JPH08319117A - Zirconium oxide for liquid chromatography and its production - Google Patents
Zirconium oxide for liquid chromatography and its productionInfo
- Publication number
- JPH08319117A JPH08319117A JP7121698A JP12169895A JPH08319117A JP H08319117 A JPH08319117 A JP H08319117A JP 7121698 A JP7121698 A JP 7121698A JP 12169895 A JP12169895 A JP 12169895A JP H08319117 A JPH08319117 A JP H08319117A
- Authority
- JP
- Japan
- Prior art keywords
- zirconium oxide
- zirconium
- oxide particles
- liquid chromatography
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、耐アルカリ性液体ク
ロマトグラフィ用酸化ジルコニウム及びその製造方法、
そしてペプチドやタンパクなどの生体高分子物質を逆相
系液体クロマトグラフィで分離するのに好適な分離カラ
ム用担体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to zirconium oxide for alkali-resistant liquid chromatography and a method for producing the same.
The present invention also relates to a separation column carrier suitable for separating a biopolymer substance such as a peptide or a protein by reverse phase liquid chromatography.
【0002】[0002]
【従来の技術】液体クロマトグラフィにおけるカラム充
填剤として従来からシリカ系担体がよく用いられてき
た。しかしシリカ系の担体はケイ酸塩ガラスを主体とす
るためアルカリ性移動相を用いる分離に利用することが
困難であり、また移動相自体がアルカリ性でなくても使
用後のカラムのアルカリ洗浄を要する分離などに基本的
に適用することができなかった。この点に関し、酸化ジ
ルコニウム(ZrO2 )成分を上記のケイ酸ガラスに含
有させることにより担体としての耐アルカリ性の向上が
みられること(特開昭62−59553号、同62−6
7450号および同64−46646公報)が提案され
ている。さらに耐アルカリ性を必要とする用途のために
酸化ジルコニウムを液体クロマトグラフィ用担体として
使用する試みもなされている(J.Nawrockiet al,J.Chro
matography A,657,229-282(1993))。2. Description of the Related Art Silica-based carriers have been often used as a column packing material in liquid chromatography. However, since the silica-based carrier is mainly composed of silicate glass, it is difficult to use it for separation using an alkaline mobile phase, and even if the mobile phase itself is not alkaline, a separation that requires alkaline washing of the column after use is required. Basically could not be applied to. In this regard, the inclusion of a zirconium oxide (ZrO 2 ) component in the silicate glass improves the alkali resistance as a carrier (Japanese Patent Laid-Open Nos. 62-59553 and 62-6).
7450 and 64-64646) have been proposed. Furthermore, attempts have been made to use zirconium oxide as a carrier for liquid chromatography for applications requiring alkali resistance (J. Nawrockiet al, J. Chro.
matography A, 657,229-282 (1993)).
【0003】[0003]
【発明が解決しようとする課題】酸化ジルコニウムは耐
アルカリ性に優れている特徴をもっているが、液体クロ
マトグラフィ用として使用するには酸化ジルコニウムの
一次粒子間の結合力が弱く次第に解こうするという問題
点があった。本発明の目的は以上の問題点を解決し一次
粒子間の結合力の強いクロマトグラフィ用酸化ジルコニ
ウム及びその製造方法を提供することにある。Zirconium oxide has a characteristic of being excellent in alkali resistance, but has a problem that the binding force between primary particles of zirconium oxide is weak for use in liquid chromatography, and gradually dissolves. there were. An object of the present invention is to solve the above problems and provide a zirconium oxide for chromatography having a strong binding force between primary particles and a method for producing the same.
【0004】[0004]
【課題を解決するための手段】以上の問題点を検討した
結果、ジルコニウム塩の水溶液を加水分解した後酸化ジ
ルコニウム中のシリカの含有量が0.1重量%未満であ
るジルコニアゾルを焼成する際に焼成温度を制御すれ
ば、一次粒子間の結合力が強い正方晶系と単斜晶系から
なる酸化ジルコニウムが生成する事を見いだした。即
ち、本発明は正方晶系が5から95%および単斜晶系が
95から5%よりなるシリカの含有量が0.1重量%未
満である液体クロマトグラフィ用の酸化ジルコニウムで
ある。更に本発明はジルコニウム塩をアルカリ水溶液に
添加することにより生成するシリカの含有量0.1重量
%未満のジルコニアゾルをアルカリ水溶液中で80℃か
ら150℃で8時間以上加熱した後乾燥し、更に200
℃から800℃で焼成処理する事を特徴とする正方晶系
が5から95%および単斜晶系が95から5%よりなり
シリカの含有量が0.1重量%未満である液体クロマト
グラフィ用の酸化ジルコニウム粒子を製造する方法であ
る。As a result of studying the above problems, when hydrolyzing an aqueous solution of a zirconium salt and then firing a zirconia sol having a silica content in zirconium oxide of less than 0.1% by weight. It was found that tetragonal and monoclinic zirconium oxide, which has a strong bonding force between primary particles, is formed by controlling the firing temperature. That is, the present invention is a zirconium oxide for liquid chromatography in which the content of silica is 5 to 95% in tetragonal system and 95 to 5% in monoclinic system and is less than 0.1% by weight. Further, in the present invention, a zirconia sol having a silica content of less than 0.1% by weight, which is produced by adding a zirconium salt to an alkaline aqueous solution, is heated in an alkaline aqueous solution at 80 ° C. to 150 ° C. for 8 hours or more, and then dried. 200
For liquid chromatography characterized in that the tetragonal system is composed of 5 to 95% and the monoclinic system is composed of 95 to 5% and the content of silica is less than 0.1 wt% It is a method for producing zirconium oxide particles.
【0005】正方晶系が5から95%と単斜晶系が95
から5%の割合の範囲では焼成処理後の粒子内部の一次
粒子の結合力が強い。更には、正方晶系が30から75
%と単斜晶系が70から25%の範囲の酸化ジルコニウ
ムが好ましい。しかも正方晶系と単斜晶系の割合を変え
る事により細孔直径を大きく変化させる事ができるので
広範囲の分子サイズの分離に応用が可能となる。シリカ
の含有量が酸化ジルコニウムに対して0.1重量%以上
である酸化ジルコニウムを調製した場合には正方晶系の
みの酸化ジルコニウムが得られるが、この場合一次粒子
の結合力は十分とはいえない。正方晶系の割合が5%以
上から十分な結合力が得られるようになるが、更に95
%を越えると一次粒子の結合力が弱くなる。本発明の酸
化ジルコニウムを調製する場合には当然ジルコニウム塩
以外の原料についても生成する酸化ジルコニウムに含ま
れるシリカの含有量が酸化ジルコニウムに対して0.1
重量%未満になるように配慮することが必要である。正
方晶系と単斜晶系の存在比を求めるためにCuターゲッ
トのKα1を使用した粉末X線回折測定を行い、2θ=
30.2度と2θ=28.2度でのピーク高さの比を正
方晶系と単斜晶系の存在比とした。The tetragonal system is 5 to 95% and the monoclinic system is 95%.
In the range of from 5% to 5%, the binding force of the primary particles inside the particles after the baking treatment is strong. Furthermore, the tetragonal system is 30 to 75
% And zirconium oxide having a monoclinic system in the range of 70 to 25% is preferred. Moreover, since the pore diameter can be greatly changed by changing the ratio of the tetragonal system and the monoclinic system, it can be applied to the separation of a wide range of molecular sizes. When zirconium oxide having a silica content of 0.1% by weight or more based on zirconium oxide is prepared, only tetragonal zirconium oxide is obtained, but in this case, the binding force of the primary particles is not sufficient. Absent. Sufficient bonding force can be obtained when the ratio of tetragonal system is 5% or more.
If it exceeds%, the binding force of the primary particles becomes weak. When the zirconium oxide of the present invention is prepared, naturally, the content of silica contained in the zirconium oxide produced from raw materials other than the zirconium salt is 0.1 with respect to zirconium oxide.
It is necessary to consider so that it is less than the weight percent. In order to obtain the abundance ratio between the tetragonal system and the monoclinic system, powder X-ray diffraction measurement was performed using Cu target Kα1 and 2θ =
The ratio of the peak heights at 30.2 degrees and 2θ = 28.2 degrees was defined as the abundance ratio of the tetragonal system and the monoclinic system.
【0006】以下に酸化ジルコニウムの製造方法につい
て詳しく述べる。水酸化ナトリウム、水酸化カリウムあ
るいはアンモニアなどのアルカリ水溶液中にオキシ塩化
ジルコニウム、硝酸ジルコニウム、硫酸ジルコニウムな
どのジルコニウム塩の水溶液(ZrO2 として濃度0.
5〜2mol/L)を滴下し、完全に加水分解した後、
この水溶液をアルカリ性条件下80から150℃で還流
または加圧下で熱処理する。熱処理過程においては、弱
酸性から中性ではジルコニア水溶液はゾル化ないしは著
しい増粘現象を示すため過剰のアルカリ中にジルコニウ
ム塩水溶液を加えて行う必要がある。熱処理時間が短い
とコロイド化が不完全であるため一次粒子の結合力は弱
くなる。よって熱処理は最低でも8時間行わないと液体
クロマトグラフィの充填剤として適しない。還流または
加圧処理時間は酸化ジルコニウムの種々の物性値に影響
を与え、8〜500時間が望ましい。更に好ましくは1
0〜500時間が望ましい。得られた酸化ジルコニウム
コロイド溶液を洗浄して噴霧乾燥する事により球状酸化
ジルコニウム粒子を得ることができる。噴霧乾燥後の球
状酸化ジルコニウム粒子を200から800℃で焼成処
理して液体クロマトグラフィ用担体とする。洗浄後の酸
化ジルコニウムコロイドを乾燥後、そのまま200から
800℃で焼成処理した後その燒結体を機械的に粉砕し
て破砕型の液体クロマトグラフィ用担体とする事もでき
る。クロマトグラフィ用としては、球状であっても破砕
型であっても粒子直径は0.5μmから300μmが望
ましい。粒子直径が0.5μmより小さいとカラム内の
圧力損失が大き過ぎたりフィルタの目詰まりが起こる。
粒子直径が300μmより大きくなれば分離が悪くな
る。さらに望ましくは3μmから100μmが特に望ま
しい。The method for producing zirconium oxide will be described in detail below. An aqueous solution of a zirconium salt such as zirconium oxychloride, zirconium nitrate or zirconium sulfate in an alkaline aqueous solution such as sodium hydroxide, potassium hydroxide or ammonia (concentration as ZrO 2 of 0.
5 to 2 mol / L) was added dropwise to completely hydrolyze the
This aqueous solution is heat-treated at 80 to 150 ° C. under alkaline conditions under reflux or under pressure. In the heat treatment process, the aqueous zirconia solution shows a sol formation or a remarkable thickening phenomenon from weakly acidic to neutral, so that it is necessary to add the aqueous zirconium salt solution to excess alkali. When the heat treatment time is short, the colloidization is incomplete and the binding force of the primary particles becomes weak. Therefore, heat treatment is not suitable as a packing material for liquid chromatography unless it is performed for at least 8 hours. The reflux or pressure treatment time affects various physical properties of zirconium oxide, and is preferably 8 to 500 hours. More preferably 1
0 to 500 hours is desirable. Spherical zirconium oxide particles can be obtained by washing the resulting zirconium oxide colloidal solution and spray drying. The spray-dried spherical zirconium oxide particles are calcined at 200 to 800 ° C. to obtain a carrier for liquid chromatography. It is also possible to dry the washed zirconium oxide colloid and then subject it to a calcination treatment at 200 to 800 ° C. as it is, and then mechanically crush the sintered product to obtain a crushable type carrier for liquid chromatography. For chromatography, the particle diameter is preferably 0.5 μm to 300 μm regardless of whether it is spherical or crushed. If the particle diameter is smaller than 0.5 μm, the pressure loss in the column is too large and the filter is clogged.
If the particle diameter is larger than 300 μm, the separation becomes worse. More preferably, 3 μm to 100 μm is particularly desirable.
【0007】酸化ジルコニウム粒子の平均粒子直径、細
孔直径、及び正方晶系と単斜晶系の割合の制御は以下の
方法で行う。 [平均粒子直径の制御]球状粒子を得る場合には噴霧乾
燥操作を用いる。洗浄したジルコニアを再びスラリー化
するが、このときのスラリー濃度が噴霧乾燥による球状
化ないし平均粒子直径に影響する。一般にスラリー濃度
が低いほど粒子直径は小さくなるが、スラリー濃度が3
重量%以下になると不定形微粒子が多くなり25重量%
以上になると粘度が高くなり処理が困難となるため、3
から25重量%のスラリーを使用する。更に好ましくは
8から18重量%のスラリー濃度が望ましい。また噴霧
乾燥において、アトマイザータイプのスプレードライヤ
ーを使用する場合には、アトマイザーの回転数を上げる
かノズルから噴霧することにより平均粒子直径の小さな
球状酸化ジルコニウム粒子がえられ、これによっても粒
子直径を制御することができる。The average particle diameter and pore diameter of zirconium oxide particles and the proportion of tetragonal and monoclinic systems are controlled by the following method. [Control of average particle diameter] When obtaining spherical particles, a spray drying operation is used. The washed zirconia is re-slurried, and the slurry concentration at this time affects the spheroidization by spray drying or the average particle diameter. Generally, the lower the slurry concentration, the smaller the particle diameter, but the slurry concentration is 3
If the amount is less than 20% by weight, the amount of irregular fine particles increases and 25% by weight
If the above is exceeded, the viscosity becomes high and the treatment becomes difficult.
To 25 wt% slurry is used. More preferably, a slurry concentration of 8 to 18% by weight is desirable. Also, in spray drying, when using an atomizer type spray dryer, spherical zirconium oxide particles with a small average particle diameter can be obtained by increasing the number of revolutions of the atomizer or spraying from a nozzle, and this also controls the particle diameter. can do.
【0008】[細孔直径及び正方晶系と単斜晶系の割合
の制御]酸化ジルコニウムの細孔直径には噴霧乾燥後の
焼成処理が影響している。細孔直径は焼成温度が高くな
るに従い大きく増加する。同時に正方晶系の構造を有す
る部分の割合が減少して単斜晶系の割合が増加する。即
ち焼成処理の温度を制御する事により細孔直径及び正方
晶系と単斜晶系の割合を決める事ができる。粒子の機械
的強度は900℃以上では急激に弱くなるので焼成温度
は800℃までとするのが望ましい。粒子の機械的強度
を特に必要とする場合には200から600℃で焼成す
れば更に好ましい。[Control of Pore Diameter and Ratio of Tetragonal System to Monoclinic System] The pore diameter of zirconium oxide is affected by the firing treatment after spray drying. The pore diameter greatly increases as the firing temperature increases. At the same time, the proportion of the portion having the tetragonal structure is reduced and the proportion of the monoclinic system is increased. That is, the pore diameter and the ratio between the tetragonal system and the monoclinic system can be determined by controlling the temperature of the firing treatment. Since the mechanical strength of the particles suddenly weakens at 900 ° C or higher, it is desirable to set the firing temperature to 800 ° C. When the mechanical strength of the particles is particularly required, it is more preferable to calcine at 200 to 600 ° C.
【0009】得られた正方晶系と単斜晶系からなる酸化
ジルコニウムの直径20μmの粒子を内直径6mmφ、
長さ150mmのカラムに充填し、1N−NaOHを移
動相に用いて耐アルカリ性耐久性試験を行った。1N−
NaOHを1ml/minで通液したところ5000時
間経過してもZrの流出は観察されず、充分な耐アルカ
リ性の液体クロマトグラフィ用酸化ジルコニウムが得ら
れることがわかった。The obtained tetragonal and monoclinic zirconium oxide particles having a diameter of 20 μm were used to form an inner diameter of 6 mmφ,
A column having a length of 150 mm was packed and 1N-NaOH was used as a mobile phase to carry out an alkali resistance durability test. 1N-
When NaOH was passed through at a rate of 1 ml / min, no Zr outflow was observed even after 5000 hours, and it was found that zirconium oxide for liquid chromatography having sufficient alkali resistance was obtained.
【0010】このようにして得られた酸化ジルコニウム
粒子の表面をオクタデシルジメチルクロロシラン、エチ
ルクロロシラン、アミノプロピルトリメトキシシラン、
シアノプロピルジメチルクロロシラン等のシラン系、オ
クタデシルジメチルクロロジルコニウム、シクロペンタ
デシル−トリクロロ−ジルコニウム等のジルコニウム
系、ジメチルアルミニウムクロライド、ジイソブチルア
ルミニウムクロライド等のアルミニウム系、若しくはジ
エチル−ジクロロ−チタニウム、エチル−トリクロロ−
チタニウム等のチタン系のカップリング剤、又はn−オ
クチルアルコール、ステアリルアルコール等のアルコー
ル又は塩化n−オクチル、塩化ステアリル等のハロゲン
化炭化水素からなる群から選ばれた少なくともひとつの
化合物を用いて修飾すると逆相液体クロマトグラフィ用
担体として使用できる。例えばオクタデシルジメチルク
ロロシラン(ODS)を修飾すると、pH2〜12の緩
衝液を移動相に用いることによりペプチド、タンパク質
などの生体高分子を効率よく分離分析することに応用す
ることができる。The surface of the zirconium oxide particles thus obtained was coated with octadecyldimethylchlorosilane, ethylchlorosilane, aminopropyltrimethoxysilane,
Silanes such as cyanopropyldimethylchlorosilane, zirconiums such as octadecyldimethylchlorozirconium, cyclopentadecyl-trichloro-zirconium, aluminums such as dimethylaluminum chloride and diisobutylaluminum chloride, or diethyl-dichloro-titanium, ethyl-trichloro-
Modification using at least one compound selected from the group consisting of titanium-based coupling agents such as titanium, alcohols such as n-octyl alcohol and stearyl alcohol, or halogenated hydrocarbons such as n-octyl chloride and stearyl chloride. Then, it can be used as a carrier for reversed-phase liquid chromatography. For example, when octadecyldimethylchlorosilane (ODS) is modified, it can be applied to efficiently separate and analyze biopolymers such as peptides and proteins by using a buffer solution of pH 2 to 12 as a mobile phase.
【0011】[0011]
【実施例】 実施例1 4mol/Lの水酸化ナトリウム4L中に1mol/L
のオキシ塩化ジルコニウム水溶液4Lを4L/hで滴下
混合しジルコニアゾルを生成した。ここで用いたオキシ
塩化ジルコニウム中の珪素の含有量は酸化ジルコニウム
に対してシリカ0.05重量%であった。得られたジル
コニアゾルを10Lのオートクレーブ中で105℃で5
6時間水熱処理を行なった。これを遠心分離洗浄し、再
びスラリー化させスラリー濃度を13%にした。これを
アトマイザー型スプレードライヤーを用いて流量1L/
h、熱風温度150℃、ディスク回転数15000rp
mで噴霧乾燥することにより平均粒子直径34μmの球
状酸化ジルコニウムが得られた。これを600℃で2時
間焼成すると細孔直径167オングストローム、細孔容
積0.15ml/g、表面積57m2 /gの正方晶と単
斜晶からなる酸化ジルコニウムが得られた。これを1N
−HCl中で1時間攪拌することにより酸処理を行な
い、順相系液体クロマトグラフィ用酸化ジルコニウム粒
子を得た。細孔直径の分布測定には水銀圧入細孔分布測
定装置を使用し、最も分布の多い細孔直径をその粒子の
細孔直径とした。得られた酸化ジルコニウムをX線回折
測定したところ正方晶系のピーク高さと単斜晶系のピー
ク高さの比は31/69であった。酸化ジルコニウム中
のシリカの含有量は蛍光X線測定により求めた。Example 1 1 mol / L in 4 L of 4 mol / L sodium hydroxide
4 L of the aqueous zirconium oxychloride solution was added dropwise at 4 L / h and mixed to form a zirconia sol. The content of silicon in the zirconium oxychloride used here was 0.05% by weight of silica based on zirconium oxide. The resulting zirconia sol was heated at 105 ° C in a 10 L autoclave for 5 hours.
Hydrothermal treatment was performed for 6 hours. This was centrifuged and washed, and again slurried to make the slurry concentration 13%. Using an atomizer type spray dryer, flow rate of 1L /
h, hot air temperature 150 ° C, disk rotation speed 15000rp
By spray drying at m, spherical zirconium oxide having an average particle diameter of 34 μm was obtained. When this was baked at 600 ° C. for 2 hours, zirconium oxide composed of tetragonal crystals and monoclinic crystals having a pore diameter of 167 Å, a pore volume of 0.15 ml / g and a surface area of 57 m 2 / g was obtained. This is 1N
Acid treatment was carried out by stirring in -HCl for 1 hour to obtain zirconium oxide particles for normal phase liquid chromatography. A mercury intrusion pore distribution measuring device was used to measure the distribution of pore diameters, and the pore diameter with the largest distribution was defined as the pore diameter of the particles. When the obtained zirconium oxide was subjected to X-ray diffraction measurement, the ratio of the peak height of the tetragonal system to the peak height of the monoclinic system was 31/69. The content of silica in zirconium oxide was determined by fluorescent X-ray measurement.
【0012】解こう試験 分級して得られた粒子直径20μmの酸化ジルコニウム
粒子0.4gをガラスビーカに入れ水を9.6g加えて
全重量を10gにし、これを10分間超音波処理した後
10分間放置した。この後上澄み液を除去し、再び水を
加え水とサンプルの全重量を10gにして上記と同様の
超音波処理操作を更に2回繰り返した。3回目の超音波
処理操作直後の上澄み液の可視光の吸光度を測定するこ
とにより一次粒子の結合力の強度測定を行った。吸光度
が高いほど解こうが進んでおり、一次粒子の結合力が弱
いことになる。解こう試験の傾向は粒子直径が変化して
も変わらず、この方法は一次粒子の結合力を知る上で適
当な方法である。Peptization test 0.4 g of zirconium oxide particles having a particle diameter of 20 μm obtained by classification are put in a glass beaker and 9.6 g of water is added to make the total weight 10 g. Let stand for a minute. After that, the supernatant was removed, water was added again, and the total weight of water and the sample was adjusted to 10 g, and the same ultrasonic treatment operation as above was further repeated twice. The strength of the binding force of the primary particles was measured by measuring the visible light absorbance of the supernatant immediately after the third ultrasonic treatment. The higher the absorbance, the better the solvation, and the weaker the binding force of the primary particles. The tendency of the peptization test does not change even if the particle diameter changes, and this method is suitable for knowing the binding force of primary particles.
【0013】実施例2、3、4 焼成温度600℃を200、400、800℃にした以
外は実施例1と同様の方法で酸化ジルコニウム粒子を調
製し、得られた酸化ジルコニウム粒子についてX線回折
測定、シリカ含有量の分析及び解こう試験を行った。こ
れらを各々実施例2、3、4とする。Examples 2, 3, 4 Zirconium oxide particles were prepared in the same manner as in Example 1 except that the baking temperature 600 ° C. was changed to 200, 400, 800 ° C., and the obtained zirconium oxide particles were subjected to X-ray diffraction. Measurement, analysis of silica content and peptization test were performed. These are Examples 2, 3, and 4, respectively.
【0014】比較例1 焼成温度600℃を1000℃に変えた以外は実施例1
と同様の方法で酸化ジルコニウム粒子を製造し、X線回
折測定及び解こう試験を行った。細孔直径は2200オ
ングストロームと大きくはなるが、解こう試験によれば
一次粒子の結合力は弱い。Comparative Example 1 Example 1 except that the firing temperature of 600 ° C. was changed to 1000 ° C.
Zirconium oxide particles were produced by the same method as described above, and the X-ray diffraction measurement and peptization test were performed. Although the pore diameter is as large as 2200 angstroms, the peptization test shows that the binding force of the primary particles is weak.
【0015】比較例2 ジルコニアゾルを生成する場合に、水酸化ナトリウム水
溶液に3号ケイ酸ナトリウム水溶液4.3g(酸化ジル
コニウムに対して1重量%のシリカに相当する)を添加
した後にオキシ塩化ジルコニウム水溶液を滴下混合する
以外は実施例3と同様の方法で酸化ジルコニウム粒子の
製造を行なった。この場合得られた酸化ジルコニウム粒
子のX線回折測定を行ったところ正方晶に対応するピー
クのみが観察された。解こう試験は実施例1と同様の方
法で行った。以上の実施例と比較例の結果を表1にまと
めた。Comparative Example 2 In the case of producing a zirconia sol, 4.3 g of an aqueous solution of sodium silicate No. 3 (corresponding to 1% by weight of silica based on zirconium oxide) was added to an aqueous solution of sodium hydroxide, and zirconium oxychloride Zirconium oxide particles were produced in the same manner as in Example 3 except that the aqueous solution was dropped and mixed. When the X-ray diffraction measurement of the zirconium oxide particles obtained in this case was performed, only peaks corresponding to tetragonal crystals were observed. The peptization test was performed in the same manner as in Example 1. The results of the above Examples and Comparative Examples are summarized in Table 1.
【0016】[0016]
【表1】 [Table 1]
【0017】実施例5 実施例4で得られた細孔直径1436オングストロー
ム、細孔容積0.25ml/g、表面積26m2 /gの
酸化ジルコニウム粒子20gを160mlのトルエン中
で105℃で2時間攪拌し常圧で酸化ジルコニウムに吸
着している水分子の脱水を行なった。この後2gのOD
Sと0.46gのピリジンを加え105℃で3時間還流
させた。この後トリメチルクロロシラン(TMCS)を
0.5g、ヘキサメチルジシラザン(HMDS)を0.
5g、ピリジン0.3gを加え105℃で3時間エンド
キャッピング処理を施した。この後すばやくメタノール
を加え、n−ヘキサン、メタノールでよく洗浄し、残留
のODS,TMCS,HMDSを除去した。この後80
℃で乾燥させ表面をODS修飾した逆相系液体クロマトグ
ラフィ用酸化ジルコニウム粒子を得た。Example 5 20 g of zirconium oxide particles having a pore diameter of 1436 Å, a pore volume of 0.25 ml / g and a surface area of 26 m 2 / g obtained in Example 4 were stirred in 160 ml of toluene at 105 ° C. for 2 hours. Then, water molecules adsorbed on zirconium oxide were dehydrated under normal pressure. 2g OD after this
S and 0.46 g of pyridine were added and the mixture was refluxed at 105 ° C. for 3 hours. Then, 0.5 g of trimethylchlorosilane (TMCS) and 0.1 g of hexamethyldisilazane (HMDS).
5 g and 0.3 g of pyridine were added and subjected to end capping treatment at 105 ° C. for 3 hours. After that, methanol was quickly added and the mixture was thoroughly washed with n-hexane and methanol to remove residual ODS, TMCS and HMDS. After this 80
Zirconium oxide particles for reversed-phase liquid chromatography with the surface modified by ODS were obtained by drying at ℃.
【0018】実施例6 実施例5で得られた逆相系酸化ジルコニウム粒子を内直
径4mmφ、長さ15cmのカラムに充填し液体クロマ
トグラフィの分離状態を調べた。移動相として水/メタ
ノール=30/70で分離を試みた。なお移動相の供給
速度は0.45ml/min、カラム温度は40℃と
し、サンプルとしてウラシル、安息香酸メチル、トルエ
ン、ナフタレンを用い、検出はUV254nmで行っ
た。次に連続2000時間通液後、同測定を行ったが保
持時間に変化は見られなかった。耐アルカリ試験として
pH=11のdil.NaOH/メタノール=30/7
0の移動相を用いて上記と同様の条件で分離状態を調べ
たところ連続1000時間通液後の保持時間に変化はな
かった。Example 6 The reversed phase zirconium oxide particles obtained in Example 5 were packed in a column having an inner diameter of 4 mmφ and a length of 15 cm, and the separation state of liquid chromatography was examined. An attempt was made to separate with mobile phase water / methanol = 30/70. The mobile phase feed rate was 0.45 ml / min, the column temperature was 40 ° C., uracil, methyl benzoate, toluene, and naphthalene were used as samples, and detection was performed at UV254 nm. Next, the same measurement was performed after passing the solution continuously for 2000 hours, but no change was observed in the holding time. As an alkali resistance test, dil. NaOH / methanol = 30/7
When the separation state was examined under the same conditions as above using the mobile phase of 0, there was no change in the holding time after continuous liquid passing for 1000 hours.
【0019】実施例7 実施例1で得られた細孔直径167オングストローム、
細孔容積0.15ml/g、表面積57m2 /gの酸化
ジルコニウムを用いた以外は実施例5と同様の方法で表
面をODS修飾した逆相系液体クロマトグラフィ用酸化
ジルコニウム粒子を調製した。この酸化ジルコニウム粒
子の耐アルカリ試験をするために実施例6と同様の方法
で液体クロマトグラフィの分離状態を調べたが、保持時
間に変化はなかった。Example 7 Pore diameter 167 Å obtained in Example 1,
Zirconium oxide particles for reverse phase liquid chromatography whose surface was ODS-modified were prepared in the same manner as in Example 5 except that zirconium oxide having a pore volume of 0.15 ml / g and a surface area of 57 m 2 / g was used. In order to carry out the alkali resistance test of the zirconium oxide particles, the separation state of liquid chromatography was examined by the same method as in Example 6, but the retention time did not change.
【0020】[0020]
【発明の効果】酸化ジルコニウムに対してシリカの含有
率をを0.1重量%未満にすると正方晶系と単斜晶系か
らなる酸化ジルコニウムが得られる。特に200から8
00℃で焼成処理する事により得られる正方晶系が5か
ら95%および単斜晶系が95から5%の範囲の酸化ジ
ルコニウムは一次粒子の結合力が強いので耐アルカリ性
の液体クロマトグラフィ用粒子として好適である。酸化
ジルコニウム粒子をシラン系、アルミニウム系、チタン
系、もしくはジルコニウム系のカップリング剤又はアル
コールもしくはハロゲン化炭化水素を用いて修飾すれば
逆相系の酸化ジルコニウム粒子も得られる。When the content of silica is less than 0.1% by weight with respect to zirconium oxide, zirconium oxide of tetragonal system and monoclinic system is obtained. Especially from 200 to 8
Zirconium oxide having a tetragonal system of 5 to 95% and a monoclinic system of 95 to 5% obtained by calcination treatment at 00 ° C. has a strong binding force of primary particles, and thus is used as an alkali-resistant particle for liquid chromatography. It is suitable. Reverse-phase zirconium oxide particles can also be obtained by modifying zirconium oxide particles with a silane-based, aluminum-based, titanium-based, or zirconium-based coupling agent or alcohol or halogenated hydrocarbon.
Claims (9)
が95から5%よりなるシリカの含有量が0.1重量%
未満である酸化ジルコニウム。1. Silica content of 5 to 95% tetragonal and 95 to 5% monoclinic with a silica content of 0.1% by weight.
Zirconium oxide that is less than.
ンまで、細孔直径が100から1500オングストロー
ムである特許請求の範囲第1項記載の多孔性の液体クロ
マトグラフィ用の酸化ジルコニウム粒子。2. Porous zirconium oxide particles for liquid chromatography according to claim 1, having an average particle diameter of 0.5 to 300 microns and a pore diameter of 100 to 1500 angstroms.
もしくはジルコニウム系のカップリング剤又はアルコー
ルもしくはハロゲン化炭化水素を用いて修飾された特許
請求の範囲第2項記載の液体クロマトグラフィ用の酸化
ジルコニウム粒子。3. A silane type, an aluminum type, a titanium type,
The zirconium oxide particles for liquid chromatography according to claim 2, which is modified with a zirconium-based coupling agent or an alcohol or a halogenated hydrocarbon.
ルジメチルクロロシランである特許請求の範囲第3項記
載の液体クロマトグラフィ用の酸化ジルコニウム粒子。4. The zirconium oxide particles for liquid chromatography according to claim 3, wherein the silane coupling agent is octadecyldimethylchlorosilane.
することにより生成するシリカ含有量0.1重量%未満
のジルコニアゾルをアルカリ水溶液中で80から150
℃で8時間以上加熱した後乾燥し、これを200から8
00℃で焼成処理する事を特徴とする正方晶系が5から
95%および単斜晶系が95から5%よりなりシリカの
含有量が0.1重量%未満の液体クロマトグラフィ用の
酸化ジルコニウム粒子を製造する方法。5. A zirconia sol having a silica content of less than 0.1% by weight, which is produced by adding a zirconium salt to an alkaline aqueous solution, in an alkaline aqueous solution of 80 to 150.
After heating at ℃ for 8 hours or more, it is dried.
Zirconium oxide particles for liquid chromatography having a tetragonal system of 5 to 95% and a monoclinic system of 95 to 5%, characterized by being calcined at 00 ° C, and having a silica content of less than 0.1% by weight. A method of manufacturing.
ム、硝酸ジルコニウム及び硫酸ジルコニウムからなる群
から選ばれた水溶性ジルコニウム塩である特許請求の範
囲第5項記載の液体クロマトグラフィ用の酸化ジルコニ
ウム粒子を製造する方法。6. The method for producing zirconium oxide particles for liquid chromatography according to claim 5, wherein the zirconium salt is a water-soluble zirconium salt selected from the group consisting of zirconium oxychloride, zirconium nitrate and zirconium sulfate. .
5項又は第6項に記載の液体クロマトグラフィ用の酸化
ジルコニウム粒子を製造する方法。7. The method for producing zirconium oxide particles for liquid chromatography according to claim 5 or 6, wherein the drying is spray drying.
砕する事を特徴とする特許請求の範囲第5項又は第6項
に記載の液体クロマトグラフィ用の酸化ジルコニウム粒
子を製造する方法。8. The method for producing zirconium oxide particles for liquid chromatography according to claim 5 or 6, wherein the lumpy zirconium oxide is crushed after the firing treatment.
0.5から300ミクロン及び細孔直径が100から1
500オングストロームである事を特徴とする特許請求
の範囲第6項、第7項又は第8項に記載の液体クロマト
グラフィ用の酸化ジルコニウム粒子を製造する方法。9. Zirconium oxide particles have an average particle diameter of 0.5 to 300 microns and a pore diameter of 100 to 1.
The method for producing zirconium oxide particles for liquid chromatography according to claim 6, 7, or 8, which is 500 angstroms.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12169895A JP3228066B2 (en) | 1995-05-19 | 1995-05-19 | Zirconium oxide for liquid chromatography and its production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12169895A JP3228066B2 (en) | 1995-05-19 | 1995-05-19 | Zirconium oxide for liquid chromatography and its production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08319117A true JPH08319117A (en) | 1996-12-03 |
JP3228066B2 JP3228066B2 (en) | 2001-11-12 |
Family
ID=14817675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12169895A Expired - Fee Related JP3228066B2 (en) | 1995-05-19 | 1995-05-19 | Zirconium oxide for liquid chromatography and its production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3228066B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2006006277A1 (en) * | 2004-07-09 | 2008-04-24 | 旭化成ケミカルズ株式会社 | Catalyst and process for producing cycloolefin |
JP2008120605A (en) * | 2006-11-08 | 2008-05-29 | Sumitomo Osaka Cement Co Ltd | Surface-modified zirconium oxide particles, dispersion of the surface-modified zirconium oxide particles, transparent composite, optical member, composition for sealing light-emitting element, and light-emitting element |
KR100906929B1 (en) * | 2002-08-06 | 2009-07-10 | 삼성코닝정밀유리 주식회사 | Process for preparing crystalline metal oxide |
JP2011213520A (en) * | 2010-03-31 | 2011-10-27 | Mitsubishi Heavy Ind Ltd | Method for manufacturing powder for thermal spray, turbine member, and gas turbine |
-
1995
- 1995-05-19 JP JP12169895A patent/JP3228066B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100906929B1 (en) * | 2002-08-06 | 2009-07-10 | 삼성코닝정밀유리 주식회사 | Process for preparing crystalline metal oxide |
JPWO2006006277A1 (en) * | 2004-07-09 | 2008-04-24 | 旭化成ケミカルズ株式会社 | Catalyst and process for producing cycloolefin |
JP4777891B2 (en) * | 2004-07-09 | 2011-09-21 | 旭化成ケミカルズ株式会社 | Catalyst and process for producing cycloolefin |
JP2008120605A (en) * | 2006-11-08 | 2008-05-29 | Sumitomo Osaka Cement Co Ltd | Surface-modified zirconium oxide particles, dispersion of the surface-modified zirconium oxide particles, transparent composite, optical member, composition for sealing light-emitting element, and light-emitting element |
JP2011213520A (en) * | 2010-03-31 | 2011-10-27 | Mitsubishi Heavy Ind Ltd | Method for manufacturing powder for thermal spray, turbine member, and gas turbine |
Also Published As
Publication number | Publication date |
---|---|
JP3228066B2 (en) | 2001-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR880001778B1 (en) | A process for coating a catalyst support and a catalyst support thereby | |
EP0384596B1 (en) | Thin silica flakes and method of making | |
US5128291A (en) | Porous titania or zirconia spheres | |
EP0216730B1 (en) | Porous spherical glass filtrating beads and method for the manufacturing thereof | |
US7101523B2 (en) | Silica | |
JP2002510541A (en) | Composite inorganic oxide beads with large pore volume, their preparation and application to adsorption and chromatography | |
JPH0233650B2 (en) | ||
US20190270067A1 (en) | Composite filter aids and methods of using composite filter aids | |
CA2139060C (en) | Method of producing granular amorphous silica | |
US6846410B2 (en) | High stability porous metal oxide spherules used for one-step antibody purifications | |
JPH0261406B2 (en) | ||
KR101774296B1 (en) | Porous Spherical Titanium Dioxide | |
JPH0324255B2 (en) | ||
JP3228066B2 (en) | Zirconium oxide for liquid chromatography and its production method | |
JP7391667B2 (en) | Hydrophobic surface-modified alumina and its manufacturing method | |
US3346336A (en) | Production of alumina | |
JP4782440B2 (en) | Calcium phosphate adsorbent and method for producing the same | |
JP3129097B2 (en) | Zirconium oxide particles for liquid chromatography and their preparation | |
JP3410522B2 (en) | Method for producing granular amorphous silica | |
Chen et al. | Preparation of alumina-zirconia materials by the sol-gel method from metal alkoxides | |
JPH0343201B2 (en) | ||
JP3719686B2 (en) | Silica gel for filter media | |
Ashokan et al. | Nickel‐ion substituted hydroxyapatite matrices for metal‐affinity chromatographic purification of recombinant proteins | |
JPS5969424A (en) | Manufacture of alumina having low bulk density | |
JP2003171116A (en) | Silica |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |