JPH08318158A - Catalyst for production of high calorie gas and its production - Google Patents

Catalyst for production of high calorie gas and its production

Info

Publication number
JPH08318158A
JPH08318158A JP7166772A JP16677295A JPH08318158A JP H08318158 A JPH08318158 A JP H08318158A JP 7166772 A JP7166772 A JP 7166772A JP 16677295 A JP16677295 A JP 16677295A JP H08318158 A JPH08318158 A JP H08318158A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
ruthenium
group
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7166772A
Other languages
Japanese (ja)
Other versions
JP3625528B2 (en
Inventor
Takashi Suzuki
崇 鈴木
Hikoichi Iwanami
彦一 岩波
Takashi Yoshizawa
隆 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Original Assignee
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COSMO SOGO KENKYUSHO KK, Cosmo Oil Co Ltd filed Critical COSMO SOGO KENKYUSHO KK
Priority to JP16677295A priority Critical patent/JP3625528B2/en
Publication of JPH08318158A publication Critical patent/JPH08318158A/en
Application granted granted Critical
Publication of JP3625528B2 publication Critical patent/JP3625528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To produce a catalyst having superior mechanical strength, excellent in resistance to poisoning by sulfur and the deposition of carbon, hardly reducing its activity over a long time and capable of efficiently producing high calorie gas. CONSTITUTION: Carrier stock contg. aluminum hydroxide (a), at least one kind of metal oxide (b) selected from among oxides of groups II and III metals and lanthanoids and a combustible high molecular compd. (c) is molded into a carrier substrate and fired to form an activated alumina composite carrier. The amt. of the metal oxide (b) is 5-30wt.% of the amt. of the resultant catalyst. Ruthenium is then deposited on the carrier and reduced to produce the objective catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素等を水蒸気改
質することにより高カロリーの代替天然ガス(以下、S
NGということもある)を製造するプロセスに使用する
触媒及びその触媒の製造方法に関する。
The present invention relates to a high-calorie alternative natural gas (hereinafter referred to as S
NG) and a method for producing the catalyst.

【0002】[0002]

【従来の技術】代替天然ガス(substitute
natural gas)とは、天然ガスに代わる高カ
ロリー(約40,000kJ・m-3)の燃料用ガスであ
り、SNGと略称される。都市ガス原料として天然ガ
ス、液化石油ガスなどを単独で供給する場合には、低級
炭化水素が主成分であり、水素は含まれない。また、ナ
フサ、原重油などを都市ガス原料とする場合には、これ
らをガス化する必要がある。このガス化プロセスとして
は、ニッケル触媒による水蒸気改質法が多く採用されて
おり、反応条件の違いによって、水素を主成分とする発
熱量の低いガス、メタン及び水素を主成分とする比較的
高熱量のガス、あるいはほとんどメタンよりなる代替天
然ガス(SNG)などが製造される。炭化水素の水蒸気
改質触媒としては、アルミナ等の担体にニッケルを担持
させたニッケル系触媒が実用上広く用いられている。し
かし、ニッケル系触媒は触媒上に炭素析出を起こし易
く、その結果として触媒の活性が低下する虞がある。従
って、そのような問題を回避するために、次式で表され
る、改質反応時の水蒸気モル数と原料炭化水素中の炭素
モル数との比(以下、S/C比という)は通常高く設定
される。一例として、ナフサの水蒸気改質ではS/C比
は3〜5付近で運転されている。
2. Description of the Related Art Substitute natural gas
Natural gas) is a high-calorie (approximately 40,000 kJ · m −3 ) fuel gas that replaces natural gas, and is abbreviated as SNG. When natural gas, liquefied petroleum gas or the like is supplied alone as a city gas raw material, lower hydrocarbons are the main component and hydrogen is not contained. When naphtha, crude oil, etc. are used as raw materials for city gas, it is necessary to gasify them. As this gasification process, a steam reforming method using a nickel catalyst is often adopted, and a gas having a low calorific value containing hydrogen as a main component and a relatively high gas containing methane and hydrogen as a main component due to a difference in reaction conditions. Calorific gas or alternative natural gas (SNG), which consists almost entirely of methane, is produced. As a steam reforming catalyst for hydrocarbons, a nickel-based catalyst in which nickel is supported on a carrier such as alumina is widely used in practice. However, nickel-based catalysts tend to cause carbon deposition on the catalyst, and as a result, the activity of the catalyst may decrease. Therefore, in order to avoid such a problem, the ratio (hereinafter, referred to as S / C ratio) between the number of moles of water vapor during the reforming reaction and the number of carbon moles in the raw material hydrocarbon represented by the following equation is usually Set high. As an example, the steam reforming of naphtha is operated at an S / C ratio of around 3 to 5.

【0003】[0003]

【数1】 [Equation 1]

【0004】一方、ルテニウム系触媒には炭素析出を抑
制する効果があり、そのため、従来のニッケル系触媒と
比較してS/C比をおよそ1/2に低減することができ
る。従って、SNG製造においては、水蒸気原単位(製
品単位量当たりの水蒸気使用量)がプロセスの運転コス
トの中で大きな割合を占めるため、ルテニウム触媒を用
いることにより製造原価を下げることができる。このよ
うなルテニウム触媒系に関しては、アルミナ若しくはシ
リカ担体にルテニウムを担持したもの(特開昭57−4
232号公報)、アルカリ金属酸化物またはアルカリ土
類酸化物に酸化セリウムを添加した担体を使用したもの
(特開平4−265156号公報)、前駆体にルテニウ
ム酸ソーダ等のアルカリ塩を使用するもの(特開昭60
−227834号公報)、ジルコニウム酸化物を担体に
使用するもの(特開平2−302304号公報)等の報
告例がある。従来の水素製造を目的とした高温水蒸気改
質触媒においては、熱的炭素析出が硫黄被毒以外の原因
で起こるため、炭素析出対策を含めた耐硫黄性に関する
高度な触媒設計は必要とされなかった。しかしながら、
炭化水素の低温水蒸気改質によるSNG製造にあって
は、化学平衡上400〜500℃程度の反応温度で充分
な反応が得られ、かつ平衡転化率に極めて近い反応成績
を示すことが触媒に求められる。この温度は、通常の水
蒸気改質の約1/2であり、平衡上も炭素析出が起こり
易い領域にある。さらに、原料中の硫黄分を含む不純物
や原料に添加されている着臭剤等の硫黄化合物により、
触媒が被毒される可能性が高く、これに起因する炭素析
出の併発も懸念される。
On the other hand, the ruthenium-based catalyst has an effect of suppressing carbon deposition, and therefore, the S / C ratio can be reduced to about 1/2 as compared with the conventional nickel-based catalyst. Therefore, in SNG production, since the steam basic unit (the amount of steam used per unit amount of product) occupies a large proportion in the operating cost of the process, the production cost can be reduced by using the ruthenium catalyst. Regarding such a ruthenium catalyst system, a ruthenium supported on an alumina or silica carrier (JP-A-57-4)
232), a carrier using a cerium oxide added to an alkali metal oxide or an alkaline earth oxide (JP-A-4-265156), and a precursor using an alkali salt such as sodium ruthenate. (JP-A-60
No. 227834), one using zirconium oxide as a carrier (JP-A-2-302304), and the like. In conventional high-temperature steam reforming catalysts for hydrogen production, thermal carbon deposition occurs due to causes other than sulfur poisoning, so advanced catalyst design for sulfur resistance including measures for carbon deposition is not required. It was However,
In the production of SNG by low-temperature steam reforming of hydrocarbons, it is required for the catalyst that a sufficient reaction can be obtained at a reaction temperature of about 400 to 500 ° C. in terms of chemical equilibrium and that the reaction result is extremely close to the equilibrium conversion rate. To be This temperature is about half that of ordinary steam reforming, and is in a region where carbon precipitation easily occurs even in equilibrium. Furthermore, due to impurities containing sulfur in the raw material and sulfur compounds such as odorants added to the raw material,
There is a high possibility that the catalyst will be poisoned, and there is a concern that carbon deposition may occur concurrently due to this.

【0005】これらを解決する方法として、本発明者ら
は、触媒担体、活性金属以外に付加される成分(以下、
第三成分ということもある。)として希土類金属若しく
はアルカリ土類金属をアルミナ担体に含有させ、かつ、
活性金属成分であるルテニウムを高分散させた触媒の使
用を提案している(特願平6−189404号公報)。
しかしながら、工業的SNG製造における水蒸気改質触
媒は400〜500℃の反応温度の下で長期間水蒸気に
曝されるため、充分な機械的強度を有する触媒でなけれ
ばならない。単に機械的強度のみを改善する目的であれ
ば、圧縮成型および高温焼成を行えば良いが、このよう
な従来法では機械的強度の改善は図れる反面、比表面積
の著しい減少や細孔の閉塞を引き起こす虞が大きい。工
業的SNG製造の観点からは、機械的強度の向上、耐硫
黄被毒性および耐炭素析出性を持たせるための第三成分
の添加、担持金属の分散性の制御という項目が重要にな
る。これらの項目を達成するためには、第三成分を添加
した触媒担体の比表面積や細孔容積を損なわずに触媒の
機械的強度を改善し、かつ、担持金属の分散性を高く保
つという、緻密な触媒設計が必要とされるが、今までの
ところ、目的にかなうルテニウム系触媒は見当たらな
い。
As a method for solving these problems, the present inventors have found that components (hereinafter
It may also be the third component. ) As a rare earth metal or alkaline earth metal in an alumina carrier, and
It has been proposed to use a catalyst in which ruthenium which is an active metal component is highly dispersed (Japanese Patent Application No. 6-189404).
However, since the steam reforming catalyst in industrial SNG production is exposed to steam for a long period of time at a reaction temperature of 400 to 500 ° C., it must be a catalyst having sufficient mechanical strength. For the purpose of merely improving the mechanical strength, compression molding and high temperature firing may be carried out.However, while such a conventional method can improve the mechanical strength, it significantly reduces the specific surface area and blocks pores. It is likely to cause it. From the viewpoint of industrial SNG production, items such as improvement of mechanical strength, addition of a third component for imparting sulfur poisoning resistance and carbon deposition resistance, and control of dispersibility of supported metal are important. In order to achieve these items, improve the mechanical strength of the catalyst without impairing the specific surface area and pore volume of the catalyst carrier to which the third component is added, and maintain high dispersibility of the supported metal, A precise catalyst design is required, but so far no ruthenium-based catalysts have been found that serve the purpose.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の目的
は、優れた機械的強度を有し、耐硫黄被毒性及び耐炭素
析出性に優れ、長時間に亘り活性低下が少なく、効率よ
く高カロリーガスを製造することができる高カロリーガ
ス製造用触媒およびその製造方法を提供しようとするも
のである。
Therefore, the object of the present invention is to have excellent mechanical strength, excellent resistance to sulfur poisoning and carbon precipitation, less decrease in activity over a long period of time, and high efficiency. It is intended to provide a catalyst for producing high-calorie gas capable of producing calorie gas and a method for producing the same.

【0007】[0007]

【課題を解決しようとするための手段】そこで、本発明
者らは上述の問題を解決すべく検討を重ねた結果、アル
ミナの前駆体に水酸化アルミニウムと、元素の周期表で
いう2族金属の酸化物(以下、単に2族金属酸化物とい
う)、3族金属の酸化物(以下、単に3族金属酸化物と
いう)若しくはランタノイド金属の酸化物(以下、単に
ランタノイド金属酸化物という)と、さらに易燃性の高
分子化合物を加えた担体原料を用い、担体基材に成型
し、比較的低温で焼成して得られるアルミナ複合体担体
に、ルテニウムを担持した後、還元した触媒を低温域で
の炭化水素の水蒸気改質反応に使用した場合、平衡転化
率に近い良好な反応成績でSNGを製造できるばかりで
なく、該触媒が実用上充分な強度を有することを見い出
し、本発明を完成するに至った。
Therefore, as a result of repeated studies to solve the above problems, the present inventors have found that aluminum hydroxide is a precursor of alumina and a Group 2 metal referred to in the periodic table of elements. (Hereinafter simply referred to as Group 2 metal oxide), Group 3 metal oxide (hereinafter simply referred to as Group 3 metal oxide) or lanthanoid metal oxide (hereinafter simply referred to as Lanthanoid metal oxide), Furthermore, by using a carrier raw material to which a flammable polymer compound is added, the carrier is molded into a carrier substrate, and ruthenium is supported on an alumina composite carrier obtained by firing at a relatively low temperature. When used in the steam reforming reaction of hydrocarbons in, it was found that not only SNG can be produced with good reaction results close to equilibrium conversion, but also that the catalyst has practically sufficient strength, and the present invention was completed. You It led to.

【0008】すなわち、本発明は、(a)水酸化アルミ
ニウム、(b)2族金属、3族金属およびランタノイド
金属の酸化物よりなる群から選ばれる少なくとも1種の
金属酸化物を触媒基準で5〜30重量%、及び(c)易
燃性高分子化合物を含有する担体原料を、担体基材に成
型し、焼成して得られる活性アルミナ複合体担体にルテ
ニウムを担持させ、次いで還元処理して得られることを
特徴とする高カロリーガス製造用触媒を提供するもので
ある。さらに、本発明は、(a)水酸化アルミニウム、
(b)2族金属、3族金属およびランタノイド金属の酸
化物よりなる群から選ばれる少なくとも1種の金属酸化
物を触媒基準で5〜30重量%、及び(c)易燃性高分
子化合物を含有する担体原料を、担体基材に成型し、焼
成して得られる活性アルミナ複合体担体にルテニウムを
担持させ、アルカリ水溶液を用いてルテニウムを不溶・
固定化し、次いで還元することを特徴とする高カロリー
ガス製造用触媒の製造方法を提供するものである。以
下、本発明を詳細に説明する。
That is, in the present invention, at least one metal oxide selected from the group consisting of (a) aluminum hydroxide, (b) Group 2 metal, Group 3 metal, and lanthanoid metal oxide is used as a catalyst based on 5 ˜30% by weight, and (c) a carrier raw material containing a flammable polymer compound, is molded into a carrier substrate, and ruthenium is supported on an activated alumina composite carrier obtained by firing, followed by reduction treatment. The present invention provides a catalyst for producing high-calorie gas, which is obtained. Furthermore, the present invention provides (a) aluminum hydroxide,
(B) 5 to 30% by weight of at least one metal oxide selected from the group consisting of oxides of Group 2 metals, Group 3 metals and lanthanoid metals on a catalyst basis, and (c) a flammable polymer compound. Ruthenium is supported on the activated alumina composite carrier obtained by molding the carrier raw material contained in the carrier base material and firing it, and ruthenium is insoluble in an alkaline aqueous solution.
The present invention provides a method for producing a catalyst for producing high-calorie gas, which comprises immobilizing and then reducing. Hereinafter, the present invention will be described in detail.

【0009】本発明の高カロリーガス製造用触媒におい
ては、(a)水酸化アルミニウム、(b)2族金属、3
族金属およびランタノイド金属の酸化物よりなる群から
選ばれる少なくとも1種の金属酸化物、及び(c)易燃
性の高分子化合物を含有する担体原料を使用する。上記
2族金属酸化物としては、ベリリウム、マグネシウム、
カルシウム、ストロンチウム、バリウム、ラジウムの酸
化物が使用できるが、特にマグネシウム、バリウムの酸
化物を用いることが好ましい。3族金属酸化物として
は、スカンジウム、イットリウム等の酸化物を使用でき
るが、イットリウム酸化物の使用が好ましい。ランタノ
イド金属酸化物としては、ランタン、セリウム、プラセ
オジム、ネオジム、プロメチウム、サマリウム等の酸化
物を使用できるが、特にランタン、セリウムの酸化物を
用いるのが良い。2族金属酸化物、3族金属酸化物およ
びランタノイド金属酸化物は、酸化物の形態の他に塩化
物、硝酸塩などの形態のものを用いることができる。
In the catalyst for producing high calorie gas of the present invention, (a) aluminum hydroxide, (b) group 2 metal, 3
A carrier raw material containing at least one metal oxide selected from the group consisting of oxides of group metals and lanthanoid metals, and (c) a flammable polymer compound is used. Examples of the Group 2 metal oxide include beryllium, magnesium,
Although oxides of calcium, strontium, barium and radium can be used, it is particularly preferable to use oxides of magnesium and barium. As the Group 3 metal oxide, oxides such as scandium and yttrium can be used, but it is preferable to use yttrium oxide. As the lanthanoid metal oxide, oxides of lanthanum, cerium, praseodymium, neodymium, promethium, samarium and the like can be used, but lanthanum and cerium oxides are particularly preferable. As the Group 2 metal oxide, the Group 3 metal oxide, and the lanthanoid metal oxide, in addition to the oxide form, chloride, nitrate, and other forms can be used.

【0010】(b)成分の2族金属、3族金属およびラ
ンタノイド金属の酸化物は、1種単独で用いてもよい
し、2種以上を組み合わせて用いてもよい。本発明の触
媒においては、アルミナの前駆体としては、(a)成分
の水酸化アルミニウムを用いるが、水酸化アルミニウム
としては水酸化アルミニウム無水物、水酸化アルミニウ
ム水和物などを用いることができる。水和物の場合には
そのまま用いても、また予備脱水したものを使用しても
差し支えない。本発明では、取扱いが容易である点で無
水物を用いるのが好ましい。
The oxides of Group 2 metals, Group 3 metals and lanthanoid metals of component (b) may be used alone or in combination of two or more. In the catalyst of the present invention, aluminum hydroxide as the component (a) is used as the alumina precursor, but aluminum hydroxide anhydride, aluminum hydroxide hydrate or the like can be used as the aluminum hydroxide. In the case of a hydrate, it may be used as it is or may be used after being pre-dehydrated. In the present invention, it is preferable to use an anhydride because it is easy to handle.

【0011】(c)成分の易燃性高分子化合物として
は、ポリビニルアルコール(PVA)、ポリビニルピロ
リドン(PVP)、ポリ酢酸ビニル(PVAc)、シク
ロデキストリン(CD)等の種々の易燃性高分子化合物
を使用することができる。ここで水を溶媒若しくは分散
媒として用いる場合にはPVA、PVP、CD等を用い
るのが好ましく、また、メタノール等のアルコール類を
溶媒若しくは分散媒に用いる場合にはPVAc等を用い
ることが好ましい。PVAcを用いる際に、これをカセ
イソーダ、カセイカリ等のアルカリを用いて適度に鹸化
すれば、鹸化の程度によって水系、非水系のいずれのタ
イプとしても使い分けることができる。易燃性高分子化
合物の種類はこれらに限定されないが、触媒焼成の際に
腐食ガス等を出さない易燃性高分子化合物が扱い易い。
(c)成分の易燃性高分子化合物は、1種単独で用いて
もよいし、2種以上を組み合わせて用いてもよい。
Examples of the flammable polymer compound as the component (c) include various flammable polymers such as polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyvinyl acetate (PVAc), and cyclodextrin (CD). Compounds can be used. Here, when water is used as the solvent or dispersion medium, PVA, PVP, CD or the like is preferably used, and when alcohols such as methanol are used as the solvent or dispersion medium, PVAc or the like is preferably used. When PVAc is used, if it is appropriately saponified with an alkali such as caustic soda or caustic, it can be used as either an aqueous type or a non-aqueous type depending on the degree of saponification. The type of flammable polymer compound is not limited to these, but a flammable polymer compound that does not generate a corrosive gas or the like during catalyst firing is easy to handle.
The flammable polymer compound as the component (c) may be used alone or in combination of two or more.

【0012】担体原料における2族金属酸化物、3族金
属酸化物およびランタノイド金属酸化物の含有量は触媒
基準で5〜30重量%、好ましくは10〜30重量%、
より好ましくは15〜25重量%とするのが良い。この
値が5重量%未満では、耐硫黄性に関して充分な効果が
得られにくい。従って、硫黄被毒、さらには炭素析出を
伴うようになり、触媒の充分な寿命延長は望めなくなる
ことがある。すなわち、その値が適切であれば、原料に
含まれる硫黄化合物は2族金属酸化物、3族金属酸化物
およびランタノイド金属酸化物によって吸着・吸収され
るため、活性成分であるルテニウムの被毒が起こり難く
なり、寿命が延長する。一方、この値が30重量%を超
えると相対的にアルミナの量が低下してしまうので好ま
しくない。すなわち、アルミナは比表面積や機械的強度
の向上等に有効であり、従ってアルミナの量が極端に少
なければこれらの向上効果が望みにくい。
The content of the Group 2 metal oxide, the Group 3 metal oxide and the lanthanoid metal oxide in the carrier raw material is 5 to 30% by weight, preferably 10 to 30% by weight, based on the catalyst.
More preferably, it should be 15 to 25% by weight. If this value is less than 5% by weight, it is difficult to obtain a sufficient effect on sulfur resistance. Therefore, sulfur poisoning and carbon deposition are accompanied, and it may not be possible to expect a sufficient extension of the life of the catalyst. That is, if the value is appropriate, the sulfur compound contained in the raw material is adsorbed and absorbed by the group 2 metal oxide, the group 3 metal oxide, and the lanthanoid metal oxide, so that the ruthenium which is the active ingredient is poisoned. Less likely to occur and prolong life. On the other hand, if this value exceeds 30% by weight, the amount of alumina is relatively decreased, which is not preferable. That is, alumina is effective in improving the specific surface area and mechanical strength, and therefore, if the amount of alumina is extremely small, it is difficult to expect these improving effects.

【0013】担体原料における易燃性高分子化合物の含
有量は、活性アルミナ複合体担体の重量に対して通常2
〜10重量%、好ましくは3〜7重量%、特に好ましく
は4〜6重量%がよい。易燃性高分子化合物の含有量が
2重量%より少なければ、担体の比表面積、細孔容積が
小さくなりすぎてルテニウムを所望量保持できないばか
りか、ルテニウムの分散性も低下する傾向がある。さら
に、第三成分の表面露出が少なくなるため、耐硫黄被毒
性、耐炭素析出性が損なわれる傾向がある。逆に高分子
化合物の添加量が10重量%より多すぎると、担体成分
と高分子化合物との混合が不均一になるため、焼成後の
担体中に生ずるマクロ孔によって触媒の機械的強度が低
下したり、あるいは焼成の際に高分子化合物が充分燃焼
せずにカーボン塊が生じたりすることがあるので好まし
くない。
The content of the flammable polymer compound in the carrier raw material is usually 2 with respect to the weight of the activated alumina composite carrier.
10 to 10% by weight, preferably 3 to 7% by weight, particularly preferably 4 to 6% by weight. When the content of the flammable polymer compound is less than 2% by weight, the specific surface area and pore volume of the carrier are too small to retain a desired amount of ruthenium, and the dispersibility of ruthenium tends to be lowered. Furthermore, since the surface exposure of the third component is reduced, sulfur poisoning resistance and carbon deposition resistance tend to be impaired. On the other hand, if the amount of the polymer compound added is more than 10% by weight, the carrier component and the polymer compound are not mixed uniformly, and the mechanical strength of the catalyst decreases due to macropores formed in the carrier after calcination. Or the polymer compound may not be sufficiently combusted during firing to generate carbon lumps, which is not preferable.

【0014】担体原料を調製するに際しては、2族金
属、3族金属およびランタノイド金属の酸化物よりなる
群から選ばれる少なくとも1種の金属酸化物と水酸化ア
ルミニウム及び易燃性高分子化合物を混合するが、必要
に応じて水もしくはメタノール、エタノール等のアルコ
ール類の溶媒または分散媒中に所定量溶解または分散さ
せてもよい。溶媒若しくは分散媒の種類は水、アルコー
ル類に限定されず、アセトン等のケトン類、芳香族化合
物、飽和・不飽和炭化水素、脂環式有機化合物などを用
いることができる。いずれの場合も焼成時に残渣が残ら
ないような化合物を選ぶべきである。なお、水酸化アル
ミニウムと金属酸化物および易燃性高分子化合物との混
合順序は特に限定されない。例えば、水酸化アルミニウ
ムと金属酸化物を混合したスラリーに易燃性高分子化合
物を加えて充分混合しても良いし、高分子化合物溶液と
水酸化アルミニウムを混合しておき、これに金属酸化物
を加え充分混合しても良いし、また金属酸化物と易燃性
高分子化合物を混合したものに水酸化アルミニウムを混
合しても良い。なお、上記担体原料には、本発明の効果
を損なわない範囲内で、他の金属酸化物など他の成分を
添加することができる。
In preparing the carrier raw material, at least one metal oxide selected from the group consisting of oxides of Group 2 metals, Group 3 metals and lanthanoid metals is mixed with aluminum hydroxide and a flammable polymer compound. However, if necessary, a predetermined amount may be dissolved or dispersed in a solvent or dispersion medium of water or alcohols such as methanol and ethanol. The type of solvent or dispersion medium is not limited to water and alcohols, and ketones such as acetone, aromatic compounds, saturated / unsaturated hydrocarbons, alicyclic organic compounds and the like can be used. In any case, a compound that leaves no residue upon firing should be selected. The order of mixing the aluminum hydroxide with the metal oxide and the flammable polymer compound is not particularly limited. For example, a flammable polymer compound may be added to a slurry in which aluminum hydroxide and a metal oxide are mixed and mixed sufficiently, or a polymer compound solution and aluminum hydroxide may be mixed and the metal oxide may be added thereto. May be added and mixed well, or aluminum hydroxide may be mixed with a mixture of a metal oxide and a flammable polymer compound. In addition, other components such as other metal oxides can be added to the above carrier raw material within a range that does not impair the effects of the present invention.

【0015】本発明の触媒においては、上記担体原料
は、担体基材に成型し、焼成して活性アルミナ複合体担
体にされる。なお、担体基材への成型に際しては、担体
原料が溶媒または分散媒を含んでいる場合は、溶媒また
は分散媒を完全に除去することが好ましい。除去は、通
常常圧または減圧下で常温または加熱下での乾燥により
行われる。加熱乾燥する場合は、通常90〜100℃が
好ましい。また、担体基材への成型の前には、担体原料
は均一に混合し、細かい粉体にすることが好ましい。こ
の粉体の粒径は、通常50メッシュの網を通過するもの
が好ましく、100メッシュの網を通過するものがより
好ましく、特に200メッシュの網を通過するものが好
ましい。
In the catalyst of the present invention, the carrier raw material is molded into a carrier substrate and fired to obtain an activated alumina composite carrier. When the carrier raw material contains a solvent or a dispersion medium, it is preferable to completely remove the solvent or the dispersion medium during the molding into the carrier substrate. The removal is usually performed by drying under normal pressure or reduced pressure at room temperature or under heating. When heating and drying, 90 to 100 ° C. is usually preferable. In addition, it is preferable that the raw materials of the carrier are uniformly mixed into a fine powder before the molding into the carrier substrate. The particle size of this powder is preferably such that it usually passes through a 50-mesh net, more preferably through a 100-mesh net, and particularly preferably through a 200-mesh net.

【0016】担体基材への成型としては、加圧成型、押
出成型など種々の成型を適用できるが、加圧成型が好ま
しい。加圧成型としては、打錠成型、射出成型、プレス
成型などが挙げられるが、好ましくは打錠成型である。
加圧成型の加圧度は、通常5〜30ton/cm2、好
ましくは10〜20ton/cm2、特に好ましくは1
3〜17ton/cm2がよい。担体基材の形状として
は、特に限定されるものではなく、球状、楕円球状、紡
錘状、角柱状、円柱状、錠剤状、針状など各種粒状体、
膜などの各種形状が挙げられるが、円柱状の粒子が好ま
しい。また、担体基材の粒子の粒径は、特に限定されな
いが、円柱状粒子の場合は、断面円の直径が2〜5mm
φであり、長さが2〜5mmのものが好ましい。
As the molding for the carrier substrate, various molding methods such as pressure molding and extrusion molding can be applied, but pressure molding is preferable. Examples of the pressure molding include tablet molding, injection molding, press molding and the like, but tablet molding is preferable.
The pressure degree of the pressure molding is usually 5 to 30 ton / cm 2 , preferably 10 to 20 ton / cm 2 , and particularly preferably 1
It is preferably 3 to 17 ton / cm 2 . The shape of the carrier substrate is not particularly limited, and various granular bodies such as spherical, elliptic spherical, spindle-shaped, prismatic, cylindrical, tablet-shaped, needle-shaped, and the like,
Although various shapes such as a film can be mentioned, columnar particles are preferable. The particle size of the particles of the carrier substrate is not particularly limited, but in the case of columnar particles, the diameter of the cross section circle is 2 to 5 mm.
It is preferably φ and has a length of 2 to 5 mm.

【0017】成型された担体基材は、焼成される。焼成
は、空気雰囲気下または不活性ガス雰囲気下で減圧、常
圧あるいは加圧下で行うことができる。焼成温度は、通
常600℃以下、好ましくは450〜550℃の温度で
ある。また焼成時間は、通常1〜20時間行えばよい。
得られたアルミナ複合体担体の比表面積は50m2/g
以上、好ましくは50〜150m2/g、さらに好まし
くは50〜90m2/gが良く、また、細孔容積は0.
2〜0.5ml/g、好ましくは0.3〜0.4ml/
gが良い。担体の比表面積や細孔容積がこれより小さい
場合には、担持させるルテニウムの分散性が悪くなり、
SNG製造時の触媒活性が損なわれる傾向がある。この
ような場合には、担体成分が表面に充分露出しなくなる
ため、折角添加した第三成分が機能せず、耐硫黄被毒性
等が著しく阻害されるばかりか、所定量のルテニウムが
担持できないことも起こり得る。いずれにしても、結果
として触媒活性は低下する傾向がある。逆に比表面積等
を極端に大きくした場合には、分散性、耐硫黄被毒性、
耐炭素析出性の改善効果は見られるものの、その一方で
触媒の充分な機械的強度が得られなくなる。上記の工程
で得られた担体の破壊強度(DWL:Dead Wei
ght Load)は、通常20kg以上になる。
The shaped carrier substrate is fired. The calcination can be performed under reduced pressure, normal pressure or increased pressure in an air atmosphere or an inert gas atmosphere. The firing temperature is usually 600 ° C or lower, preferably 450 to 550 ° C. The firing time is usually 1 to 20 hours.
The specific surface area of the obtained alumina composite carrier is 50 m 2 / g
Or more, preferably 50 to 150 m 2 / g, more preferably 50 to 90 m 2 / g, and the pore volume is 0.
2 to 0.5 ml / g, preferably 0.3 to 0.4 ml /
g is good. When the specific surface area or pore volume of the carrier is smaller than this, the dispersibility of the ruthenium to be supported becomes poor,
The catalytic activity during SNG production tends to be impaired. In such a case, since the carrier component is not sufficiently exposed on the surface, the third component added in the corner does not function, the sulfur poisoning resistance and the like are significantly impaired, and a predetermined amount of ruthenium cannot be supported. Can also happen. In any case, as a result, the catalytic activity tends to decrease. On the contrary, when the specific surface area is extremely increased, dispersibility, sulfur poisoning resistance,
Although the effect of improving the carbon deposition resistance can be seen, on the other hand, it becomes impossible to obtain sufficient mechanical strength of the catalyst. Breaking strength (DWL: Dead Wei) of the carrier obtained in the above process
ght Load) is usually 20 kg or more.

【0018】次に活性アルミナ複合担体には、ルテニウ
ムを担持させる。上記のアルミナ複合体担体にルテニウ
ムを担持させる方法としては、含浸法、吸着法、混練法
等の公知の方法を用いることができるが、含浸法が好ま
しい。含浸法においては、含浸温度が通常10〜60℃
がよく、含浸時間が通常1〜3時間がよい。活性成分で
あるルテニウムには三塩化ルテニウム無水物、三塩化ル
テニウム水和物、硝酸ルテニウム等の前駆体を使用でき
る。溶解度が大きいことから、三塩化ルテニウム一水和
物を使用するのが特に好ましい。ルテニウムの担持量は
触媒基準、金属ルテニウムとして0.5〜4重量%、好
ましくは0.5〜2重量%とするのが良い。担持量が
0.5重量%より少ないと、活性点の数が少な過ぎて、
触媒の活性が充分発現しないことがある。担持量が4重
量%より多いと、担持量の増加に見合う触媒活性の向上
が得られないばかりでなく、ルテニウムの分散性が低下
する傾向がある。
Next, ruthenium is supported on the activated alumina composite carrier. As a method for supporting ruthenium on the alumina composite carrier, known methods such as an impregnation method, an adsorption method, and a kneading method can be used, but the impregnation method is preferable. In the impregnation method, the impregnation temperature is usually 10 to 60 ° C.
The impregnation time is usually 1 to 3 hours. As ruthenium as an active ingredient, precursors such as ruthenium trichloride anhydrous, ruthenium trichloride hydrate and ruthenium nitrate can be used. It is particularly preferable to use ruthenium trichloride monohydrate because of its high solubility. The amount of ruthenium supported is 0.5 to 4% by weight, preferably 0.5 to 2% by weight, based on the catalyst, as metal ruthenium. If the supported amount is less than 0.5% by weight, the number of active sites is too small,
The activity of the catalyst may not be sufficiently expressed. When the supported amount is more than 4% by weight, not only the catalytic activity cannot be improved in proportion to the increased supported amount, but also the dispersibility of ruthenium tends to decrease.

【0019】アルミナ複合体担体にルテニウムを担持さ
せる好適な方法としては、次の方法がある。ルテニウム
を担体に担持させる前準備として、先ず担体を秤量し、
これに水をビュレットにて滴下して、担体内部に充分水
を吸収させる。この給水は担体の内部が飽和されるまで
行うのが良い。このように、予め飽和吸水量を求めてお
く。ここで上記飽和水量と等しい量のイオン交換水もし
くは蒸留水に所定量の三塩化ルテニウム一水和物を溶解
させた溶液を、アルミナ複合体担体に吸収させる。その
後、10〜15容量%のアンモニア水をルテニウム濃度
に対して過剰量滴下し、化1の如くルテニウム塩化物を
水酸化物に変換することにより、ルテニウムを担体上に
不溶・固定化させる。
The preferred method for supporting ruthenium on the alumina composite carrier is as follows. As a preliminary preparation for supporting ruthenium on the carrier, first weigh the carrier,
Water is added dropwise to this with a buret so that the carrier absorbs water sufficiently. This water supply is preferably performed until the inside of the carrier is saturated. In this way, the saturated water absorption amount is obtained in advance. Here, a solution prepared by dissolving a predetermined amount of ruthenium trichloride monohydrate in ion-exchanged water or distilled water in an amount equal to the saturated water amount is absorbed in the alumina composite carrier. Then, 10 to 15% by volume of ammonia water is dripped in excess with respect to the ruthenium concentration, and ruthenium chloride is converted into hydroxide as shown in Chemical formula 1, whereby ruthenium is insoluble and immobilized on the carrier.

【0020】[0020]

【化1】 Embedded image

【0021】この方法は、上式に示したように、塩素ア
ニオンは水溶性の塩化アンモニウムになるため、洗浄の
過程で脱塩素を効率的に行うことのできる特徴を持って
いる。固定化に関しては、アンモニア水の他にも炭酸ナ
トリウム、炭酸水素ナトリウム、水酸化ナトリウム、水
酸化カリウム等のアルカリ水溶液を使用することができ
る。しかし、ナトリウム塩、カリウム塩の場合には洗浄
の際にアルカリ金属カチオンが残存する虞があるので、
アンモニア水が最も取扱い易い。ルテニウムを固定化し
た担体は、200℃未満、好ましくは150℃以下、よ
り好ましくは100℃以下で減圧若しくは常圧下で乾燥
することが好ましい。この乾燥温度が高すぎると水酸化
物が一部酸化物に変化してしまう。酸化物が混在した担
体を還元するためには、200℃以上の温度を必要とす
るため、還元処理後のルテニウムの分散性は還元温度が
高い分だけ悪くなる。この点からも乾燥時の酸化物の存
在は避けることが好ましい。また、乾燥温度が低すぎる
と乾燥時間が著しく長くなり好ましくない。乾燥時間
は、乾燥温度その他の条件に応じて、適宜選定すればよ
く、通常1〜20時間がよい。
As shown in the above formula, this method is characterized in that the chlorine anion becomes water-soluble ammonium chloride, so that dechlorination can be efficiently performed in the washing process. For immobilization, an aqueous alkaline solution such as sodium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide or the like can be used in addition to aqueous ammonia. However, in the case of sodium salts and potassium salts, alkali metal cations may remain during cleaning, so
Ammonia water is the easiest to handle. The ruthenium-immobilized carrier is preferably dried at less than 200 ° C., preferably 150 ° C. or less, more preferably 100 ° C. or less under reduced pressure or normal pressure. If the drying temperature is too high, some of the hydroxide will change to oxide. In order to reduce the carrier mixed with oxides, a temperature of 200 ° C. or higher is required, so that the dispersibility of ruthenium after the reduction treatment becomes worse due to the higher reduction temperature. From this point as well, it is preferable to avoid the presence of oxides during drying. Further, if the drying temperature is too low, the drying time becomes extremely long, which is not preferable. The drying time may be appropriately selected according to the drying temperature and other conditions, and is usually 1 to 20 hours.

【0022】こうして得られたルテニウム担持触媒を比
較的低温で還元すると、担持ルテニウムの分散性を高く
保つことができる。還元温度は80℃〜450℃、好ま
しくは100℃〜250℃、より好ましくは100〜2
00℃で行うと良い。この温度領域で還元した場合、ル
テニウムの分散性は最も高くなる。担持ルテニウムの還
元には水素ガス、水素・水蒸気混合気体、および一酸化
炭素を用いることができる。この中でも水素ガス若しく
は水素・水蒸気混合気体を用いるのが好ましく、水素ガ
スを用いるのが特に好ましい。還元する時間は、還元温
度その他の条件に応じて、適宜選定すればよいが、通常
1〜20時間がよい。得られた触媒は、一酸化炭素(以
下、COと略記することもある)吸着量が2ml/g以
上、ルテニウム金属の分散性が60%以上となるように
したものが好ましい。このようにして得られた触媒は、
充分な機械的強度を有するとともに、耐硫黄被毒性に優
れ、平衡転化率に近い良好な反応成績を示す。従って、
本触媒は硫黄化合物が含まれている原料でも使用できる
ため、SNG製造にとって極めて実用的な触媒である。
When the ruthenium-supported catalyst thus obtained is reduced at a relatively low temperature, the dispersibility of the supported ruthenium can be kept high. The reduction temperature is 80 to 450 ° C, preferably 100 to 250 ° C, more preferably 100 to 2
It is better to carry out at 00 ° C. When reduced in this temperature range, the dispersibility of ruthenium becomes highest. Hydrogen gas, hydrogen / steam mixed gas, and carbon monoxide can be used for the reduction of supported ruthenium. Among these, it is preferable to use hydrogen gas or hydrogen / steam mixed gas, and it is particularly preferable to use hydrogen gas. The reduction time may be appropriately selected according to the reduction temperature and other conditions, but is usually 1 to 20 hours. It is preferable that the obtained catalyst has a carbon monoxide (hereinafter sometimes abbreviated as CO) adsorption amount of 2 ml / g or more and a ruthenium metal dispersibility of 60% or more. The catalyst thus obtained is
It has sufficient mechanical strength, is highly resistant to sulfur poisoning, and exhibits good reaction results close to equilibrium conversion. Therefore,
Since this catalyst can be used even in a raw material containing a sulfur compound, it is a very practical catalyst for SNG production.

【0023】本発明の触媒を用いて高カロリーガスの製
造を行うことができる。ここで、高カロリーガスとは、
主に都市ガスとして用いられる高発熱量の代替天然ガス
(SNG)である。本発明の触媒を用いて高カロリーガ
スの製造を行う場合において、原料の主成分となる炭化
水素は、炭素数が2〜16、好ましくは2〜10、特に
好ましくは3〜8のものを用いるのが良い。反応温度は
350〜500℃、好ましくは400〜450℃、反応
圧力は20kg/cm2G以下、好ましくは常圧〜15
kg/cm2G、より好ましくは8〜10kg/cm2
とし、GHSVは600〜1200h−1とするのが好
適である。また、水蒸気を反応系に添加することが好ま
しく、S/C値は0.7〜10の範囲が好ましい。上記
高カロリーガスの製造方法は、固定床あるいは移動床触
媒装置を利用するバッチ式、半連続式あるいは連続式操
作で行うことができる。
High-calorie gas can be produced using the catalyst of the present invention. Here, high-calorie gas means
It is a high calorific value alternative natural gas (SNG) mainly used as city gas. When producing a high-calorie gas using the catalyst of the present invention, the hydrocarbon as the main component of the raw material has 2 to 16 carbon atoms, preferably 2 to 10 carbon atoms, and particularly preferably 3 to 8 carbon atoms. Is good. The reaction temperature is 350 to 500 ° C., preferably 400 to 450 ° C., the reaction pressure is 20 kg / cm 2 G or less, preferably atmospheric pressure to 15
kg / cm 2 G, more preferably 8 to 10 kg / cm 2 G
And GHSV is preferably 600 to 1200 h-1. Further, it is preferable to add water vapor to the reaction system, and the S / C value is preferably in the range of 0.7 to 10. The above-mentioned method for producing high-calorie gas can be carried out by a batch type, semi-continuous type or continuous type operation using a fixed bed or moving bed catalyst device.

【0024】[0024]

【実施例】次に、本発明を実施例によりさらに具体的に
説明するが、本発明はこれらに限定されるものではな
い。なお、以下の実施例において、生成物の分析にはス
テンレス(SUS)製管(内径3mmφ×2m)に60
〜80メッシュのUnibeads−C(GLサイエン
ス社製)を充填した分離カラムを取付けた熱伝導型検出
器(TCD)付きのガスクロマトグラフ(GC8A、島
津製作所製)により行った。担体の比表面積並びに細孔
容積は表面積測定装置(ベルソープ25、ベル社製)に
より、一酸化炭素(CO)吸着量はTCDガスクロマト
グラフを内蔵した自動吸着装置(R6015、大倉理研
社製)により測定した。担持ルテニウム量の測定は誘導
結合プラズマ発光分析法(ICP)によった。触媒の破
壊強度(DWL)は木屋式硬度計(木屋製作所製)にて
測定した。
EXAMPLES Next, the present invention will be described more specifically by way of examples, but the present invention is not limited to these. In addition, in the following examples, a stainless steel (SUS) tube (inner diameter 3 mmφ × 2 m) was used for the analysis of the product.
It was carried out by a gas chromatograph (GC8A, manufactured by Shimadzu Corporation) equipped with a thermal conductivity type detector (TCD) equipped with a separation column filled with -80 mesh Unibeads-C (manufactured by GL Science). The specific surface area and pore volume of the carrier are measured by a surface area measuring device (Bellsoap 25, manufactured by Bell), and the carbon monoxide (CO) adsorption amount is measured by an automatic adsorption device (R6015, manufactured by Okura Riken) with a built-in TCD gas chromatograph. did. The amount of supported ruthenium was measured by inductively coupled plasma emission spectrometry (ICP). The breaking strength (DWL) of the catalyst was measured with a Kiya hardness meter (Kiya Seisakusho).

【0025】(実施例1)酸化セリウム(CeO2、和
光純薬工業社製)粉末19.6gと水酸化アルミニウム
(Al(OH)3、関東化学社製)粉末125.7gを
メノウ乳鉢で充分混合し、これに約50gの温水に5.
3gの完全鹸化ポリビニルアルコール(PVA、日本合
成社製)を溶解せしめた水溶液を加え、さらに混練し
た。ペースト状混合物を恒温乾燥器を用い、90〜10
0℃で数時間乾燥し、水分を完全に除去した。固化した
混合物をメノウ乳鉢にておよそ200メッシュの粉体と
し、打錠成型器を用い室温、15ton/cm2で加圧
し、外形3.2mmφ、長さ3mmの錠剤に成型した。
これをマッフル電気炉にて500℃で3時間焼成し、強
度補強した複合体担体を調製した。この時の複合体担体
の比表面積は80.5m2/g、細孔容積は0.4ml
/gで、破壊強度(DWL)は22kgであった。三塩
化ルテニウム一水和物(RuCl3・nH2O、関東化
学社製)1gを37mlの純水に溶解させた水溶液に、
上記の打錠担体25.4gを1時間浸漬し、残液をロー
タリーエバポレーターを用いて約2.7kPa(20m
mHg)の真空下で蒸発除去し、次いで赤外線式ホット
プレートで40〜45℃に加温して水分を除去した。こ
の担体を7〜10Nのアンモニア水に浸漬したまま約4
0℃に保ち、2時間撹拌し、不溶・固定化後ブフナー漏
斗により触媒を分離し、純水で充分洗浄した(漏液中に
希硝酸銀水溶液を滴下し塩化銀による白濁が生成しなく
なるまで洗浄を行った)。さらに、これを真空乾燥器中
40〜45℃で8時間乾燥し、金属としてルテニウム
1.6重量%、酸化セリウム21.6重量%、残りアル
ミナから成る触媒を調製した。
(Example 1) Cerium oxide (CeO 2 , manufactured by Wako Pure Chemical Industries, Ltd.) powder 19.6 g and aluminum hydroxide (Al (OH) 3 , manufactured by Kanto Chemical Co., Ltd.) powder 125.7 g were sufficiently used in an agate mortar. Mix and add to this about 50 g of warm water.
An aqueous solution in which 3 g of completely saponified polyvinyl alcohol (PVA, manufactured by Nippon Gosei Co., Ltd.) was dissolved was added and further kneaded. 90 ~ 10 by using a thermostatic dryer paste mixture
It was dried at 0 ° C. for several hours to completely remove water. The solidified mixture was made into a powder of about 200 mesh in an agate mortar, and pressed at room temperature using a tablet molding machine at 15 ton / cm 2 to form a tablet having an outer diameter of 3.2 mmφ and a length of 3 mm.
This was baked in a muffle electric furnace at 500 ° C. for 3 hours to prepare a strength-reinforced composite carrier. The specific surface area of the composite carrier at this time was 80.5 m2 / g, and the pore volume was 0.4 ml.
/ G, the breaking strength (DWL) was 22 kg. In an aqueous solution prepared by dissolving 1 g of ruthenium trichloride monohydrate (RuCl 3 · nH 2 O, manufactured by Kanto Chemical Co., Inc.) in 37 ml of pure water,
25.4 g of the above-mentioned tableting carrier is immersed for 1 hour, and the remaining liquid is rotatory-evaporated to about 2.7 kPa (20 m
(mHg) was removed by evaporation under vacuum, and then heated to 40 to 45 ° C. with an infrared hot plate to remove water. Approximately 4 with this carrier immersed in 7 to 10N ammonia water
The mixture was kept at 0 ° C., stirred for 2 hours, insoluble and fixed, and then the catalyst was separated with a Buchner funnel and washed thoroughly with pure water (washing with dilute aqueous solution of silver nitrate was added to the leak until no cloudiness due to silver chloride was generated. Was done). Further, this was dried in a vacuum drier at 40 to 45 ° C. for 8 hours to prepare a catalyst composed of 1.6% by weight of ruthenium as a metal, 21.6% by weight of cerium oxide, and the balance alumina.

【0026】上記で得た触媒10mlを内径16mmφ
のSUS製円筒反応管に充填し、圧力8kg/cm2
還元温度150℃、GHSV3000h−1で8時間水
素還元を行った。還元処理後の触媒へのCO吸着量は
2.85ml/g(標準状態、以下STPで示す)であ
った。得られた触媒の物性を表1に示す。次いで、市販
LPGガス(コスモガス製、n−ブタン(63.8Vo
l.%)/iso−ブタン(36.2Vol.%)のモ
ル比=約1.8)に硫化水素を10ppm添加したもの
を、触媒の充填された反応器へ水蒸気とともに導入し
た。操作条件は反応圧力8kg/cm2G、反応温度4
50℃、GHSV600h−1、S/C比は1で行っ
た。この時の反応結果を表2に示す。
10 ml of the catalyst obtained above was used for an inner diameter of 16 mmφ.
Filled in a cylindrical reaction tube made of SUS of 8 kg / cm 2 ,
Hydrogen reduction was performed for 8 hours at GHSV 3000h-1 at a reduction temperature of 150 ° C. The amount of CO adsorbed on the catalyst after the reduction treatment was 2.85 ml / g (standard state, hereinafter referred to as STP). Table 1 shows the physical properties of the obtained catalyst. Next, commercially available LPG gas (manufactured by Cosmogas, n-butane (63.8Vo
l. %) / Iso-butane (36.2 Vol.%) Molar ratio = about 1.8) to which 10 ppm of hydrogen sulfide was added was introduced into a reactor filled with catalyst together with steam. Operating conditions are reaction pressure 8 kg / cm 2 G, reaction temperature 4
It carried out at 50 degreeC, GHSV600h-1, and S / C ratio. The reaction results at this time are shown in Table 2.

【0027】(実施例2)酸化イットリウム(Y23
関東化学社製)粉末21.1gと水酸化アルミニウム1
20.0gを用いて、実施例1と同様な方法で比表面積
80.3m2/g、細孔容積0.4ml/g、破壊強度
(DWL)21.5kgの打錠担体を調製し、金属とし
てルテニウム1.6重量%、酸化イットリウム22.2
重量%、残りアルミナから成る触媒を調製した。この触
媒を実施例1と同様な方法で還元処理し、次いで水蒸気
改質反応を行わせた。なお、上記触媒を還元した後のC
O吸着量は2.51ml/g(STP)であった。触媒
の物性及び反応結果を表1及び表2に示す。
(Example 2) Yttrium oxide (Y 2 O 3 ,
(Kanto Chemical Co., Ltd.) powder 21.1 g and aluminum hydroxide 1
Using 20.0 g, a tableting carrier having a specific surface area of 80.3 m 2 / g, a pore volume of 0.4 ml / g and a breaking strength (DWL) of 21.5 kg was prepared in the same manner as in Example 1, As ruthenium 1.6% by weight, yttrium oxide 22.2
A catalyst consisting of wt% balance alumina was prepared. This catalyst was subjected to a reduction treatment in the same manner as in Example 1 and then subjected to a steam reforming reaction. In addition, C after reducing the above catalyst
The amount of O adsorbed was 2.51 ml / g (STP). The physical properties of the catalyst and the reaction results are shown in Tables 1 and 2.

【0028】(実施例3)酸化ランタン(La23、和
光純薬工業社製)粉末20.5gと水酸化アルミニウム
121.8gを用いて、実施例1と同様な方法で比表面
積80.9m2/g、細孔容積0.3ml/g、破壊強
度(DWL)22.7kgの打錠担体を調製し、金属と
してルテニウム1.6重量%、酸化ランタン21.1重
量%、残りアルミナから成る触媒を調製した。この触媒
を実施例1と同様な方法で還元処理し、次いで水蒸気改
質反応を行わせた。上記触媒を還元した後のCO吸着量
は2.68ml/g(STP)であった。触媒の物性及
び反応結果を表1及び表2に示す。
Example 3 Using 20.5 g of lanthanum oxide (La 2 O 3 , manufactured by Wako Pure Chemical Industries, Ltd.) powder and 121.8 g of aluminum hydroxide, a specific surface area of 80. A tableting carrier having 9 m 2 / g, a pore volume of 0.3 ml / g, and a breaking strength (DWL) of 22.7 kg was prepared, and 1.6 wt% of ruthenium as a metal, 21.1 wt% of lanthanum oxide, and the remaining alumina were used. Was prepared. This catalyst was subjected to a reduction treatment in the same manner as in Example 1 and then subjected to a steam reforming reaction. The CO adsorption amount after the reduction of the catalyst was 2.68 ml / g (STP). The physical properties of the catalyst and the reaction results are shown in Tables 1 and 2.

【0029】(実施例4)酸化マグネシウム(MgO、
和光純薬工業社製)粉末20.3gと水酸化アルミニウ
ム121.6gを用いて実施例1と同様な方法で比表面
積61.8m2/g、細孔容積0.3ml、破壊強度
(DWL)21.3kgの打錠担体を調製し、金属とし
てルテニウム1.5重量%、酸化マグネシウム20.5
重量%、残りアルミナから成る触媒を調製した。この触
媒を実施例1と同様な方法で還元処理し、次いで水蒸気
改質反応を行わせた。上記触媒を還元した後のCO吸着
量は2.41ml/g(STP)であった。触媒の物性
及び反応結果を表1及び表2に示す。
Example 4 Magnesium oxide (MgO,
Wako Pure Chemical Industries, Ltd.) 20.3 g of powder and 121.6 g of aluminum hydroxide were used in the same manner as in Example 1 to give a specific surface area of 61.8 m 2 / g, pore volume of 0.3 ml, and breaking strength (DWL). A tableting carrier of 21.3 kg was prepared, and ruthenium as a metal was 1.5 wt% and magnesium oxide was 20.5.
A catalyst consisting of wt% balance alumina was prepared. This catalyst was subjected to a reduction treatment in the same manner as in Example 1 and then subjected to a steam reforming reaction. The CO adsorption amount after reducing the catalyst was 2.41 ml / g (STP). The physical properties of the catalyst and the reaction results are shown in Tables 1 and 2.

【0030】(実施例5)酸化バリウム(BaO、和光
純薬工業社製)粉末20.7gと水酸化アルミニウム粉
末120.8gを用いて実施例1と同様な方法で比表面
積60.1m2/g、細孔容積0.3ml/g、破壊強
度22.5kgの担体を調製し、金属としてルテニウム
1.5重量%、酸化バリウム21.5重量%、残りアル
ミナから成る触媒を調製した。この触媒を実施例1と同
様な方法で還元処理し、次いで水蒸気改質反応を行わせ
た。上記触媒を還元した後のCO吸着量は2.11ml
/g(STP)であった。触媒の物性及び反応結果を表
1及び表2に示す。
(Embodiment 5) A specific surface area of 60.1 m 2 / using 20.7 g of barium oxide (BaO, manufactured by Wako Pure Chemical Industries, Ltd.) powder and 120.8 g of aluminum hydroxide powder in the same manner as in Embodiment 1. g, a pore volume of 0.3 ml / g, and a breaking strength of 22.5 kg were prepared, and a catalyst composed of ruthenium (1.5 wt%), barium oxide (21.5 wt%), and the balance alumina was prepared. This catalyst was subjected to a reduction treatment in the same manner as in Example 1 and then subjected to a steam reforming reaction. The CO adsorption amount after reducing the above catalyst is 2.11 ml.
/ G (STP). The physical properties of the catalyst and the reaction results are shown in Tables 1 and 2.

【0031】(比較例1)酸化セリウム粉末19.8g
と活性アルミナ(Al23、アルミニウムオキシド9
0、タイプI、メルク社製)82.2gを乳鉢で充分混
合した後、約40mlの純水を加えて混練した。ペース
ト状の混合物をロータリーエバポレーターで約2.7k
Paの真空下で乾燥し、さらに赤外線式ホットプレート
で60〜70℃に加熱し、水分を除いた。これを110
℃に保った恒温乾燥器で予備乾燥した後、実施例1と同
様に打錠成型した。これをマッフル炉にて500℃で3
時間焼成して担体を調製した。この時の触媒の比表面積
は33.6m2/g、細孔容積0.1〜0.2ml/
g、破壊強度(DWL)24.5kgであった。この担
体に実施例1と同様にルテニウムを含浸後、固定化し、
金属としてルテニウム1.1重量%、酸化セリウム2
1.5重量%、残りアルミナから成る触媒を調製した。
この触媒を実施例1と同様な方法で還元処理し、次いで
水蒸気改質反応を行わせた。上記触媒を還元した後のC
O吸着量は0.75ml/g(STP)であった。触媒
の物性及び反応結果を表1及び表2に示す。
(Comparative Example 1) 19.8 g of cerium oxide powder
And activated alumina (Al 2 O 3 , aluminum oxide 9
0, Type I, manufactured by Merck & Co., Inc.) 82.2 g was thoroughly mixed in a mortar, and then about 40 ml of pure water was added and kneaded. Approximately 2.7k pasty mixture on rotary evaporator
It was dried under a vacuum of Pa and further heated to 60 to 70 ° C. with an infrared hot plate to remove water. 110 this
After preliminarily drying in a constant temperature dryer kept at 0 ° C., tableting was carried out in the same manner as in Example 1. This in a muffle furnace at 500 ℃ 3
A carrier was prepared by firing for a period of time. The specific surface area of the catalyst at this time is 33.6 m 2 / g, and the pore volume is 0.1 to 0.2 ml /
g, breaking strength (DWL) was 24.5 kg. This carrier was impregnated with ruthenium as in Example 1 and then immobilized.
Ruthenium as metal 1.1 wt%, cerium oxide 2
A catalyst was prepared consisting of 1.5 wt% balance alumina.
This catalyst was subjected to a reduction treatment in the same manner as in Example 1 and then subjected to a steam reforming reaction. C after reducing the above catalyst
The amount of O adsorbed was 0.75 ml / g (STP). The physical properties of the catalyst and the reaction results are shown in Tables 1 and 2.

【0032】(比較例2)酸化マグネシウム粉末20.
3gと活性アルミナ粉末80.2gを用いて比較例1と
同様の方法で比表面積30.5m2/g、細孔容積0.
1〜0.2ml/g、破壊強度(DWL)24.7kg
の担体を調製し、次いで、金属としてルテニウム1.0
重量%、酸化マグネシウム21.5重量%、残りアルミ
ナからなる触媒を調製した。この触媒を実施例1と同様
な方法で還元処理し、次いで水蒸気改質反応を行わせ
た。上記触媒を還元した後のCO吸着量は0.62ml
/g(STP)であった。触媒の物性及び反応結果を表
1及び表2に示す。
Comparative Example 2 Magnesium oxide powder 20.
3 g and 80.2 g of activated alumina powder were used in the same manner as in Comparative Example 1 to give a specific surface area of 30.5 m 2 / g and a pore volume of 0.
1 to 0.2 ml / g, breaking strength (DWL) 24.7 kg
Of the carrier, and then ruthenium 1.0 as the metal
A catalyst was prepared which was composed of wt%, magnesium oxide 21.5 wt%, and the balance alumina. This catalyst was subjected to a reduction treatment in the same manner as in Example 1 and then subjected to a steam reforming reaction. CO adsorption amount after reducing the above catalyst is 0.62 ml
/ G (STP). The physical properties of the catalyst and the reaction results are shown in Tables 1 and 2.

【0033】[0033]

【表1】 表中のRu分散性は、(吸着COのモル数)の(Ruの
モル数)に対する百分率である。
[Table 1] The Ru dispersibility in the table is the percentage of (moles of adsorbed CO) to (moles of Ru).

【0034】[0034]

【表2】 実施例1〜5および比較例1、2において、表2に示し
た転化率および選択率は数2および数3により算出し
た。
[Table 2] In Examples 1 to 5 and Comparative Examples 1 and 2, the conversion rates and selectivities shown in Table 2 were calculated by Equations 2 and 3.

【0035】[0035]

【数2】 [Equation 2]

【0036】[0036]

【数3】 (Equation 3)

【0037】表1及び表2から明らかなように、従来法
で調製した担体を用いた比較例1および2は、触媒の機
械的強度での改善が見られるだけで、転化率、選択率は
低い。これは、打錠、焼成の過程で触媒比表面積の縮
小、および細孔の閉塞が起こるため、〓所定量のルテニ
ウムが担持できない、換言すると活性点となり得るルテ
ニウム量がそもそも少ない、ルテニウム分散性も低い、
第三成分の表面露出が少ないので、硫黄被毒が起こり、
その結果、炭素析出も生じるものと解釈できる。これに
対し、本発明による実施例1〜5の触媒は、実用レベル
の強度を保持しつつも、調製過程において表面積、細孔
容積を損なわないため、所定量のルテニウムを高分散担
持でき、従って、優れた触媒活性を有する。また、担体
中の第三成分が充分触媒表面に露出した結果、原料中に
硫黄分が存在していても、その硫黄分が担体側に吸収さ
れるため、触媒の硫黄被毒や炭素析出といった問題を回
避できる。
As is clear from Tables 1 and 2, Comparative Examples 1 and 2 using the carrier prepared by the conventional method only show an improvement in the mechanical strength of the catalyst, and the conversion and selectivity are Low. This is because the catalyst specific surface area is reduced and the pores are clogged in the process of tableting and firing, so that a predetermined amount of ruthenium cannot be supported, in other words, the amount of ruthenium that can be an active site is small in the first place, and ruthenium dispersibility is also low. Low,
Since the surface exposure of the third component is small, sulfur poisoning occurs,
As a result, it can be interpreted that carbon precipitation also occurs. On the other hand, the catalysts of Examples 1 to 5 according to the present invention retain a practical level of strength, but do not impair the surface area and pore volume in the preparation process, and therefore can carry a predetermined amount of ruthenium in a highly dispersed manner, and , Has excellent catalytic activity. Further, as a result of the third component in the carrier being sufficiently exposed on the catalyst surface, even if there is sulfur content in the raw material, the sulfur content is absorbed by the carrier side, so that sulfur poisoning of the catalyst and carbon deposition can occur. You can avoid the problem.

【0038】[0038]

【発明の効果】以上説明したように、本発明における触
媒は、実用レベルの機械的強度を有するとともに、耐硫
黄被毒性および耐炭素析出性をも兼ね備えているので、
炭化水素から高カロリーの代替天然ガス(SNG)を製
造する工業的プロセスに本触媒を用いれば、高転化率、
高選択率の優れた反応成績を長期間持続させることがで
きる。
As described above, since the catalyst of the present invention has a practical level of mechanical strength, it has both sulfur poisoning resistance and carbon deposition resistance.
If the catalyst is used in an industrial process for producing high-calorie alternative natural gas (SNG) from hydrocarbons, high conversion rate,
It is possible to maintain excellent reaction results with high selectivity for a long period of time.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C01B 3/40 B01J 23/56 301M (72)発明者 吉澤 隆 埼玉県幸手市権現堂1134−2 株式会社コ スモ総合研究所研究開発センター内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication C01B 3/40 B01J 23/56 301M (72) Inventor Takashi Yoshizawa 1134-2 Gongendo, Satte City, Saitama Prefecture Cosmo Research Institute Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (a)水酸化アルミニウム、(b)2族
金属、3族金属およびランタノイド金属の酸化物よりな
る群から選ばれる少なくとも1種の金属酸化物を触媒基
準で5〜30重量%、及び(c)易燃性高分子化合物を
含有する担体原料を、担体基材に成型し、焼成して得ら
れる活性アルミナ複合体担体にルテニウムを担持させ、
次いで還元して得られることを特徴とする高カロリーガ
ス製造用触媒。
1. At least one metal oxide selected from the group consisting of (a) aluminum hydroxide, (b) Group 2 metal, Group 3 metal and lanthanoid metal oxides in an amount of from 5 to 30% by weight based on the catalyst. , And (c) a carrier raw material containing a flammable polymer compound is molded into a carrier substrate, and ruthenium is supported on an activated alumina composite carrier obtained by firing.
A catalyst for producing a high-calorie gas, which is obtained by subsequent reduction.
【請求項2】 (a)水酸化アルミニウム、(b)2族
金属、3族金属およびランタノイド金属の酸化物よりな
る群から選ばれる少なくとも1種の金属酸化物を触媒基
準で5〜30重量%、及び(c)易燃性高分子化合物を
含有する担体原料を、担体基材に成型し、焼成して得ら
れる活性アルミナ複合体担体にルテニウムを担持させ、
アルカリ水溶液を用いてルテニウムを不溶・固定化し、
次いで還元することを特徴とする高カロリーガス製造用
触媒の製造方法。
2. At least one metal oxide selected from the group consisting of (a) aluminum hydroxide, (b) Group 2 metal, Group 3 metal and lanthanoid metal oxides in an amount of 5 to 30% by weight based on the catalyst. , And (c) a carrier raw material containing a flammable polymer compound is molded into a carrier substrate, and ruthenium is supported on an activated alumina composite carrier obtained by firing.
Ruthenium is insoluble and immobilized using an alkaline aqueous solution,
Then, a method for producing a catalyst for producing a high-calorie gas, which comprises reducing.
JP16677295A 1995-05-24 1995-05-24 Catalyst for producing high calorie gas and method for producing the same Expired - Fee Related JP3625528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16677295A JP3625528B2 (en) 1995-05-24 1995-05-24 Catalyst for producing high calorie gas and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16677295A JP3625528B2 (en) 1995-05-24 1995-05-24 Catalyst for producing high calorie gas and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08318158A true JPH08318158A (en) 1996-12-03
JP3625528B2 JP3625528B2 (en) 2005-03-02

Family

ID=15837410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16677295A Expired - Fee Related JP3625528B2 (en) 1995-05-24 1995-05-24 Catalyst for producing high calorie gas and method for producing the same

Country Status (1)

Country Link
JP (1) JP3625528B2 (en)

Also Published As

Publication number Publication date
JP3625528B2 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
JP5354175B2 (en) Porous catalyst body for decomposing hydrocarbon and method for producing the same, method for producing mixed reformed gas containing hydrogen from hydrocarbon, and fuel cell system
JP5168498B2 (en) Porous molded body, method for producing the same, catalyst carrier and catalyst
JP5531615B2 (en) Catalyst for cracking hydrocarbons
KR20030061395A (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
US4285837A (en) Catalyst for steam reforming of hydrocarbons
JP5477561B2 (en) Porous catalyst body for decomposing hydrocarbon and method for producing the same, method for producing mixed reformed gas containing hydrogen from hydrocarbon, and fuel cell system
SA515360188B1 (en) Steam reforming catalyst
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP4717474B2 (en) Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst
JP2002535119A (en) Catalyst carrier supporting nickel, ruthenium and lanthanum
JP3818710B2 (en) Alumina-supported ruthenium catalyst
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP3717219B2 (en) Method for producing highly dispersed steam reforming catalyst and method for producing hydrogen
JPH09262468A (en) Catalyst for producing high calorie gas and its production
JP3813646B2 (en) Method for producing steam reforming catalyst and method for producing hydrogen
JP3215173B2 (en) Methane adsorbent
JP4494254B2 (en) Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst
JPH08318158A (en) Catalyst for production of high calorie gas and its production
JP6933144B2 (en) Heterogeneous catalyst structure and its manufacturing method
Quan et al. Valorization of waste eggshell for CO2 sorbents production by sol-gel citric acid treatment in a fixed-bed reactor
JP3534451B2 (en) Catalyst for high calorie gas production
JP4777190B2 (en) Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst
CN112691679B (en) High-pressure low-temperature sulfur-resistant pre-shift catalyst, and preparation method and application thereof
JPH11137993A (en) Adsorbent for carbon monoxide and its production
JPH10180090A (en) Adsorbing agent for volatile organic compound and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees