film and a thin insulating film can be easily formed on the same substrate, and in the process, the thinner gate insulating film has electrical characteristics (interface characteristics, tunnel characteristics, high dielectric constant, etc.) and reliability (dielectric breakdown over time). Resistance,
An ONO structure or the like having excellent hot carrier deterioration resistance) can be obtained. That is, a highly reliable transistor can be formed by a more rational process, and the process is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一態様を示す要部断面図である。FIG. 1 is a main-portion cross-sectional view showing one embodiment of the present invention.

【図2】本発明の他の態様を示す要部断面図である。FIG. 2 is a sectional view of an essential part showing another embodiment of the present invention.

【図3】本発明方法の一例を示す工程断面図である。FIG. 3 is a process sectional view showing an example of the method of the present invention.

【図4】本発明方法の他の例を示す工程断面図である。FIG. 4 is a process sectional view showing another example of the method of the present invention.

【図5】本発明方法のさらに他の例を示す工程断面図で
ある。
FIG. 5 is a process sectional view showing still another example of the method of the present invention.

【図6】実施例において窒化時間を変えた場合の膜厚変
化を示す図であり、(A)は酸化、続いて窒化を行なっ
た後の状態、(B)は更に酸化を行なった後の状態を表
わしている。
6A and 6B are diagrams showing changes in film thickness when the nitriding time is changed in Examples, where FIG. 6A shows a state after oxidation and subsequent nitriding, and FIG. 6B shows a state after further oxidation. Represents the state.

【符号の説明】 2,22 シリコン基板 4,6,12,14,24,30 ソース・ドレイン 8,26 ゲート酸化膜 16,28,76 ONO構造の絶縁膜 10,18 ポリシリコンゲート電極 32 フローティングゲート電極 36 コントロールゲート電極 51,63 酸化膜と窒化膜とからなる絶縁膜[Explanation of reference signs] 2,22 Silicon substrate 4,6,12,14,24,30 Source / drain 8,26 Gate oxide film 16,28,76 ONO structure insulating film 10,18 Polysilicon gate electrode 32 Floating gate Electrode 36 Control gate electrode 51, 63 Insulating film composed of oxide film and nitride film

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 同一半導体基板に膜厚の異なる2種類の
ゲート絶縁膜が形成されており、膜厚の厚い方のゲート
絶縁膜はシリコン酸化膜であり、膜厚の薄いゲート絶縁
膜はシリコン酸化膜とシリコン窒化膜の積層膜又はシリ
コン酸化膜、シリコン窒化膜及びシリコン酸化膜のON
O積層膜であることを特徴とするMOS半導体装置。
1. Two kinds of gate insulating films having different film thicknesses are formed on the same semiconductor substrate, the gate insulating film having the larger film thickness is a silicon oxide film, and the gate insulating film having a smaller film thickness is silicon. ON of laminated film of oxide film and silicon nitride film or silicon oxide film, silicon nitride film and silicon oxide film
A MOS semiconductor device comprising an O-stacked film.
【請求項2】 膜厚の異なるゲート絶縁膜はそれぞれ素
子分離されたMOSトランジスタを構成しており、膜厚
の厚いゲート絶縁膜をもつMOSトランジスタ群は周辺
回路部を構成し、膜厚の薄いゲート絶縁膜をもつMOS
トランジスタ群は内部回路部を構成している請求項1に
記載のMOS半導体装置。
2. A gate insulating film having a different film thickness constitutes a MOS transistor in which each element is separated, and a MOS transistor group having a gate insulating film having a large film thickness constitutes a peripheral circuit portion and a thin film thickness is formed. MOS with gate insulating film
2. The MOS semiconductor device according to claim 1, wherein the transistor group constitutes an internal circuit section.
【請求項3】 周辺回路部は電源電圧V1で駆動され、
内部回路部はそれよりも低い電源電圧V2で駆動される
とし、膜厚の厚いゲート絶縁膜の膜厚をT1、膜厚の薄
いゲート絶縁膜の膜厚をT2としたとき、 1<T1/T2<V1/V2 となるようにゲート絶縁膜の膜厚T1,T2が設定されて
いる請求項2に記載のMOS半導体装置。
3. The peripheral circuit section is driven by a power supply voltage V 1 ,
When the internal circuit portion is driven by a power supply voltage V 2 lower than that, when the thickness of the thick gate insulating film is T 1 and the thickness of the thin gate insulating film is T 2 , 1 The MOS semiconductor device according to claim 2 , wherein the film thicknesses T 1 and T 2 of the gate insulating film are set so that <T 1 / T 2 <V 1 / V 2 .
【請求項4】 膜厚の厚いゲート絶縁膜と膜厚の薄いゲ
ート絶縁膜が連続して形成されている半導体素子を有す
る請求項1に記載のMOS半導体装置。
4. The MOS semiconductor device according to claim 1, further comprising a semiconductor element in which a thick gate insulating film and a thin gate insulating film are continuously formed.
【請求項5】 膜厚の厚いゲート絶縁膜と膜厚の薄いゲ
ート絶縁膜が連続して形成されている半導体素子が電気
的に消去可能な半導体メモリ素子のEEPROMであ
り、膜厚の薄いゲート絶縁膜がトンネル絶縁膜、膜厚の
厚いゲート絶縁膜がMOSトランジスタのゲート絶縁膜
となっている請求項4に記載のMOS半導体装置。
5. A thin semiconductor device including an electrically erasable semiconductor element, wherein a thick gate insulating film and a thin gate insulating film are continuously formed, and an electrically erasable EEPROM. The MOS semiconductor device according to claim 4, wherein the insulating film is a tunnel insulating film, and the thick gate insulating film is a gate insulating film of a MOS transistor.
【請求項6】 同一半導体基板に膜厚の異なる2種類の
ゲート絶縁膜をもつ半導体装置を製造する方法におい
て、 ゲート酸化の前に、膜厚の薄いゲート絶縁膜が形成され
る領域に第1の窒化処理がなされた薄膜を形成してお
き、膜厚の薄いゲート絶縁膜が形成される領域と膜厚の
厚いゲート絶縁膜が形成される領域とに同時にゲート酸
化を施してゲート絶縁膜を形成することを特徴とするM
OS半導体装置の製造方法。
6. A method of manufacturing a semiconductor device having two kinds of gate insulating films having different film thicknesses on the same semiconductor substrate, wherein a first gate insulating film is formed in a region where a thin gate insulating film is formed before gate oxidation. A thin film that has been subjected to the nitriding treatment is formed, and the gate insulating film is formed by simultaneously performing gate oxidation on a region where a thin gate insulating film is formed and a region where a thick gate insulating film is formed. M characterized by forming
A method for manufacturing an OS semiconductor device.
【請求項7】 同一半導体基板に膜厚の異なる2種類の
ゲート絶縁膜をもつ半導体装置を製造する方法におい
て、 ゲート酸化の前に、膜厚の薄いゲート絶縁膜が形成され
る領域に第1の窒化処理がなされた薄膜を形成してお
き、全面に第2の窒化処理を施した後、膜厚の薄いゲー
ト絶縁膜が形成される領域と膜厚の厚いゲート絶縁膜が
形成される領域とに同時にゲート酸化を施してゲート絶
縁膜を形成することを特徴とするMOS半導体装置の製
造方法。
7. A method of manufacturing a semiconductor device having two types of gate insulating films having different film thicknesses on the same semiconductor substrate, wherein a first gate insulating film is formed in a region where a thin gate insulating film is formed before gate oxidation. Area where a thin gate insulating film is formed and an area where a thick gate insulating film is formed after forming a thin film which has been subjected to A method of manufacturing a MOS semiconductor device, wherein a gate insulating film is formed by simultaneously performing gate oxidation on and.
【請求項8】 窒化処理をN2Oガスによる酸窒化処理
で行なう請求項6又は7に記載のMOS半導体装置の製
造方法。
8. The method for manufacturing a MOS semiconductor device according to claim 6, wherein the nitriding treatment is an oxynitriding treatment with N 2 O gas.
【請求項9】 第1の窒化処理の前に酸化処理を施して
おく請求項6,7又は8に記載のMOS半導体装置の製
造方法。
9. The method for manufacturing a MOS semiconductor device according to claim 6, 7 or 8, wherein an oxidation treatment is performed before the first nitriding treatment.
JP18060294A 1994-07-08 1994-07-08 Method for manufacturing MOS semiconductor device Expired - Fee Related JP3429567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18060294A JP3429567B2 (en) 1994-07-08 1994-07-08 Method for manufacturing MOS semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18060294A JP3429567B2 (en) 1994-07-08 1994-07-08 Method for manufacturing MOS semiconductor device

Publications (2)

Publication Number Publication Date
JPH0831958A true JPH0831958A (en) 1996-02-02
JP3429567B2 JP3429567B2 (en) 2003-07-22

Family

ID=16086129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18060294A Expired - Fee Related JP3429567B2 (en) 1994-07-08 1994-07-08 Method for manufacturing MOS semiconductor device

Country Status (1)

Country Link
JP (1) JP3429567B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524860A (en) * 1998-08-28 2002-08-06 クリー インコーポレイテッド Stacked dielectric in silicon carbide semiconductor structure
US6653675B2 (en) * 1999-02-18 2003-11-25 Micron Technology, Inc. Dual gate dielectric construction
US7619274B2 (en) 2004-06-23 2009-11-17 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524860A (en) * 1998-08-28 2002-08-06 クリー インコーポレイテッド Stacked dielectric in silicon carbide semiconductor structure
JP5021860B2 (en) * 1998-08-28 2012-09-12 クリー インコーポレイテッド Multilayer dielectrics in silicon carbide semiconductor structures
US6653675B2 (en) * 1999-02-18 2003-11-25 Micron Technology, Inc. Dual gate dielectric construction
US6946713B2 (en) * 1999-02-18 2005-09-20 Micron Technology, Inc. Multiple thickness gate dielectric layers
US7619274B2 (en) 2004-06-23 2009-11-17 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
US7985650B2 (en) 2004-06-23 2011-07-26 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same

Also Published As

Publication number Publication date
JP3429567B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
KR970000536B1 (en) Field effect transistor and manufacturing method thereof
US5397720A (en) Method of making MOS transistor having improved oxynitride dielectric
US5436481A (en) MOS-type semiconductor device and method of making the same
JP3220645B2 (en) Method for manufacturing semiconductor device
US6891238B2 (en) Semiconductor device and method of manufacturing the same
US20080233692A1 (en) Method and System for Forming a Controllable Gate Oxide
JP3429567B2 (en) Method for manufacturing MOS semiconductor device
JP3050165B2 (en) Semiconductor device and manufacturing method thereof
JP3406811B2 (en) Semiconductor device and manufacturing method thereof
JP3054422B2 (en) Method for manufacturing semiconductor device
JPH1012609A (en) Semiconductor device and its manufacture
US20010018245A1 (en) Method for manufacturing semiconductor devices
JP3264265B2 (en) CMOS semiconductor device and method of manufacturing the same
JP3028635B2 (en) Memory transistor
JPH11111978A (en) Semiconductor device
JPH03129774A (en) Semiconductor device and manufacture thereof
US6979658B2 (en) Method of fabricating a semiconductor device containing nitrogen in a gate oxide film
JP3140023B2 (en) Semiconductor device and manufacturing method thereof
Mazumder et al. Effects of N distribution on charge trapping and TDDB characteristics of N/sub 2/O annealed wet oxide
JP3145929B2 (en) Method for manufacturing semiconductor device
JP2766492B2 (en) Method for manufacturing integrated capacitors in MOS technology
Wu et al. Characterization of thin textured tunnel oxide prepared by thermal oxidation of thin polysilicon film on silicon
KR100445061B1 (en) Method for fabricating Semiconductor device
JP3090089B2 (en) Method for manufacturing semiconductor device
Teramoto et al. Dielectric breakdown caused by hole-induced-defect in thin SiO2 films

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees