JPH08318491A - Work phase detecting method - Google Patents

Work phase detecting method

Info

Publication number
JPH08318491A
JPH08318491A JP12165195A JP12165195A JPH08318491A JP H08318491 A JPH08318491 A JP H08318491A JP 12165195 A JP12165195 A JP 12165195A JP 12165195 A JP12165195 A JP 12165195A JP H08318491 A JPH08318491 A JP H08318491A
Authority
JP
Japan
Prior art keywords
work
cutting line
image
phase
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12165195A
Other languages
Japanese (ja)
Inventor
Tomohide Shimizu
智秀 清水
Yasuhiro Kawai
泰宏 河合
Osamu Sumiya
修 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP12165195A priority Critical patent/JPH08318491A/en
Publication of JPH08318491A publication Critical patent/JPH08318491A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To efficiently detect the phase of a work having the rugged section such as a weather strip for an automobile which is held by a holder fitted to a robot by using an optical measuring instrument provided with a slit light source and a photographing tool to photograph the light cutting line described by the slit light irradiated on the work. CONSTITUTION: The pattern of the light cutting line image is categorized based on the pattern change of the light cutting line image when an optical measuring instrument 1 and a work W are relatively turned around the axis of the work, and the difference in angle from the reference phase of the work is obtained in advance when the pattern of the light cutting line image is changed to the different category. The optical measuring instrument 1 and the work W are relatively turned around while the work W is held by a holder 3, and the rotational angle at the time of change to the category of the different pattern of the light cutting line image is detected. The holding phase of the work W is calculated from the detected rotational angle and the difference in angle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車用のウェザース
トリップやオープニングトリムといった、凹凸の有る断
面形状を持つワークを保持具で保持したときのワークの
保持位相を検出する、ワークの位相検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a work phase detecting method for detecting a holding phase of a work such as a weather strip for automobiles and an opening trim having an uneven cross section when held by a holder. Regarding

【0002】[0002]

【従来の技術】従来、ウェザーストリップやオープニン
グトリムの装着は手作業で行っているが、ロボットの動
作端に取付けた保持具によりウェザーストリップ等を保
持して装着作業の自動化を図ることも考えられている。
2. Description of the Related Art Conventionally, weather strips and opening trims have been attached by hand, but it is also possible to hold the weather strips and the like by a holder attached to the operating end of the robot to automate the attachment work. ing.

【0003】ウェザーストリップやオープニングトリム
は周囲一側に車体への装着用凹部を備えており、ウェザ
ーストリップ等のワークの装着作業の自動化を図るに
は、この凹部が所定の方向を向くように、位相決めした
状態で保持具にワークを保持させる必要がある。この場
合、保持具によりワークを一旦任意の位相で保持して、
ワークの保持位相を検出し、その後にワークを所定の位
相で保持し直すことが考えられる。
The weather strip and the opening trim are provided with a recess for mounting on the vehicle body on one side of the periphery, and in order to automate the mounting work of the work such as the weather strip, the recess should be oriented in a predetermined direction. It is necessary to make the holder hold the work in a phase-determined state. In this case, hold the work once with the holding tool at an arbitrary phase,
It is possible to detect the holding phase of the work and then hold the work again at a predetermined phase.

【0004】ところで、従来、スリット光源と撮像器と
を所定の位置関係で配置して成る光学式測定装置を用
い、スリット光源からワークに照射したスリット光が描
く光切断線を撮像器で撮像し、撮像器の画面に現われる
光切断線像に基いてワークの形状や位置を計測する、光
切断法が知られている(特開昭62−272106号公
報参照)。
By the way, conventionally, an optical measuring device comprising a slit light source and an image pickup device arranged in a predetermined positional relationship is used, and the light cutting line drawn by the slit light emitted from the slit light source to the work is imaged by the image pickup device. There is known a light cutting method for measuring the shape and position of a work based on a light cutting line image appearing on the screen of an image pickup device (see Japanese Patent Laid-Open No. 62-272106).

【0005】[0005]

【発明が解決しようとする課題】ウェザーストリップ等
の、凹凸の有る断面形状を持つワークを保持具で保持し
たときのワークの保持位相を、上記光切断法を利用し
て、非接触で検出することが考えられる。然し、従来の
光切断法を利用したワークの計測は、撮像器の画面に現
われる光切断線像の各点に対応するスリット光面上の点
の座標を求めて、ワークの断面形状や位置を演算するも
のであり、ワークの断面形状の方向性からワークの保持
位相を検出できるものの、その演算処理には時間がかか
る。従って、サイクルタイムが制約される、ワークの自
動組付け工程での位相検出に従来の光切断法をそのまま
適用することは困難である。本発明は、以上の点に鑑
み、ワークの保持位相を光切断法を利用してより短時間
で検出し得るようにした方法を提供することをその目的
としている。
The holding phase of a work, such as a weather strip, having a cross-sectional shape with projections and depressions is held in a non-contact manner by using the above-mentioned optical cutting method. It is possible. However, in the measurement of a work using the conventional light cutting method, the coordinates of the point on the slit light surface corresponding to each point of the light cutting line image appearing on the screen of the image pickup device are obtained to determine the cross-sectional shape and position of the work. Although the calculation is performed and the holding phase of the work can be detected from the directionality of the cross-sectional shape of the work, the calculation process takes time. Therefore, it is difficult to apply the conventional optical cutting method as it is to the phase detection in the automatic work assembly process in which the cycle time is restricted. In view of the above points, an object of the present invention is to provide a method capable of detecting a holding phase of a work in a shorter time by using a light cutting method.

【0006】[0006]

【課題を解決するための手段】上記目的を達成すべく、
本発明は、凹凸の有る断面形状を持つワークを保持具で
保持したときのワークの保持位相を検出する位相検出方
法であって、スリット光源と撮像器とを所定の位置関係
で配置して成る光学式測定装置を用い、スリット光源か
らワークに照射したスリット光が描く光切断線を撮像器
で撮像し、撮像器の画面に現われる光切断線像に基いて
ワークの保持位相を検出する方法において、光学式測定
装置とワークとのワークの軸線回りの相対回転に伴う光
切断線像のパターン変化に基いて光切断線像のパターン
を類型化し、光切断線像のパターンが異なる類型に変化
する時のワークの基準位相からの角度差を予め求めてお
き、光切断線を撮像しつつ光学式測定装置とワークと
を、ワークを保持具に保持させたまま、ワークの軸線回
りに相対回転させて、光切断線像のパターンの異なる類
型への変化時点の回転角を検出し、検出された回転角と
前記角度差とからワークの保持位相を求める、ことを特
徴とする。
In order to achieve the above object,
The present invention is a phase detection method for detecting a holding phase of a work when a work having a cross-sectional shape with unevenness is held by a holding tool, and is configured by arranging a slit light source and an imager in a predetermined positional relationship. In the method of detecting the holding phase of the work based on the light cutting line image appearing on the screen of the imager, by using the optical measuring device, the imager captures the light cutting line drawn by the slit light emitted from the slit light source to the work. , The pattern of the optical cutting line image is typified based on the pattern change of the optical cutting line image due to the relative rotation of the optical measuring device and the work around the axis line, and the pattern of the optical cutting line image is changed to a different type. The angle difference from the reference phase of the workpiece at that time is obtained in advance, and while the optical measuring device and the workpiece are imaged while the optical cutting line is being held, the workpiece is held by the holder and relatively rotated around the axis of the workpiece. hand Detecting the rotation angle of the change time to different types of patterns of light section line image, determine the retention phase of the workpiece from the said angular difference between the detected rotation angle, and wherein the.

【0007】[0007]

【作用】ワークが周方向1箇所に凹部を有する断面形状
を持つものである場合を例にして本発明の作用を説明す
る。凹部が光学式測定装置に対し後方を向いている状態
からワークを相対回転させると、凹部が真横を向く状態
になるまで、光切断線像はワークの凹部以外の一般部に
対応する連続した1本の線状の像になるが、凹部が真横
を向く状態からワークが少許回転すると、凹部の後側の
側面にもスリット光が入射されて、光切断線像はワーク
の一般部に対応する像と凹部の後側面に対応する像とに
2分割される。従って、光切断線像のパターンを像が1
個になる第1の類型と像が2個になる第2の類型とに類
型化し、第2の類型に変化する時のワークの基準位相
(例えば、凹部が真後を向く位相)からの角度差を予め
求めておけば、光学式測定装置とワークとを相対回転さ
せて、光切断線像が第1の類型から第2の類型に変化し
た時点の回転角を検出することにより、ワークの保持位
相の基準位相からのずれ角を求めることができる。
The operation of the present invention will be described by taking as an example the case where the work has a sectional shape having a recess at one location in the circumferential direction. When the workpiece is rotated relative to the optical measuring device from the state in which the concave portion faces rearward, the optical cutting line images are continuous 1 corresponding to general portions other than the concave portion of the workpiece until the concave portion faces right side. Although it becomes a linear image of the book, when the work rotates slightly from the state where the recess is oriented right side, the slit light is also incident on the rear side surface of the recess, and the light cutting line image corresponds to the general part of the work. The image and the image corresponding to the rear surface of the concave portion are divided into two. Therefore, the pattern of the light section line image is 1
The angle from the reference phase of the work (for example, the phase in which the recess faces right behind) when the pattern is categorized into the first type that becomes two and the second type that has two images and changes to the second type. If the difference is obtained in advance, the optical measuring device and the workpiece are relatively rotated, and the rotation angle at the time when the optical cutting line image changes from the first type to the second type is detected. The deviation angle of the holding phase from the reference phase can be obtained.

【0008】尚、上記従来の光切断法をそのまま利用す
る場合でも、光切断線像がワークの一般部に対応する像
のみであると方向性を判別できないため、凹部が前を向
いて凹部に対応する像が現われるまで光学式測定装置と
ワークとを相対回転させる必要がある。そして、この状
態で撮像された、凹部に対応する像の各点の座標から複
雑な演算処理でワークの位相を求めることになる。一
方、本発明によれば、光切断線像がどの類型に属するか
を判別して、異なる類型への変化時点を特定するだけで
良く、ここで類型判別は簡単な処理で行うことができる
ため、ワークの保持位相を短時間で検出できる。
Even when the conventional light cutting method is used as it is, the direction cannot be determined if the light cutting line image is only an image corresponding to the general part of the work. It is necessary to rotate the optical measuring device and the workpiece relative to each other until the corresponding image appears. Then, the phase of the work is obtained by a complicated calculation process from the coordinates of each point of the image corresponding to the recess imaged in this state. On the other hand, according to the present invention, it suffices to determine which type the optical cutting line image belongs to and specify the time point of change to a different type. Here, the type determination can be performed by a simple process. The holding phase of the work can be detected in a short time.

【0009】[0009]

【実施例】図4に示す如き断面形状を持つ、自動車用ウ
ェザーストリップから成るワークWの位相検出に本発明
を適用した実施例について説明する。
EXAMPLE An example in which the present invention is applied to the phase detection of a work W having an automobile weatherstrip and having a sectional shape as shown in FIG. 4 will be described.

【0010】図1を参照して、1は、支柱10にスリッ
ト光源11とCCDカメラから成る撮像器12とを取付
けて構成した光学式測定装置であり、ロボット2の動作
端に取付けた保持具3によりワークWを任意の位相で保
持した後、ワークWをロボット2の動作で光学式測定装
置1に対向する所定の計測位置に搬送する。
With reference to FIG. 1, reference numeral 1 is an optical measuring device constituted by mounting a slit light source 11 and an image pickup device 12 composed of a CCD camera on a column 10, and a holder attached to the working end of the robot 2. After the work W is held at an arbitrary phase by 3, the work W is conveyed to a predetermined measurement position facing the optical measuring device 1 by the operation of the robot 2.

【0011】スリット光源11と撮像器12とは、スリ
ット光源11から照射されるスリット光の光面(以下、
スリット光面と記す)に撮像器12の光軸が所定角度で
斜交するように、所定の位置関係で支柱10に取付けら
れている。図示例では、スリット光面が斜め上向きにな
るようにスリット光源11を配置し、その上方に光軸が
スリット光面に斜交する水平線に合致するように撮像器
12を配置しているが、スリット光面を水平にし、撮像
器12の光軸を上下方向に傾けてスリット光面に斜交さ
せても良い。尚、支柱10の上端には、ワークWを一時
的に保持する第2の保持具13が取付けられている。図
中14は画像処理装置である。
The slit light source 11 and the image pickup device 12 have an optical surface of slit light emitted from the slit light source 11 (hereinafter,
The optical axis of the image pickup device 12 is attached to the support column 10 in a predetermined positional relationship such that the optical axis of the image pickup device 12 obliquely intersects the slit light surface). In the illustrated example, the slit light source 11 is arranged so that the slit light surface faces obliquely upward, and the image pickup device 12 is arranged above the slit light source 11 so as to match the horizontal line obliquely intersecting the slit light surface. The slit light surface may be horizontal, and the optical axis of the image pickup device 12 may be tilted in the vertical direction so as to be oblique to the slit light surface. A second holder 13 for temporarily holding the work W is attached to the upper end of the column 10. Reference numeral 14 in the drawing is an image processing apparatus.

【0012】ロボット2は、図2に示す如く、ベース2
0上に設けた、垂直の第1軸2a回りに旋回自在な肩部
21と、肩部21に対し水平の第2軸2bを中心にして
上下方向に揺動自在な上腕部22と、上腕部22に対し
第3軸2cを中心にして旋回自在な肘部23と、肘部2
3に対し第4軸2dを中心にして揺動自在な下腕部24
と、下腕部24に対し第5軸2eを中心にして旋回自在
な手首25と、手首25に対し第6軸2f及び第7軸2
gを中心にして揺動及び旋回自在なツールホルダ26と
を備える、7軸の多関節ロボットで構成されており、ツ
ールホルダ26に保持具3を取付けて、保持具3の姿勢
をワークWが垂れ下がるような姿勢に維持したまま、ロ
ボット2の各軸の動きでワークWをその軸線回りに36
0°回転し得るようにした。
The robot 2 has a base 2 as shown in FIG.
0, a shoulder portion 21 that is rotatable around a vertical first axis 2a, an upper arm portion 22 that is vertically swingable around a second axis 2b that is horizontal with respect to the shoulder portion 21, and an upper arm. An elbow portion 23 which is rotatable about the third axis 2c with respect to the portion 22, and an elbow portion 2
3, the lower arm portion 24 that can swing about the fourth axis 2d
And a wrist 25 that is rotatable about the fifth axis 2e with respect to the lower arm portion 24, and a sixth axis 2f and a seventh axis 2 with respect to the wrist 25.
It is configured by a 7-axis articulated robot including a tool holder 26 that can be swung and swung about g. The holder 3 is attached to the tool holder 26, and the workpiece W is set to the posture of the holder 3. While maintaining the hanging posture, the work W is moved around its axis by the movement of each axis of the robot 2.
It was made possible to rotate by 0 °.

【0013】保持具3によるワークWの保持位相の検出
に際しては、ワークWを計測位置に搬送した後、スリッ
ト光源11からワークWにスリット光を照射し、ワーク
Wの表面にスリット光によって描かれる光切断線を撮像
器12で撮像しつつワークWをその軸線回りに回転させ
る。
When the holding phase of the workpiece W is detected by the holder 3, the workpiece W is conveyed to the measuring position, and then the slit light source 11 irradiates the workpiece W with slit light so that the surface of the workpiece W is drawn by the slit light. The work W is rotated around its axis while the optical cutting line is imaged by the imager 12.

【0014】この際、撮像器12の画面には、ワークW
をスリット光面で切断したときの断面形状に対応する光
切断線像が現われ、この像のパターンは、ワークWの回
転に伴って図3に示す如く変化する。これを、ワークW
のA,C,D,Fの各部が光学式測定装置1側を向く状
態、即ち、図4のθ0の位置に光学式測定装置1が存在
する状態を基準位相に設定した場合を例にして詳述す
る。
At this time, the work W is displayed on the screen of the image pickup device 12.
A light-section line image corresponding to the cross-sectional shape when the light is cut along the slit light surface appears, and the pattern of this image changes as shown in FIG. This is the work W
As an example, the case where each of A, C, D, and F of FIG. 4 faces the optical measuring device 1 side, that is, the state where the optical measuring device 1 exists at the position of θ 0 in FIG. 4 is set as the reference phase. Will be described in detail.

【0015】基準位相では、ワークWのA,C,D,F
の各部にスリット光が照射されて、光切断線像は、図3
(a)に示す如く、A部に対応する像aと、C,D部に
対応する連続した像c,dと、F部に対応する像fとに
3分割されたパターンになる。ここで、ワークWを回転
させるということは、光学式測定装置1をワークWの軸
線回りに公転させることと等価であり、該測定装置1が
図4のθ1の位置を越えると、ワークWのA部にスリッ
ト光が照射されなくなって、光切断線像は、図3(b)
に示す如く、C部に対応する像cと、F,G部に対応す
る連続した像f,gとに2分割されたパターンになる。
光学式測定装置1が図4のθ2の位置を越えると、ワー
クWのC部にスリット光が照射されなくなり、光切断線
像は、図3(c)に示す如く、F,G部に対応する連続
した1つの像f,gになる。その後、ワークWの回転に
伴い、光切断線像は、図3(d)に示す如く、G,H部
に対応する連続した像g,hになり、次いで、図3
(e)に示す如く、H部に対応する像hになるが、何れ
も像が1つのパターンに維持される。光学式測定装置1
が図4のθ3の位置を越えると、ワークWのB部にスリ
ット光が照射されて、光切断線像は、図3(f)に示す
如く、H部に対応する像hと、B部に対応する像bとに
2分割されたパターンになる。光学式測定装置1が図4
のθ4の位置を越えると、ワークWのE部にもスリット
光が照射されて、光切断線像は、図3(g)に示す如
く、H部に対応する像hと、B部に対応する像bと、E
部に対応する像eとに3分割されたパターンになる。光
学式測定装置1が図4のθ5の位置を越えると、ワーク
WのA部、更に、C部とD部の突き合せ端にスリット光
が照射されて、光切断線像は、図3(h)に示す如く、
A,B,C,D,Eの各部に対応する連続した1つの像
a,b,c,d,eになる。光学式測定装置1が図4の
θ6の位置を越えると、E部にスリット光が照射されな
くなり、光切断線像は、図3(i)に示す如く、A,
B,C,Dの各部に対応する連続した像a,b,c,d
と、F部に対応する像fとに2分割されたパターンにな
る。そして、基準位相に戻ったところでB部にスリット
光が照射されなくなって、光切断線像は、上記の如く3
分割されたパターンになる。
At the reference phase, A, C, D and F of the work W are
The slit light is radiated to each part of FIG.
As shown in (a), the pattern is divided into three parts: an image a corresponding to the A portion, continuous images c and d corresponding to the C and D portions, and an image f corresponding to the F portion. Here, rotating the work W is equivalent to revolving the optical measuring device 1 around the axis of the work W, and when the measuring device 1 exceeds the position of θ 1 in FIG. The slit light is no longer radiated to the part A of FIG.
As shown in FIG. 3, the pattern is divided into two, an image c corresponding to the C portion and continuous images f and g corresponding to the F and G portions.
When the optical measuring device 1 goes beyond the position of θ 2 in FIG. 4, the slit light is not radiated to the C portion of the work W, and the optical cutting line image is shown in the F and G portions as shown in FIG. 3C. There will be one corresponding continuous image f, g. After that, as the work W rotates, the light section line image becomes continuous images g and h corresponding to the G and H portions, as shown in FIG.
As shown in (e), the image h corresponds to the H portion, but the image is maintained in one pattern in both cases. Optical measuring device 1
4 exceeds the position of θ 3 in FIG. 4, the slit light is irradiated to the B portion of the work W, and the light cutting line image shows images h and B corresponding to the H portion as shown in FIG. The pattern is divided into two, an image b corresponding to a copy. The optical measuring device 1 is shown in FIG.
When the position of θ 4 is exceeded, the slit light is also radiated to the E part of the work W, and the light cutting line image is formed on the image h corresponding to the H part and the B part as shown in FIG. 3 (g). Corresponding image b and E
A pattern divided into three parts is formed into an image e corresponding to a part. When the optical measuring device 1 exceeds the position of θ 5 in FIG. 4, slit light is irradiated to the A portion of the work W, and the abutting ends of the C portion and the D portion, and the light cutting line image is shown in FIG. As shown in (h),
It becomes one continuous image a, b, c, d, e corresponding to each part of A, B, C, D, E. When the optical measuring device 1 goes beyond the position of θ 6 in FIG. 4, the slit light is no longer emitted to the E portion, and the light section line image is A, as shown in FIG.
Continuous images a, b, c, d corresponding to the respective parts B, C, D
And an image f corresponding to the F portion is divided into two patterns. Then, when the beam returns to the reference phase, the slit light is no longer emitted to the B portion, and the light section line image is as described above.
It becomes a divided pattern.

【0016】そして、光学式測定装置1をθ0の位置か
ら反時計方向に公転(ワークを基準位相から時計方向に
回転)させたとき、光切断線像のパターンは、像の数で
類型化して、下表の如く変化する。
When the optical measuring device 1 is revolved counterclockwise from the position of θ 0 (the work is rotated clockwise from the reference phase), the pattern of the light section line image is typified by the number of images. And changes as shown in the table below.

【0017】 この表から明らかなように、光学式測定装置1を反時計
方向に回転させたときに、像の数が3個の類型から2個
の類型に変化する点はθ1だけであり、像の数が2個の
類型から1個の類型に変化する点はθ2だけであり、像
の数が3個の類型から1個の類型に変化する点はθ5
けである。そこで、θ0とθ1との間の角度差(以下、こ
れをθ1と記す)と、θ0とθ2との間の角度差(以下、
これをθ2と記す)と、θ0とθ5との間の角度差(以
下、これをθ5と記す)とを求めて、画像処理装置14
に記憶させておく。
[0017] As is clear from this table, when the optical measuring device 1 is rotated in the counterclockwise direction, the point where the number of images changes from three types to two types is only θ 1 . The only point where the number changes from two types to one type is θ 2 , and the only point where the number of images changes from three types to one type is θ 5 . Therefore, the angle difference between θ 0 and θ 1 (hereinafter, referred to as θ 1 ) and the angle difference between θ 0 and θ 2 (hereinafter,
This is referred to as θ 2 ) and the angle difference between θ 0 and θ 5 (hereinafter, referred to as θ 5 ) is calculated, and the image processing device 14
To be stored.

【0018】ワークWの位相検出に際しては、保持具3
を光学式測定装置1に正対させた状態、即ち、図4に仮
想線で示す保持具3に対しθ0の位置に光学式測定装置
1が存在する状態を原点として、ロボット2の動作によ
る保持具3の回転でワークWをその軸線回りに時計方向
に回転させる。そして、ワークWを所定の単位角度回転
する度に撮像器12の画像データを画像処理装置14に
送信し、画像を二値化すると共にノイズを除去し、二値
化画像にラベリング処理を施して、光切断線像の像の数
をカウントする。
When detecting the phase of the work W, the holder 3
Is made to face the optical measuring device 1, that is, the state where the optical measuring device 1 exists at the position of θ 0 with respect to the holder 3 shown by a virtual line in FIG. The rotation of the holder 3 causes the work W to rotate clockwise about its axis. Then, every time the work W is rotated by a predetermined unit angle, the image data of the image pickup device 12 is transmitted to the image processing device 14, the image is binarized, noise is removed, and the binarized image is labeled. , Count the number of light section line images.

【0019】そして、図5に示す如く、像の数が前回と
変化したか否かを判別し(S1)、変化したときは変化
時点の回転角θを検出すると共に(S2)、像の数の変
化が3個から2個への変化か、2個から1個への変化
か、3個から1個への変化か、それ以外の変化かの判別
を行う(S3〜S5)。
Then, as shown in FIG. 5, it is determined whether or not the number of images has changed from the previous time (S1), and when it changes, the rotation angle θ at the time of change is detected (S2), and the number of images is changed. It is discriminated whether the change of 3 changes from 3 to 2, the change from 2 to 1, the change from 3 to 1, or any other change (S3 to S5).

【0020】ここで、ワークWを車体に装着するには、
H部を手前にしてワークWを保持具3で保持し(保持具
3を原点の向きにしたときワークWが基準位相となる状
態)、保持具3に対し先方を向くC,D部間に車体側の
取付フランジを差し込む必要があり、この位相をワーク
Wの正規の保持位相とすると、保持位相が正規であれ
ば、保持具3を原点からθ1回転させたとき光切断線像
の像の数が3個から2個に変化し、θ2回転させたとき
像の数が2個から1個に変化し、θ5回転させたとき像
の数が3個から1個に変化する。そして、ワークWの保
持位相の正規位相からのずれ角△θ(ずれ方向が時計方
向のときを正、反時計方向のときを負とする)は、保持
具3の原点からの時計方向への回転角をθとして、像の
数が3個から2個に変化した場合、 △θ = θ1−θ となり、像の数が2個から1個に変化した場合、 △θ = θ2−θ となり、像の数が3個から1個に変化した場合、 △θ = θ5−θ となり、θn(n = 1,2,5)とθとから△θを求め
ることができる。
Here, in order to mount the work W on the vehicle body,
The work W is held by the holder 3 with the H part facing you (when the holder 3 is oriented toward the origin, the work W is in the reference phase), and between the C and D parts facing forward with respect to the holder 3. It is necessary to insert the mounting flange on the vehicle body side, and assuming that this phase is the normal holding phase of the work W, if the holding phase is normal, the image of the light cutting line image when the holder 3 is rotated by θ 1 from the origin. Changes from 3 to 2, the number of images changes from 2 to 1 when rotated by θ 2 , and the number of images changes from 3 to 1 when rotated by θ 5 . The deviation angle Δθ of the holding phase of the workpiece W from the normal phase (the deviation direction is positive when the deviation direction is clockwise and the negative direction when the deviation direction is counterclockwise) is measured from the origin of the holder 3 in the clockwise direction. When the rotation angle is θ and the number of images changes from 3 to 2, Δθ = θ 1 −θ, and when the number of images changes from 2 to 1, Δθ = θ 2 −θ When the number of images changes from 3 to 1, Δθ = θ 5 −θ, and Δθ can be obtained from θn (n = 1, 2, 5) and θ.

【0021】そこで、像の数が3個から2個に変化した
ときは、θnをθ1とし(S6)、像の数が2個から1個
に変化したときは、θnをθ2とし(S7)、像の数が3
個から1個に変化したときは、θnをθ5とし(S8)、
ワークWの保持位相の正規位相からのずれ角△θを、次
式、 △θ = θn−θ から求める(S9)。
Therefore, when the number of images changes from 3 to 2, θn is set to θ 1 (S6), and when the number of images changes from 2 to 1, θn is set to θ 2 ( S7), the number of images is 3
When changing from pieces to one is a θn and θ 5 (S8),
The deviation angle Δθ of the holding phase of the work W from the normal phase is calculated from the following equation, Δθ = θn−θ (S9).

【0022】尚、本実施例では、像の数が3個から2
個、2個から1個、3個から1個の何れかに変化して、
△θが1回算定されたところでワークWの位相検出処理
を終了しているが、△θを3回算定するまで位相検出処
理を続行して、その平均値を求めるようにしても良い。
この場合でも、像の数はラベリング処理によって短時間
で検出できるから、処理時間は左程長くはならない。
In this embodiment, the number of images is 3 to 2
Change from one, two to one, three to one,
Although the phase detection process of the work W is finished when Δθ is calculated once, the phase detection process may be continued until Δθ is calculated three times and the average value thereof may be obtained.
Even in this case, since the number of images can be detected in a short time by the labeling process, the processing time does not become as long as the left.

【0023】上記の如くして△θを算定すると、第2の
保持具13にワークWを受渡し、次いで保持具3を時計
方向に△θだけ回転させ、その後該保持具3により再度
ワークWを保持する。この状態では、ワークWが保持具
3によって正規位相で保持されることになり、ワークW
の車体への装着を行うことができる。
When Δθ is calculated as described above, the work W is delivered to the second holder 13, the holder 3 is rotated clockwise by Δθ, and then the work W is again held by the holder 3. Hold. In this state, the work W is held by the holder 3 in the normal phase, and the work W
Can be mounted on the vehicle body.

【0024】尚、像の数が3個から2個に変化したとき
や、2個から1個に変化したときや、3個から1個に変
化したとき、ワークWの位相は基準位相から時計方向に
夫々θ1,θ2,θ5ずれており、従って、これらの変化
時点におけるワークWの回転角θを検出し、この角度位
置からワークWを反時計方向に夫々θ1,θ2,θ5回転
すればワークWは基準位相になる。そして、ワークWを
基準位相に戻したところでワークWを第2の保持具13
に受渡し、保持具3を光学式測定装置1に正対する向
き、即ち、原点に回動復帰させて、ワークWを再度保持
具3で保持すれば、ワークWは保持具3に正規位相で保
持される。この方法は、像の変化時点における回転角θ
とθn(n = 1,2,5)とに基いてワークWの保持位
相の正規位相からのずれ角△θを直接算定する上記実施
例とは異なるが、ワークWをθからθnだけ逆転すると
いう形態でずれ角△θを間接的に求めるものであり、こ
れも本発明の技術的範囲に属する。
When the number of images changes from three to two, from two to one, or from three to one, the phase of the work W changes from the reference phase to the clock. There are deviations of θ 1 , θ 2 , and θ 5 in the respective directions. Therefore, the rotation angle θ of the workpiece W at these changing points is detected, and the workpiece W is rotated counterclockwise from this angular position by θ 1 , θ 2 , and θ 5 , respectively. The work W becomes the reference phase by rotating θ 5 . Then, when the work W is returned to the reference phase, the work W is held by the second holder 13
When the holder 3 is handed over to the holder 3, and the workpiece W is held by the holder 3 again by rotating the holder 3 in a direction directly facing the optical measuring device 1, that is, returning to the origin. To be done. This method uses the rotation angle θ at the time of image change.
And θn (n = 1, 2, 5), the work W is reversed from θ by θn, although the deviation angle Δθ from the normal phase of the work W is calculated directly. The deviation angle Δθ is indirectly obtained in this form, and this also belongs to the technical scope of the present invention.

【0025】また、ロボット2を位相検出専用とし、ワ
ーク装着用のロボットを別に設けて、保持具3から第2
の保持具13に基準位相でワークWを受渡した後、ワー
ク装着用ロボットの動作端に取付けた保持具を光学式測
定装置1に正対させた状態で該保持具によりワークWを
保持するようにしても良い。これによれば、ワークWの
装着作業中に次のワークWの位相検出を行うことがで
き、作業能率の一層の向上を図れる。
Further, the robot 2 is exclusively used for phase detection, and a robot for mounting a work is separately provided so that the holder 3 to the second
After the workpiece W is delivered to the holder 13 at the reference phase, the workpiece W is held by the holder attached to the working end of the workpiece mounting robot in a state of being directly opposed to the optical measuring device 1. You can According to this, the phase of the next work W can be detected during the work of mounting the work W, and the work efficiency can be further improved.

【0026】[0026]

【発明の効果】以上の説明から明らかなように、本発明
によれば、ワークの保持位相を短時間で能率良く検出で
き、サイクルタイムが制約されるワークの自動組付け工
程への適用が可能となる。
As is apparent from the above description, according to the present invention, the holding phase of the work can be detected efficiently in a short time, and the work can be applied to the automatic assembly process of the work whose cycle time is restricted. Becomes

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施に用いる設備の一例の斜視図FIG. 1 is a perspective view of an example of equipment used for implementing the present invention.

【図2】 上記設備に含まれるロボットの斜視図FIG. 2 is a perspective view of a robot included in the above equipment.

【図3】 (a)〜(i)ワークの回転に伴う光切断線
像のパターン変化を示す図
3 (a) to (i) are views showing a pattern change of an optical cutting line image accompanying rotation of a work.

【図4】 ワークの回転に伴う光学式測定装置の相対位
置の変化を示す図
FIG. 4 is a diagram showing a change in relative position of the optical measuring device with rotation of a work.

【図5】 ワークの位相検出のプログラムを示すフロー
チャート
FIG. 5 is a flowchart showing a work phase detection program.

【符号の説明】[Explanation of symbols]

1 光学式測定装置、 11 スリット光源、 12
撮像器 2 ロボット 、 3 保持具 、 W
ワーク
1 Optical Measuring Device, 11 Slit Light Source, 12
Imager 2 Robot, 3 Holder, W
work

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 凹凸の有る断面形状を持つワークを保持
具で保持したときのワークの保持位相を検出する位相検
出方法であって、スリット光源と撮像器とを所定の位置
関係で配置して成る光学式測定装置を用い、スリット光
源からワークに照射したスリット光が描く光切断線を撮
像器で撮像し、撮像器の画面に現われる光切断線像に基
いてワークの保持位相を検出する方法において、 光学式測定装置とワークとのワークの軸線回りの相対回
転に伴う光切断線像のパターン変化に基いて光切断線像
のパターンを類型化し、光切断線像のパターンが異なる
類型に変化する時のワークの基準位相からの角度差を予
め求めておき、 光切断線を撮像しつつ光学式測定装置とワークとを、ワ
ークを保持具に保持させたまま、ワークの軸線回りに相
対回転させて、光切断線像のパターンの異なる類型への
変化時点の回転角を検出し、 検出された回転角と前記角度差とからワークの保持位相
を求める、 ことを特徴とするワークの位相検出方法。
1. A phase detection method for detecting a holding phase of a work when a work having a cross-sectional shape having irregularities is held by a holding tool, wherein a slit light source and an image pickup device are arranged in a predetermined positional relationship. The optical measuring device is used to image the light cutting line drawn by the slit light emitted from the slit light source to the work with the image pickup device, and the holding phase of the work is detected based on the light cutting line image appearing on the screen of the image pickup device. In the above, the pattern of the optical cutting line image was typified based on the pattern change of the optical cutting line image due to the relative rotation of the optical measuring device and the work around the axis of the work, and the pattern of the optical cutting line image was changed to a different type. When the angle difference from the reference phase of the work is obtained in advance, the optical measuring device and the work are relatively rotated around the axis of the work while holding the work on the holder while imaging the optical cutting line. It And detecting the rotation angle at the time of changing the pattern of the optical cutting line image to a different pattern, and determining the holding phase of the work from the detected rotation angle and the angle difference. .
JP12165195A 1995-05-19 1995-05-19 Work phase detecting method Pending JPH08318491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12165195A JPH08318491A (en) 1995-05-19 1995-05-19 Work phase detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12165195A JPH08318491A (en) 1995-05-19 1995-05-19 Work phase detecting method

Publications (1)

Publication Number Publication Date
JPH08318491A true JPH08318491A (en) 1996-12-03

Family

ID=14816530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12165195A Pending JPH08318491A (en) 1995-05-19 1995-05-19 Work phase detecting method

Country Status (1)

Country Link
JP (1) JPH08318491A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137114A (en) * 2006-12-01 2008-06-19 Honda Motor Co Ltd Robot, and method and program for controlling the same
CN106524945A (en) * 2016-10-13 2017-03-22 无锡科技职业学院 Plane included angle online measurement method based on mechanical arm and structured light vision
CN108120721A (en) * 2017-12-21 2018-06-05 重庆晓微城企业孵化器有限公司 A kind of engine commutator automatic visual detecting system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137114A (en) * 2006-12-01 2008-06-19 Honda Motor Co Ltd Robot, and method and program for controlling the same
JP4481291B2 (en) * 2006-12-01 2010-06-16 本田技研工業株式会社 Robot, its control method and control program
US8041457B2 (en) 2006-12-01 2011-10-18 Honda Motor Co., Ltd. Robot, control method therefor and control program therefor
CN106524945A (en) * 2016-10-13 2017-03-22 无锡科技职业学院 Plane included angle online measurement method based on mechanical arm and structured light vision
CN108120721A (en) * 2017-12-21 2018-06-05 重庆晓微城企业孵化器有限公司 A kind of engine commutator automatic visual detecting system
CN108120721B (en) * 2017-12-21 2020-04-28 重庆晓微城企业孵化器有限公司 Automatic vision detection system of motor commutator

Similar Documents

Publication Publication Date Title
US7768632B2 (en) Method of and apparatus for determining geometrical dimensions of a vehicle wheel
JP3040670B2 (en) Welding line tracking method and robot controller using laser sensor
EP2353890A1 (en) Apparatus and method of determing geometrical dimensions of a tyre with optical sensors
JP2003240521A (en) Method and apparatus for inspection of external appearance and shape of specimen
JP2005005608A (en) Teaching apparatus for substrate transfer robot and teaching method
JP6588704B2 (en) Tool cutting edge detection method and apparatus, and tool correction value setting apparatus
JP2004138462A (en) Three-dimensional visual sensor
JP2786070B2 (en) Inspection method and apparatus for transparent plate
US5458527A (en) Grinding wheel wear compensator
JPH08318491A (en) Work phase detecting method
JP3958815B2 (en) Tool position measuring method in NC machine tools
JP2005189205A (en) Three-dimensional shape measuring apparatus and method
JPH05322527A (en) Three-dimensional shape measuring device
JP7075806B2 (en) Tool shape measuring device and measuring method in tool presetter
JP3340143B2 (en) Polishing tool control device
JP2902608B2 (en) 3D measurement method
JP2932418B2 (en) Work position measurement method
JP2913370B2 (en) Optical position measurement method
JP2501906Y2 (en) Grinding wheel wear correction device for surface grinding
JP3101801B2 (en) Abnormal inspection method of optical measuring device
JP2598413B2 (en) Application height detection device
JP2514991B2 (en) Car tire mounting method
KR20020090636A (en) Pipe Fitting's Welding Method Using Laser Vision Sensor and the Apparatus thereof
JP2523932B2 (en) Correcting method of normal direction of cutting work tool of robot
JP6486632B2 (en) Tool shape acquisition method and apparatus