JP3228066B2 - Zirconium oxide for liquid chromatography and its production method - Google Patents

Zirconium oxide for liquid chromatography and its production method

Info

Publication number
JP3228066B2
JP3228066B2 JP12169895A JP12169895A JP3228066B2 JP 3228066 B2 JP3228066 B2 JP 3228066B2 JP 12169895 A JP12169895 A JP 12169895A JP 12169895 A JP12169895 A JP 12169895A JP 3228066 B2 JP3228066 B2 JP 3228066B2
Authority
JP
Japan
Prior art keywords
zirconium oxide
liquid chromatography
oxide particles
zirconium
chromatography according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12169895A
Other languages
Japanese (ja)
Other versions
JPH08319117A (en
Inventor
彰 畑
克彦 細居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP12169895A priority Critical patent/JP3228066B2/en
Publication of JPH08319117A publication Critical patent/JPH08319117A/en
Application granted granted Critical
Publication of JP3228066B2 publication Critical patent/JP3228066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、耐アルカリ性液体ク
ロマトグラフィ用酸化ジルコニウム及びその製造方法、
そしてペプチドやタンパクなどの生体高分子物質を逆相
系液体クロマトグラフィで分離するのに好適な分離カラ
ム用担体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to zirconium oxide for alkali-resistant liquid chromatography and a method for producing the same.
The present invention also relates to a carrier for a separation column suitable for separating biopolymer substances such as peptides and proteins by reversed-phase liquid chromatography.

【0002】[0002]

【従来の技術】液体クロマトグラフィにおけるカラム充
填剤として従来からシリカ系担体がよく用いられてき
た。しかしシリカ系の担体はケイ酸塩ガラスを主体とす
るためアルカリ性移動相を用いる分離に利用することが
困難であり、また移動相自体がアルカリ性でなくても使
用後のカラムのアルカリ洗浄を要する分離などに基本的
に適用することができなかった。この点に関し、酸化ジ
ルコニウム(ZrO2 )成分を上記のケイ酸ガラスに含
有させることにより担体としての耐アルカリ性の向上が
みられること(特開昭62−59553号、同62−6
7450号および同64−46646公報)が提案され
ている。さらに耐アルカリ性を必要とする用途のために
酸化ジルコニウムを液体クロマトグラフィ用担体として
使用する試みもなされている(J.Nawrockiet al,J.Chro
matography A,657,229-282(1993))。
2. Description of the Related Art Silica-based carriers have been often used as column packings in liquid chromatography. However, since silica-based carriers are mainly composed of silicate glass, it is difficult to use them for separation using an alkaline mobile phase, and even if the mobile phase itself is not alkaline, separation using an alkaline washing column after use is required. Basically could not be applied to such. In this regard, the inclusion of a zirconium oxide (ZrO 2 ) component in the above silicate glass improves alkali resistance as a carrier (Japanese Patent Application Laid-Open Nos. 62-59553 and 62-6).
7450 and 64-46646). Attempts have also been made to use zirconium oxide as a carrier for liquid chromatography for applications requiring alkali resistance (J. Nawrockiet al, J. Chro
matography A, 657, 229-282 (1993)).

【0003】[0003]

【発明が解決しようとする課題】酸化ジルコニウムは耐
アルカリ性に優れている特徴をもっているが、液体クロ
マトグラフィ用として使用するには酸化ジルコニウムの
一次粒子間の結合力が弱く次第に解こうするという問題
点があった。本発明の目的は以上の問題点を解決し一次
粒子間の結合力の強いクロマトグラフィ用酸化ジルコニ
ウム及びその製造方法を提供することにある。
Although zirconium oxide has the characteristic of being excellent in alkali resistance, it has a problem that the bonding force between primary particles of zirconium oxide is weakened gradually when used for liquid chromatography. there were. An object of the present invention is to solve the above problems and provide a zirconium oxide for chromatography having a strong bonding force between primary particles and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】以上の問題点を検討した
結果、ジルコニウム塩の水溶液を加水分解した後酸化ジ
ルコニウム中のシリカの含有量が0.1重量%未満であ
るジルコニアゾルを焼成する際に焼成温度を制御すれ
ば、一次粒子間の結合力が強い正方晶系と単斜晶系から
なる酸化ジルコニウムが生成する事を見いだした。即
ち、本発明は正方晶系が5から95%および単斜晶系が
95から5%よりなるシリカの含有量が0.1重量%未
満である液体クロマトグラフィ用の酸化ジルコニウムで
ある。更に本発明はジルコニウム塩をアルカリ水溶液に
添加することにより生成するシリカの含有量0.1重量
%未満のジルコニアゾルをアルカリ水溶液中で80℃か
ら150℃で8時間以上加熱した後乾燥し、更に200
℃から800℃で焼成処理する事を特徴とする正方晶系
が5から95%および単斜晶系が95から5%よりなり
シリカの含有量が0.1重量%未満である液体クロマト
グラフィ用の酸化ジルコニウム粒子を製造する方法であ
る。
As a result of studying the above problems, it has been found that, after hydrolyzing an aqueous solution of a zirconium salt, a zirconia sol having a silica content of less than 0.1% by weight in zirconium oxide is calcined. By controlling the firing temperature, it was found that zirconium oxide consisting of a tetragonal system and a monoclinic system having a strong bonding force between primary particles was generated. That is, the present invention is a zirconium oxide for liquid chromatography, comprising 5 to 95% of a tetragonal system and 95 to 5% of a monoclinic system and containing less than 0.1% by weight of silica. Further, in the present invention, a zirconia sol having a silica content of less than 0.1% by weight formed by adding a zirconium salt to an alkaline aqueous solution is heated in an alkaline aqueous solution at 80 ° C. to 150 ° C. for 8 hours or more, and dried. 200
For liquid chromatography, wherein the calcination is carried out at from 5 to 95% of tetragonal system and from 95 to 5% of monoclinic system and the content of silica is less than 0.1% by weight. This is a method for producing zirconium oxide particles.

【0005】正方晶系が5から95%と単斜晶系が95
から5%の割合の範囲では焼成処理後の粒子内部の一次
粒子の結合力が強い。更には、正方晶系が30から75
%と単斜晶系が70から25%の範囲の酸化ジルコニウ
ムが好ましい。しかも正方晶系と単斜晶系の割合を変え
る事により細孔直径を大きく変化させる事ができるので
広範囲の分子サイズの分離に応用が可能となる。シリカ
の含有量が酸化ジルコニウムに対して0.1重量%以上
である酸化ジルコニウムを調製した場合には正方晶系の
みの酸化ジルコニウムが得られるが、この場合一次粒子
の結合力は十分とはいえない。正方晶系の割合が5%以
上から十分な結合力が得られるようになるが、更に95
%を越えると一次粒子の結合力が弱くなる。本発明の酸
化ジルコニウムを調製する場合には当然ジルコニウム塩
以外の原料についても生成する酸化ジルコニウムに含ま
れるシリカの含有量が酸化ジルコニウムに対して0.1
重量%未満になるように配慮することが必要である。正
方晶系と単斜晶系の存在比を求めるためにCuターゲッ
トのKα1を使用した粉末X線回折測定を行い、2θ=
30.2度と2θ=28.2度でのピーク高さの比を正
方晶系と単斜晶系の存在比とした。
[0005] The tetragonal system is 5 to 95% and the monoclinic system is 95%.
Within the range of from 5% to 5%, the bonding force of the primary particles inside the particles after the firing treatment is strong. Furthermore, the tetragonal system is 30 to 75
% And zirconium oxide with a monoclinic range of 70 to 25%. In addition, by changing the ratio between the tetragonal system and the monoclinic system, the pore diameter can be greatly changed, so that it can be applied to separation of a wide range of molecular sizes. When zirconium oxide having a silica content of 0.1% by weight or more based on zirconium oxide is prepared, only tetragonal zirconium oxide is obtained. In this case, the bonding force of the primary particles is sufficient. Absent. Sufficient bonding force can be obtained when the ratio of the tetragonal system is 5% or more.
%, The bonding force of the primary particles becomes weak. When preparing the zirconium oxide of the present invention, naturally, the content of silica contained in the zirconium oxide produced also for the raw material other than the zirconium salt is 0.1 to the zirconium oxide.
Care must be taken to make it less than the weight percent. In order to determine the abundance ratio between the tetragonal system and the monoclinic system, powder X-ray diffraction measurement using Kα1 of a Cu target was performed.
The ratio between the peak heights at 30.2 degrees and 2θ = 28.2 degrees was defined as the abundance ratio between the tetragonal system and the monoclinic system.

【0006】以下に酸化ジルコニウムの製造方法につい
て詳しく述べる。水酸化ナトリウム、水酸化カリウムあ
るいはアンモニアなどのアルカリ水溶液中にオキシ塩化
ジルコニウム、硝酸ジルコニウム、硫酸ジルコニウムな
どのジルコニウム塩の水溶液(ZrO2 として濃度0.
5〜2mol/L)を滴下し、完全に加水分解した後、
この水溶液をアルカリ性条件下80から150℃で還流
または加圧下で熱処理する。熱処理過程においては、弱
酸性から中性ではジルコニア水溶液はゾル化ないしは著
しい増粘現象を示すため過剰のアルカリ中にジルコニウ
ム塩水溶液を加えて行う必要がある。熱処理時間が短い
とコロイド化が不完全であるため一次粒子の結合力は弱
くなる。よって熱処理は最低でも8時間行わないと液体
クロマトグラフィの充填剤として適しない。還流または
加圧処理時間は酸化ジルコニウムの種々の物性値に影響
を与え、8〜500時間が望ましい。更に好ましくは1
0〜500時間が望ましい。得られた酸化ジルコニウム
コロイド溶液を洗浄して噴霧乾燥する事により球状酸化
ジルコニウム粒子を得ることができる。噴霧乾燥後の球
状酸化ジルコニウム粒子を200から800℃で焼成処
理して液体クロマトグラフィ用担体とする。洗浄後の酸
化ジルコニウムコロイドを乾燥後、そのまま200から
800℃で焼成処理した後その燒結体を機械的に粉砕し
て破砕型の液体クロマトグラフィ用担体とする事もでき
る。クロマトグラフィ用としては、球状であっても破砕
型であっても粒子直径は0.5μmから300μmが望
ましい。粒子直径が0.5μmより小さいとカラム内の
圧力損失が大き過ぎたりフィルタの目詰まりが起こる。
粒子直径が300μmより大きくなれば分離が悪くな
る。さらに望ましくは3μmから100μmが特に望ま
しい。
Hereinafter, a method for producing zirconium oxide will be described in detail. An aqueous solution of a zirconium salt such as zirconium oxychloride, zirconium nitrate, or zirconium sulfate in an aqueous alkali solution such as sodium hydroxide, potassium hydroxide, or ammonia (concentration of 0.1 as ZrO 2) .
5 to 2 mol / L), and after complete hydrolysis,
This aqueous solution is subjected to a heat treatment under reflux or pressure at 80 to 150 ° C. under alkaline conditions. In the heat treatment process, a zirconia aqueous solution is solified or shows a significant thickening phenomenon from weakly acidic to neutral, so it is necessary to add a zirconium salt aqueous solution to an excess alkali. If the heat treatment time is short, the cohesion of the primary particles is weakened because the colloid formation is incomplete. Therefore, unless heat treatment is performed for at least 8 hours, it is not suitable as a filler for liquid chromatography. The reflux or pressurization time affects various physical properties of zirconium oxide, and is preferably 8 to 500 hours. More preferably, 1
0 to 500 hours is desirable. By washing and spray-drying the obtained zirconium oxide colloid solution, spherical zirconium oxide particles can be obtained. The spherical zirconium oxide particles after spray drying are calcined at 200 to 800 ° C. to obtain a liquid chromatography carrier. After washing the washed zirconium oxide colloid, it can be calcined at 200 to 800 ° C., and then the sintered body can be mechanically pulverized to obtain a crushed liquid chromatography carrier. For chromatography, the particle diameter is preferably 0.5 μm to 300 μm, whether spherical or crushed. If the particle diameter is smaller than 0.5 μm, the pressure loss in the column is too large or the filter is clogged.
If the particle diameter is larger than 300 μm, the separation becomes worse. More preferably, it is particularly preferably from 3 μm to 100 μm.

【0007】酸化ジルコニウム粒子の平均粒子直径、細
孔直径、及び正方晶系と単斜晶系の割合の制御は以下の
方法で行う。 [平均粒子直径の制御]球状粒子を得る場合には噴霧乾
燥操作を用いる。洗浄したジルコニアを再びスラリー化
するが、このときのスラリー濃度が噴霧乾燥による球状
化ないし平均粒子直径に影響する。一般にスラリー濃度
が低いほど粒子直径は小さくなるが、スラリー濃度が3
重量%以下になると不定形微粒子が多くなり25重量%
以上になると粘度が高くなり処理が困難となるため、3
から25重量%のスラリーを使用する。更に好ましくは
8から18重量%のスラリー濃度が望ましい。また噴霧
乾燥において、アトマイザータイプのスプレードライヤ
ーを使用する場合には、アトマイザーの回転数を上げる
かノズルから噴霧することにより平均粒子直径の小さな
球状酸化ジルコニウム粒子がえられ、これによっても粒
子直径を制御することができる。
The control of the average particle diameter and pore diameter of the zirconium oxide particles and the ratio between the tetragonal system and the monoclinic system are performed by the following method. [Control of Average Particle Diameter] To obtain spherical particles, a spray drying operation is used. The washed zirconia is re-slurried, and the slurry concentration at this time affects spheroidization or average particle diameter by spray drying. Generally, the lower the slurry concentration, the smaller the particle diameter.
When the amount is less than 25% by weight, the amount of irregular fine particles increases and the weight becomes 25% by weight.
Above this, the viscosity increases and the treatment becomes difficult.
To 25% by weight of the slurry is used. More preferably, a slurry concentration of 8 to 18% by weight is desirable. When using an atomizer type spray dryer in spray drying, spherical zirconium oxide particles with a small average particle diameter can be obtained by increasing the number of revolutions of the atomizer or spraying from a nozzle, which also controls the particle diameter. can do.

【0008】[細孔直径及び正方晶系と単斜晶系の割合
の制御]酸化ジルコニウムの細孔直径には噴霧乾燥後の
焼成処理が影響している。細孔直径は焼成温度が高くな
るに従い大きく増加する。同時に正方晶系の構造を有す
る部分の割合が減少して単斜晶系の割合が増加する。即
ち焼成処理の温度を制御する事により細孔直径及び正方
晶系と単斜晶系の割合を決める事ができる。粒子の機械
的強度は900℃以上では急激に弱くなるので焼成温度
は800℃までとするのが望ましい。粒子の機械的強度
を特に必要とする場合には200から600℃で焼成す
れば更に好ましい。
[Control of Pore Diameter and Ratio of Tetragonal System and Monoclinic System] The baking treatment after spray drying affects the pore diameter of zirconium oxide. The pore diameter increases significantly as the firing temperature increases. At the same time, the proportion of the portion having a tetragonal structure is reduced and the proportion of the monoclinic is increased. That is, by controlling the temperature of the firing treatment, the pore diameter and the ratio of the tetragonal system to the monoclinic system can be determined. Since the mechanical strength of the particles suddenly weakens at 900 ° C. or higher, the firing temperature is desirably up to 800 ° C. When the mechanical strength of the particles is particularly required, firing at 200 to 600 ° C. is more preferable.

【0009】得られた正方晶系と単斜晶系からなる酸化
ジルコニウムの直径20μmの粒子を内直径6mmφ、
長さ150mmのカラムに充填し、1N−NaOHを移
動相に用いて耐アルカリ性耐久性試験を行った。1N−
NaOHを1ml/minで通液したところ5000時
間経過してもZrの流出は観察されず、充分な耐アルカ
リ性の液体クロマトグラフィ用酸化ジルコニウムが得ら
れることがわかった。
The obtained tetragonal and monoclinic zirconium oxide particles having a diameter of 20 μm are converted into an inner diameter of 6 mmφ.
A column having a length of 150 mm was packed, and an alkali resistance durability test was performed using 1N-NaOH as a mobile phase. 1N-
When NaOH was passed at a flow rate of 1 ml / min, no outflow of Zr was observed even after 5000 hours had passed, indicating that zirconium oxide for liquid chromatography having sufficient alkali resistance was obtained.

【0010】このようにして得られた酸化ジルコニウム
粒子の表面をオクタデシルジメチルクロロシラン、エチ
ルクロロシラン、アミノプロピルトリメトキシシラン、
シアノプロピルジメチルクロロシラン等のシラン系、オ
クタデシルジメチルクロロジルコニウム、シクロペンタ
デシル−トリクロロ−ジルコニウム等のジルコニウム
系、ジメチルアルミニウムクロライド、ジイソブチルア
ルミニウムクロライド等のアルミニウム系、若しくはジ
エチル−ジクロロ−チタニウム、エチル−トリクロロ−
チタニウム等のチタン系のカップリング剤、又はn−オ
クチルアルコール、ステアリルアルコール等のアルコー
ル又は塩化n−オクチル、塩化ステアリル等のハロゲン
化炭化水素からなる群から選ばれた少なくともひとつの
化合物を用いて修飾すると逆相液体クロマトグラフィ用
担体として使用できる。例えばオクタデシルジメチルク
ロロシラン(ODS)を修飾すると、pH2〜12の緩
衝液を移動相に用いることによりペプチド、タンパク質
などの生体高分子を効率よく分離分析することに応用す
ることができる。
[0010] The surface of the zirconium oxide particles thus obtained is coated with octadecyldimethylchlorosilane, ethylchlorosilane, aminopropyltrimethoxysilane,
Silanes such as cyanopropyldimethylchlorosilane; zirconiums such as octadecyldimethylchlorozirconium and cyclopentadecyl-trichloro-zirconium; aluminums such as dimethylaluminum chloride and diisobutylaluminum chloride; or diethyl-dichloro-titanium and ethyl-trichloro-
Modification using a titanium-based coupling agent such as titanium, or at least one compound selected from the group consisting of alcohols such as n-octyl alcohol and stearyl alcohol or halogenated hydrocarbons such as n-octyl chloride and stearyl chloride. Then, it can be used as a carrier for reversed-phase liquid chromatography. For example, when octadecyldimethylchlorosilane (ODS) is modified, it can be applied to efficient separation and analysis of biopolymers such as peptides and proteins by using a buffer having a pH of 2 to 12 as a mobile phase.

【0011】[0011]

【実施例】【Example】

実施例1 4mol/Lの水酸化ナトリウム4L中に1mol/L
のオキシ塩化ジルコニウム水溶液4Lを4L/hで滴下
混合しジルコニアゾルを生成した。ここで用いたオキシ
塩化ジルコニウム中の珪素の含有量は酸化ジルコニウム
に対してシリカ0.05重量%であった。得られたジル
コニアゾルを10Lのオートクレーブ中で105℃で5
6時間水熱処理を行なった。これを遠心分離洗浄し、再
びスラリー化させスラリー濃度を13%にした。これを
アトマイザー型スプレードライヤーを用いて流量1L/
h、熱風温度150℃、ディスク回転数15000rp
mで噴霧乾燥することにより平均粒子直径34μmの球
状酸化ジルコニウムが得られた。これを600℃で2時
間焼成すると細孔直径167オングストローム、細孔容
積0.15ml/g、表面積57m2 /gの正方晶と単
斜晶からなる酸化ジルコニウムが得られた。これを1N
−HCl中で1時間攪拌することにより酸処理を行な
い、順相系液体クロマトグラフィ用酸化ジルコニウム粒
子を得た。細孔直径の分布測定には水銀圧入細孔分布測
定装置を使用し、最も分布の多い細孔直径をその粒子の
細孔直径とした。得られた酸化ジルコニウムをX線回折
測定したところ正方晶系のピーク高さと単斜晶系のピー
ク高さの比は31/69であった。酸化ジルコニウム中
のシリカの含有量は蛍光X線測定により求めた。
Example 1 1 mol / L in 4 L of 4 mol / L sodium hydroxide
4 L of an aqueous solution of zirconium oxychloride was dropped and mixed at 4 L / h to produce a zirconia sol. The content of silicon in the zirconium oxychloride used here was 0.05% by weight of silica based on zirconium oxide. The obtained zirconia sol was placed in a 10 L autoclave at 105 ° C. for 5 hours.
Hydrothermal treatment was performed for 6 hours. This was washed by centrifugation and slurried again to make the slurry concentration 13%. Using an atomizer type spray dryer, the flow rate was 1 L /
h, hot air temperature 150 ° C, disk rotation speed 15000rpm
m, a spherical zirconium oxide having an average particle diameter of 34 μm was obtained. When this was fired at 600 ° C. for 2 hours, zirconium oxide composed of tetragonal and monoclinic crystals having a pore diameter of 167 Å, a pore volume of 0.15 ml / g, and a surface area of 57 m 2 / g was obtained. This is 1N
Acid treatment was carried out by stirring in -HCl for 1 hour to obtain zirconium oxide particles for normal phase liquid chromatography. The distribution of the pore diameter was measured using a mercury intrusion pore distribution measuring apparatus, and the pore diameter having the largest distribution was defined as the pore diameter of the particles. X-ray diffraction measurement of the obtained zirconium oxide showed that the ratio between the tetragonal peak height and the monoclinic peak height was 31/69. The content of silica in zirconium oxide was determined by X-ray fluorescence measurement.

【0012】解こう試験 分級して得られた粒子直径20μmの酸化ジルコニウム
粒子0.4gをガラスビーカに入れ水を9.6g加えて
全重量を10gにし、これを10分間超音波処理した後
10分間放置した。この後上澄み液を除去し、再び水を
加え水とサンプルの全重量を10gにして上記と同様の
超音波処理操作を更に2回繰り返した。3回目の超音波
処理操作直後の上澄み液の可視光の吸光度を測定するこ
とにより一次粒子の結合力の強度測定を行った。吸光度
が高いほど解こうが進んでおり、一次粒子の結合力が弱
いことになる。解こう試験の傾向は粒子直径が変化して
も変わらず、この方法は一次粒子の結合力を知る上で適
当な方法である。
Pulverization test 0.4 g of zirconium oxide particles having a particle diameter of 20 μm obtained by classification are placed in a glass beaker, and 9.6 g of water are added to make a total weight of 10 g. Let stand for minutes. Thereafter, the supernatant was removed, water was added again, the total weight of water and the sample was adjusted to 10 g, and the same ultrasonic treatment as described above was further repeated twice. Immediately after the third sonication operation, the intensity of the binding force of the primary particles was measured by measuring the absorbance of visible light of the supernatant. The higher the absorbance, the more the melting is progressing, and the lower the binding power of the primary particles. The tendency of the peptizing test does not change even when the particle diameter changes, and this method is an appropriate method for knowing the binding force of the primary particles.

【0013】実施例2、3、4 焼成温度600℃を200、400、800℃にした以
外は実施例1と同様の方法で酸化ジルコニウム粒子を調
製し、得られた酸化ジルコニウム粒子についてX線回折
測定、シリカ含有量の分析及び解こう試験を行った。こ
れらを各々実施例2、3、4とする。
Examples 2, 3, and 4 Zirconium oxide particles were prepared in the same manner as in Example 1 except that the sintering temperature was changed from 600 ° C. to 200, 400 and 800 ° C., and the obtained zirconium oxide particles were subjected to X-ray diffraction. Measurements, analysis of silica content and peptization tests were performed. These are referred to as Examples 2, 3, and 4, respectively.

【0014】比較例1 焼成温度600℃を1000℃に変えた以外は実施例1
と同様の方法で酸化ジルコニウム粒子を製造し、X線回
折測定及び解こう試験を行った。細孔直径は2200オ
ングストロームと大きくはなるが、解こう試験によれば
一次粒子の結合力は弱い。
Comparative Example 1 Example 1 except that the sintering temperature was changed from 600 ° C. to 1000 ° C.
Zirconium oxide particles were produced in the same manner as described above, and were subjected to X-ray diffraction measurement and peptization test. Although the pore diameter becomes as large as 2200 angstroms, the bonding force of the primary particles is weak according to the peptization test.

【0015】比較例2 ジルコニアゾルを生成する場合に、水酸化ナトリウム水
溶液に3号ケイ酸ナトリウム水溶液4.3g(酸化ジル
コニウムに対して1重量%のシリカに相当する)を添加
した後にオキシ塩化ジルコニウム水溶液を滴下混合する
以外は実施例3と同様の方法で酸化ジルコニウム粒子の
製造を行なった。この場合得られた酸化ジルコニウム粒
子のX線回折測定を行ったところ正方晶に対応するピー
クのみが観察された。解こう試験は実施例1と同様の方
法で行った。以上の実施例と比較例の結果を表1にまと
めた。
COMPARATIVE EXAMPLE 2 When producing a zirconia sol, 4.3 g of an aqueous solution of sodium silicate No. 3 (corresponding to 1% by weight of silica based on zirconium oxide) was added to an aqueous solution of sodium hydroxide, and then zirconium oxychloride was added. Zirconium oxide particles were produced in the same manner as in Example 3 except that the aqueous solution was dropped and mixed. In this case, when the obtained zirconium oxide particles were subjected to X-ray diffraction measurement, only peaks corresponding to tetragonal crystals were observed. The peptizing test was performed in the same manner as in Example 1. Table 1 summarizes the results of the above examples and comparative examples.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例5 実施例4で得られた細孔直径1436オングストロー
ム、細孔容積0.25ml/g、表面積26m2 /gの
酸化ジルコニウム粒子20gを160mlのトルエン中
で105℃で2時間攪拌し常圧で酸化ジルコニウムに吸
着している水分子の脱水を行なった。この後2gのOD
Sと0.46gのピリジンを加え105℃で3時間還流
させた。この後トリメチルクロロシラン(TMCS)を
0.5g、ヘキサメチルジシラザン(HMDS)を0.
5g、ピリジン0.3gを加え105℃で3時間エンド
キャッピング処理を施した。この後すばやくメタノール
を加え、n−ヘキサン、メタノールでよく洗浄し、残留
のODS,TMCS,HMDSを除去した。この後80
℃で乾燥させ表面をODS修飾した逆相系液体クロマトグ
ラフィ用酸化ジルコニウム粒子を得た。
Example 5 20 g of zirconium oxide particles having a pore diameter of 1436 Å, a pore volume of 0.25 ml / g and a surface area of 26 m 2 / g obtained in Example 4 were stirred at 105 ° C. for 2 hours in 160 ml of toluene. Then, the water molecules adsorbed on the zirconium oxide were dehydrated at normal pressure. Then 2g OD
S and 0.46 g of pyridine were added, and the mixture was refluxed at 105 ° C. for 3 hours. Thereafter, 0.5 g of trimethylchlorosilane (TMCS) and 0.1 g of hexamethyldisilazane (HMDS) were added.
5 g and 0.3 g of pyridine were added, and an end capping treatment was performed at 105 ° C. for 3 hours. Thereafter, methanol was quickly added, and the mixture was thoroughly washed with n-hexane and methanol to remove residual ODS, TMCS, and HMDS. After this 80
The dried zirconium oxide particles for reversed-phase liquid chromatography were obtained by drying at ℃.

【0018】実施例6 実施例5で得られた逆相系酸化ジルコニウム粒子を内直
径4mmφ、長さ15cmのカラムに充填し液体クロマ
トグラフィの分離状態を調べた。移動相として水/メタ
ノール=30/70で分離を試みた。なお移動相の供給
速度は0.45ml/min、カラム温度は40℃と
し、サンプルとしてウラシル、安息香酸メチル、トルエ
ン、ナフタレンを用い、検出はUV254nmで行っ
た。次に連続2000時間通液後、同測定を行ったが保
持時間に変化は見られなかった。耐アルカリ試験として
pH=11のdil.NaOH/メタノール=30/7
0の移動相を用いて上記と同様の条件で分離状態を調べ
たところ連続1000時間通液後の保持時間に変化はな
かった。
Example 6 The reversed phase zirconium oxide particles obtained in Example 5 were packed in a column having an inner diameter of 4 mmφ and a length of 15 cm, and the separation state of liquid chromatography was examined. Separation was attempted with water / methanol = 30/70 as the mobile phase. The supply rate of the mobile phase was 0.45 ml / min, the column temperature was 40 ° C., uracil, methyl benzoate, toluene and naphthalene were used as samples, and detection was performed at UV 254 nm. Next, after the liquid was continuously passed for 2000 hours, the same measurement was performed, but no change was observed in the retention time. As an alkali resistance test, dil. NaOH / methanol = 30/7
When the separation state was examined under the same conditions as above using a mobile phase of 0, there was no change in the retention time after passing the solution continuously for 1000 hours.

【0019】実施例7 実施例1で得られた細孔直径167オングストローム、
細孔容積0.15ml/g、表面積57m2 /gの酸化
ジルコニウムを用いた以外は実施例5と同様の方法で表
面をODS修飾した逆相系液体クロマトグラフィ用酸化
ジルコニウム粒子を調製した。この酸化ジルコニウム粒
子の耐アルカリ試験をするために実施例6と同様の方法
で液体クロマトグラフィの分離状態を調べたが、保持時
間に変化はなかった。
Example 7 The pore diameter of 167 Å obtained in Example 1 was obtained.
Zirconium oxide particles for reversed-phase liquid chromatography, the surface of which was ODS-modified, were prepared in the same manner as in Example 5, except that zirconium oxide having a pore volume of 0.15 ml / g and a surface area of 57 m 2 / g was used. In order to conduct an alkali resistance test of the zirconium oxide particles, the separation state of liquid chromatography was examined in the same manner as in Example 6, but no change was observed in the retention time.

【0020】[0020]

【発明の効果】酸化ジルコニウムに対してシリカの含有
率をを0.1重量%未満にすると正方晶系と単斜晶系か
らなる酸化ジルコニウムが得られる。特に200から8
00℃で焼成処理する事により得られる正方晶系が5か
ら95%および単斜晶系が95から5%の範囲の酸化ジ
ルコニウムは一次粒子の結合力が強いので耐アルカリ性
の液体クロマトグラフィ用粒子として好適である。酸化
ジルコニウム粒子をシラン系、アルミニウム系、チタン
系、もしくはジルコニウム系のカップリング剤又はアル
コールもしくはハロゲン化炭化水素を用いて修飾すれば
逆相系の酸化ジルコニウム粒子も得られる。
When the content of silica is less than 0.1% by weight with respect to zirconium oxide, tetragonal and monoclinic zirconium oxide can be obtained. Especially 200-8
Zirconium oxide having a tetragonal system content of 5 to 95% and a monoclinic system content of 95 to 5% obtained by calcining at 00 ° C. has a strong binding force of primary particles, so that it is used as alkali-resistant particles for liquid chromatography. It is suitable. If the zirconium oxide particles are modified with a silane-based, aluminum-based, titanium-based, or zirconium-based coupling agent or an alcohol or a halogenated hydrocarbon, reversed-phase zirconium oxide particles can be obtained.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01G 25/00 G01N 30/48 CA(STN)Continuation of front page (58) Field surveyed (Int. Cl. 7 , DB name) C01G 25/00 G01N 30/48 CA (STN)

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正方晶系が5から95%および単斜晶系
が95から5%よりなるシリカ含有量が0.1重量%未
満である液体クロマトグラフィ用の酸化ジルコニウム。
1. Zirconium oxide for liquid chromatography comprising from 5 to 95% tetragonal and from 95 to 5% monoclinic having a silica content of less than 0.1% by weight.
【請求項2】 平均粒子直径が0.5から300ミクロ
ンまで、細孔直径が100から1500オングストロー
ムである特許請求の範囲第1項記載の多孔性の液体クロ
マトグラフィ用の酸化ジルコニウム粒子。
2. The porous zirconium oxide particles for liquid chromatography according to claim 1, having an average particle diameter of 0.5 to 300 microns and a pore diameter of 100 to 1500 angstroms.
【請求項3】 シラン系、アルミニウム系、チタン系、
もしくはジルコニウム系のカップリング剤又はアルコー
ルもしくはハロゲン化炭化水素を用いて修飾された特許
請求の範囲第2項記載の液体クロマトグラフィ用の酸化
ジルコニウム粒子。
3. A silane-based, aluminum-based, titanium-based,
3. The zirconium oxide particles for liquid chromatography according to claim 2, wherein said zirconium oxide particles are modified with a zirconium-based coupling agent or an alcohol or a halogenated hydrocarbon.
【請求項4】 シラン系のカップリング剤がオクタデシ
ルジメチルクロロシランである特許請求の範囲第3項記
載の液体クロマトグラフィ用の酸化ジルコニウム粒子。
4. The zirconium oxide particles for liquid chromatography according to claim 3, wherein the silane coupling agent is octadecyldimethylchlorosilane.
【請求項5】 ジルコニウム塩をアルカリ水溶液に添加
することにより生成するシリカ含有量0.1重量%未満
のジルコニアゾルをアルカリ水溶液中で80から150
℃で8時間以上加熱した後乾燥し、これを200から8
00℃で焼成処理する事を特徴とする正方晶系が5から
95%および単斜晶系が95から5%よりなりシリカの
含有量が0.1重量%未満の液体クロマトグラフィ用の
酸化ジルコニウム粒子を製造する方法。
5. A zirconia sol having a silica content of less than 0.1% by weight, which is formed by adding a zirconium salt to an alkaline aqueous solution, is treated in an alkaline aqueous solution with a zirconia sol of 80 to 150%.
After heating at ℃ for more than 8 hours, it was dried.
Zirconium oxide particles for liquid chromatography, wherein the zirconium oxide particles comprise 5 to 95% of a tetragonal system and 95 to 5% of a monoclinic system and have a silica content of less than 0.1% by weight, which is calcined at 00 ° C. How to manufacture.
【請求項6】 ジルコニウム塩がオキシ塩化ジルコニウ
ム、硝酸ジルコニウム及び硫酸ジルコニウムからなる群
から選ばれた水溶性ジルコニウム塩である特許請求の範
囲第5項記載の液体クロマトグラフィ用の酸化ジルコニ
ウム粒子を製造する方法。
6. The method for producing zirconium oxide particles for liquid chromatography according to claim 5, wherein the zirconium salt is a water-soluble zirconium salt selected from the group consisting of zirconium oxychloride, zirconium nitrate and zirconium sulfate. .
【請求項7】 乾燥が噴霧乾燥である特許請求の範囲第
5項又は第6項に記載の液体クロマトグラフィ用の酸化
ジルコニウム粒子を製造する方法。
7. The method for producing zirconium oxide particles for liquid chromatography according to claim 5, wherein the drying is spray drying.
【請求項8】 焼成処理後塊状の酸化ジルコニウムを破
砕する事を特徴とする特許請求の範囲第5項又は第6項
に記載の液体クロマトグラフィ用の酸化ジルコニウム粒
子を製造する方法。
8. The method for producing zirconium oxide particles for liquid chromatography according to claim 5, wherein the bulk zirconium oxide is crushed after the calcination treatment.
【請求項9】 酸化ジルコニウム粒子の平均粒子直径が
0.5から300ミクロン及び細孔直径が100から1
500オングストロームである事を特徴とする特許請求
の範囲第6項、第7項又は第8項に記載の液体クロマト
グラフィ用の酸化ジルコニウム粒子を製造する方法。
9. Zirconium oxide particles having an average particle diameter of 0.5 to 300 microns and a pore diameter of 100 to 1
9. The method for producing zirconium oxide particles for liquid chromatography according to claim 6, wherein the particle diameter is 500 angstroms.
JP12169895A 1995-05-19 1995-05-19 Zirconium oxide for liquid chromatography and its production method Expired - Fee Related JP3228066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12169895A JP3228066B2 (en) 1995-05-19 1995-05-19 Zirconium oxide for liquid chromatography and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12169895A JP3228066B2 (en) 1995-05-19 1995-05-19 Zirconium oxide for liquid chromatography and its production method

Publications (2)

Publication Number Publication Date
JPH08319117A JPH08319117A (en) 1996-12-03
JP3228066B2 true JP3228066B2 (en) 2001-11-12

Family

ID=14817675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12169895A Expired - Fee Related JP3228066B2 (en) 1995-05-19 1995-05-19 Zirconium oxide for liquid chromatography and its production method

Country Status (1)

Country Link
JP (1) JP3228066B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906929B1 (en) * 2002-08-06 2009-07-10 삼성코닝정밀유리 주식회사 Process for preparing crystalline metal oxide
JP4777891B2 (en) * 2004-07-09 2011-09-21 旭化成ケミカルズ株式会社 Catalyst and process for producing cycloolefin
JP5018025B2 (en) * 2006-11-08 2012-09-05 住友大阪セメント株式会社 Surface-modified zirconium oxide particle dispersion and transparent composite, optical member, composition for sealing light-emitting element, and light-emitting element
JP5606125B2 (en) * 2010-03-31 2014-10-15 三菱重工業株式会社 Thermal spray powder manufacturing method, turbine member, and gas turbine

Also Published As

Publication number Publication date
JPH08319117A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
Nawrocki et al. Part I. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC
US11426707B2 (en) Composite materials containing nanoparticles and their use in chromatography
US5128291A (en) Porous titania or zirconia spheres
DE69926060T2 (en) INORGANIC COMPOUND METAL OXIDE BALLS WITH LARGE PORENE VOLUMES, THEIR PREPARATION, AND THEIR USES IN ADSORPTION AND CHROMATOGRAPHY
EP0216730B1 (en) Porous spherical glass filtrating beads and method for the manufacturing thereof
KR100609658B1 (en) Expanded perlite products with controlled particle size distribution
US4971697A (en) Thin silica flakes and method of making
US20060021941A1 (en) Composite chromatographic sorbent of mineral oxide beads with hydroxyapatite-filled pores
JP2002510787A (en) Small high-density microporous solid support material, its preparation and use for purification of large macromolecules and bioparticles
US20190270067A1 (en) Composite filter aids and methods of using composite filter aids
KR101774296B1 (en) Porous Spherical Titanium Dioxide
JP3228066B2 (en) Zirconium oxide for liquid chromatography and its production method
JP4782440B2 (en) Calcium phosphate adsorbent and method for producing the same
US4902413A (en) Organic-based porous microspheres for HPLC
KR20200038891A (en) Hydrophobic surface modified alumina and method for manufacturing the same
JP3129097B2 (en) Zirconium oxide particles for liquid chromatography and their preparation
JP4222853B2 (en) Method for producing alkali-resistant chemically modified silica gel
EP0341556A1 (en) Organic-based porous microspheres for HPLC
JP4107476B2 (en) Highly durable spherical inorganic porous material and method for producing the same
JP2023532175A (en) Stable alumina compact and method for producing alumina compact
CA2274099A1 (en) Controlled-pore amorphous silicas and process for manufacturing the same
WO2023127481A1 (en) Spherical surface-treated silica aerogel and production method therefor
Ashokan et al. Nickel-Ion Substituted Hydroxyapatite Matrices for Metal-Affinity Chromatographic Purification of Recombinant Proteins
WO1998030324A2 (en) Filterable composite adsorbents

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees