JP3534451B2 - Catalyst for high calorie gas production - Google Patents

Catalyst for high calorie gas production

Info

Publication number
JP3534451B2
JP3534451B2 JP18940494A JP18940494A JP3534451B2 JP 3534451 B2 JP3534451 B2 JP 3534451B2 JP 18940494 A JP18940494 A JP 18940494A JP 18940494 A JP18940494 A JP 18940494A JP 3534451 B2 JP3534451 B2 JP 3534451B2
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
carrier
amount
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18940494A
Other languages
Japanese (ja)
Other versions
JPH0852355A (en
Inventor
崇 鈴木
彦一 岩波
隆 ▲吉▼澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP18940494A priority Critical patent/JP3534451B2/en
Publication of JPH0852355A publication Critical patent/JPH0852355A/en
Application granted granted Critical
Publication of JP3534451B2 publication Critical patent/JP3534451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素を水蒸気改質
せしめて、高カロリーの代替天然ガス(以下、SNGと
いうこともある)を製造するために使用する触媒に関す
る。
TECHNICAL FIELD The present invention relates to a catalyst used for steam reforming a hydrocarbon to produce a high-calorie alternative natural gas (hereinafter, also referred to as SNG).

【0002】[0002]

【従来の技術】炭化水素の水蒸気改質用触媒としては、
アルミナ等にニッケルを担持させたニッケル系触媒が知
られている。しかし、ニッケル系触媒は触媒上に炭素析
出を起こし易く、これにより活性低下を起こす欠点を有
しているため、改質反応時の水蒸気のモル数と原料炭化
水素中の炭素数との比(以下、S/C比という)を高く
する必要がある。従って、一般には、ニッケル系触媒を
用いたナフサの水蒸気改質ではS/C比を3〜5付近で
運転している。
As a catalyst for steam reforming of hydrocarbons,
A nickel-based catalyst in which nickel is supported on alumina or the like is known. However, nickel-based catalysts have a drawback that carbon precipitation easily occurs on the catalyst, which causes a decrease in activity. Therefore, the ratio of the number of moles of steam during the reforming reaction to the number of carbons in the raw material hydrocarbon ( Hereinafter, it is necessary to increase the S / C ratio). Therefore, generally, in the steam reforming of naphtha using a nickel-based catalyst, the S / C ratio is operated at around 3 to 5.

【0003】一方、ルテニウム系触媒は、炭素析出を抑
制する作用を持つため、従来のニッケル系触媒と比較し
て、その1/2程度のS/C比で運転できる。従って、
SNG製造においては水蒸気原単位(製品単位量当たり
の水蒸気使用量)が、SNG製造プロセスの運転コスト
の中で大きな割合を占めるため、ルテニウム触媒を用い
ることにより製造原価を下げるという経済的効果が期待
できる。かかるルテニウム系触媒の例としては、アルミ
ナ若しくはシリカ担体にルテニウムを担持したもの(特
開昭57−4232号公報)、高純度アルミナにルテニ
ウムを担持したもの(特開平4−59048号公報)、
アルカリ金属酸化物又はアルカリ土類金属酸化物に酸化
セリウムを添加した担体を使用したもの(特開平4−2
65156号公報)、前駆体にルテニウム酸ソーダ等の
アルカリ塩を使用するもの(特開昭60−227834
号公報)、ジルコニウム担体を使用するもの(特開平2
−302304号公報)、安定化若しくは部分安定化ジ
ルコニア担体に担持したもの(特開平2−286787
号公報)等が報告されている。
On the other hand, the ruthenium-based catalyst has an action of suppressing carbon deposition, so that it can be operated at an S / C ratio which is about half that of the conventional nickel-based catalyst. Therefore,
In SNG production, the steam basic unit (the amount of steam used per product unit amount) accounts for a large percentage of the operating cost of the SNG manufacturing process, so the economic effect of reducing the manufacturing cost is expected by using a ruthenium catalyst. it can. Examples of such ruthenium-based catalysts include ruthenium supported on an alumina or silica carrier (JP-A-57-4232), ruthenium supported on high-purity alumina (JP-A-4-59048),
What uses a carrier obtained by adding cerium oxide to an alkali metal oxide or an alkaline earth metal oxide (JP-A-4-4-2).
No. 65156), using an alkali salt such as sodium ruthenate as a precursor (JP-A-60-227834).
Which uses a zirconium carrier (Japanese Patent Laid-Open No. Hei 2)
No. 302304), supported on a stabilized or partially stabilized zirconia carrier (JP-A-2-286787).
No. gazette) has been reported.

【0004】しかしながら、ルテニウム系触媒は硫化水
素等の硫黄分により容易に被毒されやすい(触媒35
巻、224頁(1993))欠点を有すること、及び硫
黄分による触媒被毒が起こると、不活性な炭素が触媒上
に析出することが知られている(例えば、Int.Ga
s Research Conference,予稿、
4巻、124頁(1989)、触媒35巻、224頁
(1993))。このように、たとえ、ルテニウム触媒
が炭素析出抑制効果を持っていても、原料ガス中に含ま
れる硫化水素等の硫黄分によって被毒されてしまえば、
折角のルテニウム触媒の長所が生かされなくなり、工業
化する上で大きな問題となる。
However, ruthenium-based catalysts are easily poisoned by sulfur components such as hydrogen sulfide (catalyst 35).
Vol. 224 (1993)) and the fact that inactive carbon deposits on the catalyst when the catalyst is poisoned by sulfur content (eg Int. Ga.
s Research Conference, Proceedings,
4, p. 124 (1989), catalyst 35, p. 224 (1993)). Thus, even if the ruthenium catalyst has a carbon deposition suppressing effect, if it is poisoned by sulfur components such as hydrogen sulfide contained in the raw material gas,
The advantage of the ruthenium catalyst is not taken advantage of, which is a big problem in industrialization.

【0005】従来の水素製造を目的とした高温水蒸気改
質触媒においては、熱的炭素析出が硫化水素による被毒
以外の原因でも生ずるため、炭素析出対策を含めた耐硫
黄性に関する高度な触媒設計は必要とされなかった。し
かしながら、炭化水素の低温水蒸気改質によるSNG製
造にあっては、化学平衡上400〜500℃程度の反応
温度で、かつ平衡転化率を示すことが触媒に求められ
る。この温度は通常の水蒸気改質の約1/2であり、平
衡上も炭素析出が極めて起こり易い。更に、原料中に元
々存在している不純物や原料中に添加されている着臭剤
などの硫黄化合物により被毒されて触媒劣化が起こり易
いので、従来法での触媒をそのまま利用することは極め
て難しい。単に第三成分の添加や、出発物質の種類の多
様化、担体の複合化だけでは、上記の問題点を克服する
触媒の製造はできず、担体に耐硫黄性を持たせる第三成
分の添加と担体の物性と活性金属の分散性とを制御し
た、より緻密な触媒が待たれているが、今までのとこ
ろ、そのような緻密に設計されたルテニウム系触媒は、
ほとんど見あたらない。
In the conventional high temperature steam reforming catalyst for producing hydrogen, thermal carbon deposition occurs due to causes other than poisoning by hydrogen sulfide, and therefore, a high degree of catalyst design regarding sulfur resistance including countermeasures for carbon deposition is provided. Was not needed. However, in SNG production by low-temperature steam reforming of hydrocarbons, the catalyst is required to exhibit equilibrium conversion at a reaction temperature of about 400 to 500 ° C. in terms of chemical equilibrium. This temperature is about half that of ordinary steam reforming, and carbon deposition is extremely likely to occur even in equilibrium. Furthermore, since the catalysts are apt to be poisoned by impurities originally present in the raw materials and sulfur compounds such as odorants added to the raw materials and catalyst deterioration easily occurs, it is extremely difficult to use the catalyst in the conventional method as it is. difficult. A catalyst that overcomes the above problems cannot be produced simply by adding a third component, diversifying the types of starting materials, and synthesizing a carrier, and adding a third component that makes the carrier sulfur-resistant. A denser catalyst, in which the physical properties of the carrier and the dispersibility of the active metal are controlled, is awaited, but so far, such a densely designed ruthenium-based catalyst is
I can hardly find it.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の目的
は、炭素が析出しても触媒活性の低下が少なく、かつ原
料中の硫黄分がある程度残存していても活性低下を起こ
さない触媒、つまり耐カーボン性、耐硫黄性を有する、
炭化水素の低温水蒸気改質法により高カロリーガス製造
する触媒を提供せんとするものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a catalyst in which the catalytic activity is not significantly reduced even when carbon is deposited, and the activity is not reduced even if a sulfur content in the raw material remains to some extent, In other words, it has carbon resistance and sulfur resistance,
It is intended to provide a catalyst for producing a high-calorie gas by a low-temperature steam reforming method of hydrocarbons.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者らは上
述の問題を解決すべく検討を重ねた結果、(1)担体の
影響以外にも、担持する活性金属の集合状態や分散性が
反応活性、反応選択性に対して極めて重要な働きをする
こと、(2)IIa属金属酸化物、IIIa属金属酸化物若し
くはランタノイド金属酸化物とアルミナとの複合体を5
00℃以下の低温で焼成して得られる担体に、ルテニウ
ムを担持させた触媒が、低温域でのSNG製造過程にお
いて平衡転化率を示すだけでなく、原料ガス中に硫化水
素等の硫黄化合物が存在していても、被毒され難く、か
つ炭素析出も抑制されることを見いだし本発明を完成す
るに至った。
The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result, (1) In addition to the influence of the carrier, the aggregated state and dispersibility of the active metal to be supported are It plays an extremely important role in reaction activity and reaction selectivity. (2) A complex of Group IIa metal oxide, Group IIIa metal oxide or lanthanoid metal oxide with alumina is used.
The catalyst obtained by supporting ruthenium on the carrier obtained by calcining at a low temperature of 00 ° C or lower does not only show equilibrium conversion in the SNG production process in the low temperature range, but also contains sulfur compounds such as hydrogen sulfide in the source gas. It was found that even if it is present, it is difficult to be poisoned and carbon precipitation is suppressed, and the present invention has been completed.

【0008】すなわち、本発明は、IIa属、IIIa属及び
/又はランタノイド金属の酸化物を含有する活性アルミ
ナ複合体担体にルテニウムを担持させ、アルカリ水溶液
を用いて、ルテニウム水酸化物として不溶・固定化し、
次いでこれを洗浄・乾燥後還元処理して得られる350
〜500℃の低温で炭化水素の水蒸気改質を行い高カロ
リーガスを製造するための触媒を提供するものである。
That is, according to the present invention, ruthenium is supported on an activated alumina composite carrier containing an oxide of a IIa group, a IIIa group and / or a lanthanoid metal, which is insoluble and fixed as a ruthenium hydroxide using an alkaline aqueous solution. Turned into
Then, this is washed and dried, and then reduced to obtain 350.
Performs steam reforming of hydrocarbons at low temperatures of ~ 500 ° C
The present invention provides a catalyst for producing regas .

【0009】[0009]

【0010】本発明の高カロリーガス製造用触媒は、活
性アルミナ複合体担体にルテニウムを担持させ、アルカ
リ水溶液を用いて、ルテニウム水酸化物として不溶・固
定化し、洗浄・乾燥後還元処理して得られたものである
が、その中でもIIa金属酸化物、IIIa属金属酸化物及
び/又はランタノイド金属酸化物を5〜30重量%含有
する複合体であって、比表面積が60m2/g以上で、か
つ細孔容積が0.2〜0.5ml/gである担体に、ルテ
ニウムを0.5〜5重量%担持させ、次いで還元処理を
し、一酸化炭素(以下、COということもある)吸着量
が2ml/g以上になるようにしたものが好ましい。
The catalyst for producing high-calorie gas of the present invention is obtained by supporting ruthenium on an activated alumina composite carrier, insolubilizing it as ruthenium hydroxide using an aqueous alkali solution, washing and drying it, and then reducing it. Among them, it is a composite containing 5 to 30% by weight of IIa metal oxide, IIIa group metal oxide and / or lanthanoid metal oxide, and has a specific surface area of 60 m 2 / g or more, Also, 0.5 to 5% by weight of ruthenium was loaded on a carrier having a pore volume of 0.2 to 0.5 ml / g, and then reduction treatment was performed to adsorb carbon monoxide (hereinafter sometimes referred to as CO). It is preferable that the amount is 2 ml / g or more.

【0011】本発明の触媒において、IIa属金属酸化物
としては、ベリリウム、マグネシウム、カルシウム、ス
トロンチウム、バリウム、ラジウムの酸化物が使用でき
るが、特にマグネシウム、バリウムの酸化物を用いるの
が良い。
In the catalyst of the present invention, as the Group IIa metal oxide, oxides of beryllium, magnesium, calcium, strontium, barium and radium can be used, but oxides of magnesium and barium are particularly preferable.

【0012】IIIa属金属酸化物としては、スカンジウ
ム、イットリウム等の酸化物が使用できるが、特にイッ
トリウムの酸化物を用いるのが良い。
As the group IIIa metal oxide, oxides of scandium, yttrium and the like can be used, but yttrium oxide is particularly preferable.

【0013】ランタノイド金属酸化物としては、ランタ
ン、セリウム、プラセオジム、ネオジム、プロメチウ
ム、サマリウム等の酸化物が使用できるが、特にランタ
ン、セリウムの酸化物を用いるのが良い。
As the lanthanoid metal oxide, oxides of lanthanum, cerium, praseodymium, neodymium, promethium, samarium and the like can be used, but lanthanum and cerium oxides are particularly preferable.

【0014】IIa属金属酸化物、IIIa属金属酸化物及び
ランタノイド金属酸化物は、酸化物のほかに、前駆体と
して塩化物、硝酸塩などを用いることもできる。
For the group IIa metal oxide, the group IIIa metal oxide and the lanthanoid metal oxide, chlorides, nitrates and the like can be used as precursors in addition to the oxides.

【0015】またアルミナとしては、アルミニウムイソ
プロポキシド等のアルコキシドを前駆体として用いるこ
ともできる。
As the alumina, an alkoxide such as aluminum isopropoxide can be used as a precursor.

【0016】複合体担体におけるIIa属金属酸化物、III
a属金属酸化物及びランタノイド金属酸化物の量は5〜
30重量%、好ましくは10〜30重量%、より好まし
くは15〜25重量%とするのが良い。この量が5重量
%より少ないと、耐硫黄性に関して充分な効果が得られ
ず、従って触媒の充分な寿命延長は望めない。すなわ
ち、原料ガス中の硫化水素等の硫黄化合物は、IIa属金
属酸化物、IIIa属金属酸化物及びランタノイド金属酸化
物によって吸着・吸収されるため、活性成分であるルテ
ニウムが被毒されにくくなり寿命が延長すると考えられ
る。IIa属金属酸化物等の量が30重量%を超えると、
相対的にアルミナの量が低下するので好ましくない。す
なわち、アルミナは比表面積や機械的強度の向上等に有
効であり、従ってアルミナの量が極端に少なければこれ
らの向上効果が望めない。
Group IIa metal oxides in composite supports, III
The amount of group a metal oxide and lanthanoid metal oxide is 5 to
The amount is preferably 30% by weight, preferably 10 to 30% by weight, more preferably 15 to 25% by weight. If this amount is less than 5% by weight, a sufficient effect cannot be obtained with respect to sulfur resistance, and therefore a sufficient life extension of the catalyst cannot be expected. That is, since sulfur compounds such as hydrogen sulfide in the raw material gas are adsorbed and absorbed by the group IIa metal oxides, the group IIIa metal oxides and the lanthanoid metal oxides, ruthenium, which is an active component, is less likely to be poisoned, and the service life becomes longer. Will be extended. If the amount of IIa group metal oxides exceeds 30% by weight,
This is not preferable because the amount of alumina decreases relatively. That is, alumina is effective for improving the specific surface area and mechanical strength, and therefore, if the amount of alumina is extremely small, these improving effects cannot be expected.

【0017】複合体担体の比表面積は60m2/g以上、
好ましくは60〜150m2/g、より好ましくは60〜
90m2/gで、細孔容積は0.2〜0.5ml/g、好ま
しくは0.3〜0.4ml/gが良く、担体の比表面積や
細孔容積がこれより小さい場合は、担持させるルテニウ
ムの分散性が悪くなり、SNG製造時の活性が損なわれ
る。また、このような場合、担体成分が表面に充分に露
出しないため、耐硫黄性の効果が低下するばかりか、所
定量の活性成分が担持できなくなる。逆に比表面積を極
端に大きくした場合には、分散性効果や耐硫黄性効果は
向上するものの、充分な担体強度が得られない等の問題
が生じる。
The specific surface area of the composite carrier is 60 m 2 / g or more,
Preferably 60-150 m 2 / g, more preferably 60-
90 m 2 / g, the pore volume is 0.2-0.5 ml / g, preferably 0.3-0.4 ml / g is good, and when the specific surface area of the carrier or the pore volume is smaller than this, The dispersibility of ruthenium to be used is deteriorated and the activity during SNG production is impaired. Further, in such a case, the carrier component is not sufficiently exposed on the surface, so that not only the effect of sulfur resistance is lowered but also a predetermined amount of the active component cannot be supported. On the contrary, when the specific surface area is extremely increased, the dispersibility effect and the sulfur resistance effect are improved, but there is a problem that sufficient carrier strength cannot be obtained.

【0018】複合体担体は、当該金属酸化物を水、メタ
ノール、エタノール、アセトン等の溶媒に分散させ混練
し、これを焼成するか、当該金属の塩化物、硝酸塩の混
合液をpH調整し、共沈物を焼成することにより調製でき
る。また酸化物を単に機械的に混合して焼成しても良
い。なお、アルミナと当該金属酸化物の混合順序は特に
制限されない。例えば、アルミニウム化合物とIIa属金
属酸化物の一つを混合したものに、更にIIIa属金属酸化
物及び/又はランタノイド金属酸化物を混合しても良
い。
In the composite carrier, the metal oxide is dispersed in a solvent such as water, methanol, ethanol, acetone or the like and kneaded, followed by firing, or by adjusting the pH of a mixed solution of the chloride and nitrate of the metal, It can be prepared by firing the coprecipitate. Alternatively, oxides may be simply mechanically mixed and fired. The order of mixing alumina and the metal oxide is not particularly limited. For example, a mixture of an aluminum compound and one of the group IIa metal oxides may be further mixed with a group IIIa metal oxide and / or a lanthanoid metal oxide.

【0019】上記の複合体担体にルテニウムを担持させ
る方法としては、含浸法等の公知の方法を用いることが
できる。活性成分であるルテニウムには三塩化ルテニウ
ム無水物、三塩化ルテニウム水和物、硝酸ルテニウム等
の前駆体を使用できるが、溶解度等の点から三塩化ルテ
ニウム一水和物が特に好ましい。
As a method for supporting ruthenium on the above composite carrier, a known method such as an impregnation method can be used. As the active ingredient ruthenium, precursors such as ruthenium trichloride anhydride, ruthenium trichloride hydrate and ruthenium nitrate can be used, but ruthenium trichloride monohydrate is particularly preferable from the viewpoint of solubility.

【0020】ルテニウムの担持量は0.5〜5重量%、
好ましくは0.5〜3重量%とするのが良い。担持量が
これより少ないと活性点の量が少なくなり、またこれよ
り多くても、活性の向上はみられないと共に、分散性の
低下を招き好ましくない。
The amount of ruthenium supported is 0.5 to 5% by weight,
It is preferably 0.5 to 3% by weight. If the supported amount is less than this, the amount of active sites will be small, and if it is greater than this, the activity will not be improved and the dispersibility will be decreased, which is not preferable.

【0021】担体にルテニウムを担持させる前準備とし
て、先ず担体を秤量し、これに水を徐々に滴下して担体
内部に水を充分吸収させる。この吸水は、担体の内部に
おいて飽和されるまで行うことが好ましい。このように
予め飽和吸水量を求めておく。ここで所定量の三塩化ル
テニウム一水和物を溶解せしめた溶液を上記飽和吸水量
と等しい量だけ担体に吸収させる。その後、10〜15
容積%のアンモニア水をルテニウム濃度に対して過剰量
を滴下し、式RuCl3+3NH4OH→Ru(OH)3+NH4Cl(1)の
如く塩化物を水酸化物にし、不溶・固定化させる。
As a preliminary preparation for supporting ruthenium on the carrier, first, the carrier is weighed, and water is gradually added dropwise to the carrier so that water is sufficiently absorbed inside the carrier. This water absorption is preferably performed until it is saturated inside the carrier. In this way, the saturated water absorption amount is obtained in advance. Here, a solution in which a predetermined amount of ruthenium trichloride monohydrate is dissolved is absorbed by the carrier in an amount equal to the saturated water absorption. Then 10-15
An excess amount of volume% ammonia water is added dropwise to the ruthenium concentration, and the chloride is converted to hydroxide as in the formula RuCl 3 + 3NH 4 OH → Ru (OH) 3 + NH 4 Cl (1) to insolubilize / immobilize. .

【0022】この際、式(1)に示したように塩素アニ
オンは水溶性の塩化アンモニウムになるため、洗浄の過
程で脱塩素も行うことができる。ルテニウムを固定化し
た担体は、200℃未満、好ましくは150℃以下、よ
り好ましくは100℃以下で減圧若しくは常圧乾燥す
る。この温度が高すぎると水酸化物が一部酸化物に変化
してしまう。酸化物が混在した担体を還元するために
は、200℃以上の温度を必要とするため、還元処理後
のルテニウムの分散性は還元温度が高い分だけ悪くな
る。この点からも乾燥時の酸化物の存在は避けることが
好ましい。また、乾燥温度が低すぎると乾燥時間が著し
く長くなり好ましくない。
At this time, since the chlorine anion becomes water-soluble ammonium chloride as shown in the formula (1), dechlorination can be performed in the washing process. The ruthenium-immobilized carrier is dried at 200 ° C. or lower, preferably 150 ° C. or lower, more preferably 100 ° C. or lower under reduced pressure or atmospheric pressure. If this temperature is too high, some of the hydroxide will change to oxide. In order to reduce the carrier mixed with oxides, a temperature of 200 ° C. or higher is required, so that the dispersibility of ruthenium after the reduction treatment becomes worse due to the higher reduction temperature. From this point as well, it is preferable to avoid the presence of oxides during drying. Further, if the drying temperature is too low, the drying time becomes extremely long, which is not preferable.

【0023】固定化にはアンモニア水の他にも炭酸水素
ナトリウム、炭酸ナトリウム、苛性ソーダ、苛性カリ等
の塩基の水溶液が使用できる。しかし、ナトリウム塩及
びカリウム塩等の場合には洗浄の際にアルカリ金属カチ
オンが残存する恐れがあるので、アンモニア水が最も取
扱い易い。
In addition to ammonia water, an aqueous solution of a base such as sodium hydrogen carbonate, sodium carbonate, caustic soda, and caustic potash can be used for immobilization. However, in the case of sodium salts and potassium salts, there is a risk that alkali metal cations will remain during cleaning, so ammonia water is the easiest to handle.

【0024】担持ルテニウム触媒の還元は、担持金属の
分散性を良くするために、該金属が凝集しないように、
80〜180℃、好ましくは100〜180℃、より好
ましくは100〜150℃の温度で行うのが良い。還元
ガスとしては、純水素、水素・水蒸気及び一酸化炭素を
用いることができる。この中でも、水素ガス若しくは水
素・水蒸気ガスを用いるのが好ましく、水素ガスを用い
るのが特に好ましい。
The reduction of the supported ruthenium catalyst is carried out in order to improve the dispersibility of the supported metal so that the metal does not aggregate.
The temperature is preferably 80 to 180 ° C, preferably 100 to 180 ° C, more preferably 100 to 150 ° C. Pure hydrogen, hydrogen / steam, and carbon monoxide can be used as the reducing gas. Among these, it is preferable to use hydrogen gas or hydrogen / steam gas, and it is particularly preferable to use hydrogen gas.

【0025】かくして得られた触媒は、耐硫黄性に優れ
ているため、原料中に硫化水素等の硫黄化合物がある程
度混在していてもよく、更に耐カーボン性にも優れてい
るので、S/C比を従来より低下させ、すなわち従来よ
りも少ない水蒸気量で高カロリーガスを製造することが
できる。
Since the catalyst thus obtained has excellent sulfur resistance, sulfur compounds such as hydrogen sulfide may be mixed in the raw material to some extent, and further the carbon resistance is excellent. The C ratio can be lowered as compared with the conventional one, that is, a high calorie gas can be produced with a smaller amount of water vapor than the conventional one.

【0026】本発明の触媒を用いて高カロリーガスの製
造を行う場合において、原料の主成分となる炭化水素と
しては、炭素数が2〜16、好ましくは2〜10、特に
3〜8のものが好ましく、反応温度は350〜500
℃、好ましくは400〜450℃、圧力は20kg/cm2G
以下、好ましくは常圧〜15kg/cm2G、特に好ましくは
8〜10kg/cm2Gであり、GHSVは600〜1200
-1が好ましい。
When the high calorie gas is produced using the catalyst of the present invention, the hydrocarbon as the main component of the raw material has 2 to 16 carbon atoms, preferably 2 to 10 carbon atoms, particularly 3 to 8 carbon atoms. Is preferred, and the reaction temperature is 350-500.
℃, preferably 400-450 ℃, pressure is 20kg / cm 2 G
The following is preferably atmospheric pressure to 15 kg / cm 2 G, particularly preferably 8 to 10 kg / cm 2 G, and GHSV of 600 to 1200.
h -1 is preferred.

【0027】[0027]

【実施例】次に、本発明を実施例により更に具体的に説
明するが、本発明はこれらに限定されるものではない。
EXAMPLES Next, the present invention will be described more specifically by way of examples, but the present invention is not limited to these.

【0028】なお、以下の実施例において、生成物の分
析にはSUS製管(内径3mmφ×2m)に60〜80メ
ッシュのUnibeads−C(GLサイエンス社製、
スチレン−ジビニルベンゼン共重合体)を充填した分離
カラムを取付けた熱伝導型検出器(TCD)付きのガス
クロマトグラフ(GC)により行った。担体の比表面積
及び細孔容積は表面積測定装置(ベル社製)また、一酸
化炭素吸着量は自動吸着装置(大倉理研社製)により測
定した。また硫化水素吸収量はゴーレイカラムを取付け
たTCD−GCを用い、一定量の硫化水素パルスを40
0℃で触媒に流すパルス法によって、未吸収の硫化水素
の量から求めた。
In the following examples, for the analysis of the product, a SUS pipe (inner diameter 3 mmφ × 2 m) having 60-80 mesh Unibeads-C (manufactured by GL Science Co.,
It was carried out by a gas chromatograph (GC) equipped with a thermal conductivity type detector (TCD) equipped with a separation column filled with (styrene-divinylbenzene copolymer). The specific surface area and pore volume of the carrier were measured by a surface area measuring device (manufactured by Bell Co.), and the carbon monoxide adsorption amount was measured by an automatic adsorption device (manufactured by Okura Riken Co., Ltd.). As for the amount of absorbed hydrogen sulfide, a TCD-GC equipped with a Golay column was used, and a fixed amount of hydrogen sulfide pulse was used.
It was determined from the amount of unabsorbed hydrogen sulfide by the pulse method of flowing the catalyst at 0 ° C.

【0029】実施例1 酸化セリウム(CeO2 和光純薬社製)粉末19.8g
と活性アルミナ粉末(Al23 アルミニウムオキシド
90 タイプI、メルク社製)82.2gを乳鉢で充分
混合した後、約40mlの水を加えて更に混練した。ペー
スト状の混合物をロータリーエバポレーターで2.7kP
a(約20mmHg)の真空下で赤外線式ホットプレートで
60〜70℃に加温し、水分を除去した。これを105
℃に保った定温乾燥器で予備乾燥した後、電気炉を用い
て500℃で3時間焼成し、複合体担体を得た。この時
の比表面積は82.5m2/g、細孔容積は0.4ml/g
であった。三塩化ルテニウム一水和物(RuCl3・H2
O 関東化学社製)1gを37mlの水に溶解させた水溶
液に、上記複合体担体の粉末25.4gを1時間浸漬
し、残液を除去後、ロータリーエバポレーターを用いて
約2.7kPa程度の真空下で赤外線式ホットプレートに
て40〜45℃に加温して水分を除去した。これを10
〜15容量%のアンモニア水中に加えて40℃に保ち、
2時間攪拌し、式(1)に示したように不溶・固定化後
ブフナー漏斗を用いて触媒を分離し、純水により充分洗
浄した。更に、これを真空乾燥器中40〜45℃で8時
間乾燥し、ルテニウム1.8重量%、酸化セリウム2
1.6重量%、残りアルミナから成る触媒を調製した。
これを8〜12メッシュに整粒した。
Example 1 19.8 g of powder of cerium oxide (CeO 2 manufactured by Wako Pure Chemical Industries, Ltd.)
After 82.2 g of activated alumina powder (Al 2 O 3 aluminum oxide 90 type I, manufactured by Merck & Co., Inc.) was thoroughly mixed in a mortar, about 40 ml of water was added and further kneaded. 2.7 kP of the pasty mixture on a rotary evaporator
Under an a (about 20 mmHg) vacuum, it was heated to 60 to 70 ° C. with an infrared hot plate to remove water. 105 this
After pre-drying with a constant temperature dryer kept at ℃, it was baked at 500 ℃ for 3 hours using an electric furnace to obtain a composite carrier. The specific surface area at this time is 82.5 m 2 / g, and the pore volume is 0.4 ml / g.
Met. Ruthenium trichloride monohydrate (RuCl 3 · H 2
2 g of the above composite carrier powder was immersed in an aqueous solution prepared by dissolving 1 g of O 2 (manufactured by Kanto Kagaku Co., Ltd.) in 37 ml of water for 1 hour to remove the residual liquid, and then about 2.7 kPa was applied using a rotary evaporator. Water was removed by heating to 40 to 45 ° C. on an infrared hot plate under vacuum. This is 10
Add to 15% by volume ammonia water and keep at 40 ° C.
After stirring for 2 hours and insolubilizing and fixing as shown in formula (1), the catalyst was separated using a Buchner funnel and thoroughly washed with pure water. Further, this was dried in a vacuum dryer at 40 to 45 ° C. for 8 hours to give ruthenium 1.8% by weight and cerium oxide 2
A catalyst was prepared consisting of 1.6 wt% balance alumina.
This was sized to 8-12 mesh.

【0030】上記で得た触媒10mlを内径16mmφのS
US製円筒反応管に充填し、圧力8kg/cm2G、還元温度
150℃、GHSV3000h-1で8時間水素還元を行
った。還元処理後の触媒へのCO吸着量は約3.9ml/
g;標準状態(以下(STP)で示す)であった。次い
で、ブタンガス(n−ブタンとiso−ブタンの混合ガ
ス(n/iso=約1.8)、硫化水素を10ppm含
有)を担持ルテニウム触媒の入った反応器へ水蒸気とと
もに導入した。操作条件は、反応圧力8kg/cm2G、反応
温度450℃、GHSV600h-1、S/Cは1で行っ
た。このときの結果を表1に示す。
10 ml of the above-obtained catalyst was mixed with S having an inner diameter of 16 mmφ.
It was filled in a US-made cylindrical reaction tube and subjected to hydrogen reduction for 8 hours at a pressure of 8 kg / cm 2 G, a reduction temperature of 150 ° C., and a GHSV of 3000 h −1 . The amount of CO adsorbed on the catalyst after the reduction treatment is about 3.9 ml /
g: Standard state (hereinafter referred to as (STP)). Then, butane gas (mixed gas of n-butane and iso-butane (n / iso = about 1.8), containing 10 ppm of hydrogen sulfide) was introduced together with steam into the reactor containing the supported ruthenium catalyst. The operating conditions were a reaction pressure of 8 kg / cm 2 G, a reaction temperature of 450 ° C., GHSV of 600 h −1 , and S / C of 1. The results at this time are shown in Table 1.

【0031】実施例2 酸化イットリウム(Y23 関東化学社製)粉末21.
1gと活性アルミナ粉末78.5gを用いて実施例1と
同様の方法で比表面積81.1m2/g、細孔容積0.4
ml/gの担体を調製し、ルテニウム2.1重量%、酸化
イットリウム22.1重量%、残りアルミナから成る触
媒を調製した。この触媒を還元後ブタンと水蒸気の反応
に使用したときの結果を表1に示す。上記触媒を還元し
た後のCO吸着量は約3.9ml/g(STP)であっ
た。
Example 2 Yttrium oxide (Y 2 O 3 manufactured by Kanto Chemical Co., Inc.) powder 21.
1 g and 78.5 g of activated alumina powder were used in the same manner as in Example 1 to give a specific surface area of 81.1 m 2 / g and a pore volume of 0.4.
A carrier of ml / g was prepared, and a catalyst composed of 2.1% by weight of ruthenium, 22.1% by weight of yttrium oxide and the balance alumina was prepared. The results of using this catalyst for the reaction of butane and steam after reduction are shown in Table 1. The amount of CO adsorbed after reducing the catalyst was about 3.9 ml / g (STP).

【0032】実施例3 酸化ランタン(La23 和光純薬社製)粉末20.5
gと活性アルミナ粉末79.6gを用いて実施例1と同
様の方法で比表面積80.5m2/g、細孔容積0.3ml
/gの担体を調製し、ルテニウム2.0重量%、酸化ラ
ンタン21.1重量%、残りアルミナから成る触媒を調
製した。この触媒を還元後、ブタンと水蒸気の反応に使
用したときの結果を表1に示す。上記触媒を還元した後
のCO吸着量は約2.5ml/g(STP)であった。
Example 3 Lanthanum oxide (La 2 O 3 Wako Pure Chemical Industries, Ltd.) powder 20.5
g and 79.6 g of activated alumina powder in the same manner as in Example 1 with a specific surface area of 80.5 m 2 / g and a pore volume of 0.3 ml.
/ G of the carrier was prepared to prepare a catalyst composed of 2.0% by weight of ruthenium, 21.1% by weight of lanthanum oxide and the balance alumina. The results of using this catalyst for the reaction of butane and steam after reduction are shown in Table 1. The amount of CO adsorbed after reducing the catalyst was about 2.5 ml / g (STP).

【0033】実施例4 酸化マグネシウム(MgO 和光純薬社製)粉末20.
3gと活性アルミナ粉末80.2gを用いて実施例1と
同様の方法で比表面積62.5m2/g、細孔容積0.3
ml/gの担体を調製し、ルテニウム2.1重量%、酸化
マグネシウム20.5重量%、残りアルミナから成る触
媒を調製した。この触媒を還元後、ブタンと水蒸気の反
応に使用したときの結果を表1に示す。上記触媒を還元
した後のCO吸着量は約2.4ml/g(STP)であっ
た。
Example 4 Magnesium oxide (MgO manufactured by Wako Pure Chemical Industries, Ltd.) powder 20.
Using 3 g and 80.2 g of activated alumina powder, the specific surface area was 62.5 m 2 / g and the pore volume was 0.3 in the same manner as in Example 1.
A carrier of ml / g was prepared, and a catalyst composed of 2.1% by weight of ruthenium, 20.5% by weight of magnesium oxide and the balance alumina was prepared. The results of using this catalyst for the reaction of butane and steam after reduction are shown in Table 1. The amount of CO adsorbed after reducing the catalyst was about 2.4 ml / g (STP).

【0034】実施例5 酸化バリウム(BaO 和光純薬社製)粉末20.7g
と活性アルミナ粉末81.3gを用いて実施例1と同様
の方法で比表面積60.2m2/g、細孔容積0.3ml/
gの担体を調製し、ルテニウム2.1重量%、酸化バリ
ウム21.5重量%、残りアルミナから成る触媒を調製
した。この触媒を還元後、ブタンと水蒸気の反応に使用
したときの結果を表1に示す。上記触媒を還元した後の
CO吸着量は約2.1ml/g(STP)であった。
Example 5 Barium oxide (BaO Wako Pure Chemical Industries, Ltd.) powder 20.7 g
And 81.3 g of activated alumina powder were used in the same manner as in Example 1 to give a specific surface area of 60.2 m 2 / g and a pore volume of 0.3 ml /
g of the carrier was prepared to prepare a catalyst composed of 2.1% by weight of ruthenium, 21.5% by weight of barium oxide and the balance alumina. The results of using this catalyst for the reaction of butane and steam after reduction are shown in Table 1. The amount of CO adsorbed after the above catalyst was reduced was about 2.1 ml / g (STP).

【0035】比較例1 活性アルミナ(比表面積250m2/g、細孔容積0.5
ml/g)粉末のみを担体に用いたほかは実施例1と同様
にしてルテニウム2.2重量%、残りアルミナから成る
触媒を調製した。この触媒を還元後、ブタンと水蒸気の
反応に使用したときの結果を表1に示す。なお、上記触
媒を還元した後のCO吸着量は約3.7ml/g(ST
P)であった。
Comparative Example 1 Activated alumina (specific surface area 250 m 2 / g, pore volume 0.5)
A catalyst comprising 2.2% by weight of ruthenium and the balance alumina was prepared in the same manner as in Example 1 except that only the powder (ml / g) was used as the carrier. The results of using this catalyst for the reaction of butane and steam after reduction are shown in Table 1. The amount of CO adsorbed after the reduction of the catalyst was about 3.7 ml / g (ST
P).

【0036】実施例1〜5及び比較例1において、表1
中に示した転化率及び選択率はそれぞれ下記の式(2)
及び式(3)により算出した。
In Examples 1 to 5 and Comparative Example 1, Table 1
The conversion rate and the selectivity shown in the table are calculated by the following formula (2).
And calculated by the formula (3).

【0037】[0037]

【数1】 [Equation 1]

【0038】[0038]

【表1】 [Table 1]

【0039】表1から明らかなように、原料ガスに硫化
水素等の硫黄化合物が含まれる場合には、担体にIIa属
金属酸化物、IIIa属金属酸化物及びランタノイド金属酸
化物を含まない触媒では、硫黄分による触媒被毒が起こ
り転化率が低下するほか、被毒の二次効果として、触媒
上への炭素析出が著しくなり、選択率も低下する。すな
わち、これらの第三成分を含まない触媒では、硫黄分に
よって触媒寿命が短くなることが分かる。本発明の触媒
では、原料ガスに硫化水素等の硫黄化合物が混在してい
ても、被毒されず、安定した性能を長期間示すことが分
かる。
As is clear from Table 1, when the source gas contains a sulfur compound such as hydrogen sulfide, the catalyst containing no Group IIa metal oxide, Group IIIa metal oxide or lanthanoid metal oxide in the carrier is used. In addition to the poisoning of the catalyst caused by the sulfur content, the conversion rate decreases, and as a secondary effect of the poisoning, carbon deposition on the catalyst becomes remarkable and the selectivity also decreases. That is, it can be seen that the catalyst life not including the third component is shortened by the sulfur content. It can be seen that the catalyst of the present invention shows stable performance for a long period of time without being poisoned even if the raw material gas contains a sulfur compound such as hydrogen sulfide.

【0040】参考例1 実施例1で調製した担体を使用し、これにルテニウム
0.5〜5重量%を担持させた触媒についてCO18.
5容積%、残りヘリウムから成る高純度ガスを室温で吸
着させ、CO吸着量を求めた。COは一般に金属(0
価)や配位不飽和度の高い還元された金属種に吸着し易
く、吸着量が多いことは低酸化状態の金属の分散性が高
いと解釈することができる。また、硫化水素4.7容積
%、残りヘリウムから成る高純度ガスをパルス法により
400℃で触媒に接触させ吸収量を求めた。CO吸着量
と硫化水素吸収量の関係を図1に示す。
Reference Example 1 Regarding the catalyst prepared by using the carrier prepared in Example 1 and supporting 0.5 to 5% by weight of ruthenium, CO18.
A high-purity gas consisting of 5% by volume and the remaining helium was adsorbed at room temperature to determine the CO adsorption amount. CO is generally a metal (0
It is easy to adsorb to a reduced metal species having a high valency) or a high degree of coordination unsaturation, and a large adsorption amount can be interpreted as a high dispersibility of a metal in a low oxidation state. Further, a high-purity gas consisting of 4.7% by volume of hydrogen sulfide and the remaining helium was brought into contact with the catalyst at 400 ° C. by a pulse method to determine the amount of absorption. The relationship between the CO adsorption amount and the hydrogen sulfide absorption amount is shown in FIG.

【0041】参考例2 実施例4で調製した担体を使用し、これにルテニウム
0.5〜5重量%を担持させた触媒について、参考例1
と同様にCO吸着量と硫化水素吸収量を測定した。その
結果を図1に示す。
Reference Example 2 A catalyst prepared by using the carrier prepared in Example 4 and supporting 0.5 to 5 wt% of ruthenium on the carrier was used.
The CO adsorption amount and hydrogen sulfide absorption amount were measured in the same manner as in. The result is shown in FIG.

【0042】比較例2 比較例1の活性アルミナ担体を使用し、これにルテニウ
ム0.5〜5重量%を担持させた触媒について参考例1
と同様にCO吸着量と硫化水素吸収量を測定した。その
結果を図1に示す。
COMPARATIVE EXAMPLE 2 Using the activated alumina carrier of Comparative Example 1 and supporting 0.5 to 5% by weight of ruthenium on the catalyst, Reference Example 1
The CO adsorption amount and hydrogen sulfide absorption amount were measured in the same manner as in. The result is shown in FIG.

【0043】結果 図1から、ルテニウム分散性が高い触媒には、いずれも
硫化水素吸収量が高くなる傾向が見られる。これはルテ
ニウムを高分散させれば、活性点の量がそれだけ増加す
ることになり、その結果、耐硫黄量が増える。換言する
と、その分寿命延長効果の発現につながる。アルミナ担
体にIIa属金属酸化物、IIIa属金属酸化物及びランタノ
イド金属酸化物を添加した触媒では、これら第三成分を
含まない触媒と同程度の分散性であっても、硫化水素吸
収量は約2〜2.5倍に増加した。これは硫化水素がル
テニウム以外、つまり複合体担体側に吸収されることを
意味している。すなわち、実施例1〜5でいずれも硫化
水素存在下であっても寿命延長効果が見られたのは、担
体側に硫化水素が吸収され、活性点であるルテニウムの
被毒を抑制するためである。従って、担体側での硫化水
素等吸収能の向上及び高分散ルテニウムの保持のため6
0m2/g以上の比表面積が必要で、かつルテニウムの分
散性の指標としてCO吸着量2ml/g(STP)以上を
有することが不可欠である。
Results From FIG. 1, it is seen that the catalysts having a high ruthenium dispersibility tend to have a high hydrogen sulfide absorption amount. This means that if ruthenium is highly dispersed, the amount of active sites will increase accordingly, and as a result, the amount of sulfur resistance will increase. In other words, the life extension effect is manifested accordingly. A catalyst prepared by adding a Group IIa metal oxide, a Group IIIa metal oxide, and a lanthanoid metal oxide to an alumina carrier has a hydrogen sulfide absorption amount of about 5% even if the catalyst has the same dispersibility as those containing no third component. It increased by 2 to 2.5 times. This means that hydrogen sulfide is absorbed on the side of the composite carrier other than ruthenium. That is, the life extension effect was observed even in the presence of hydrogen sulfide in all of Examples 1 to 5 because hydrogen sulfide was absorbed on the carrier side and poisoning of ruthenium, which is an active site, was suppressed. is there. Therefore, in order to improve the absorption capacity of hydrogen sulfide and the like on the carrier side and to retain highly dispersed ruthenium, 6
A specific surface area of 0 m 2 / g or more is required, and it is indispensable to have a CO adsorption amount of 2 ml / g (STP) or more as an index of dispersibility of ruthenium.

【0044】[0044]

【発明の効果】本発明の触媒を用いれば、炭化水素から
の高カロリーガスの代替天然ガス(SNG)を得る際
に、不純物若しくは着臭剤として原料中に硫化水素等の
硫黄化合物が混在していても触媒が被毒されず、炭素析
出も抑制されるため、触媒寿命が長く、しかも高転化
率、高選択率で高カロリーガスを製造することができ
る。
When the catalyst of the present invention is used, when a natural gas substitute (SNG) for high-calorie gas from hydrocarbons is obtained, sulfur compounds such as hydrogen sulfide are mixed in the raw material as impurities or odorants. However, since the catalyst is not poisoned and carbon deposition is suppressed, the catalyst life is long, and a high calorific gas can be produced with a high conversion and a high selectivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】担持ルテニウムの分散性(CO吸着量)と硫化
水素吸収量との関係を示した図である。
FIG. 1 is a diagram showing a relationship between dispersibility (CO adsorption amount) of supported ruthenium and hydrogen sulfide absorption amount.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲吉▼澤 隆 千葉県野田市岩名1−69−25 (56)参考文献 特開 平4−281845(JP,A) 特開 昭61−138535(JP,A) 特開 昭62−156196(JP,A) 特開 平2−75343(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor ▲ Yoshi ▼ Takashi Sawa 1-69-25 Iwana, Noda City, Chiba (56) Reference JP-A-4-281845 (JP, A) JP-A-61-138535 (JP, A) JP 62-156196 (JP, A) JP 2-75343 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 21/00 -38 / 74

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】IIa属、IIIa属及び/又はランタノイド金
属の酸化物を含有する活性アルミナ複合体担体にルテニ
ウムを担持させ、アルカリ水溶液を用いて、ルテニウム
水酸化物として不溶・固定化し、次いでこれを洗浄・乾
燥後還元処理して得られる350〜500℃の低温で炭
化水素の水蒸気改質を行い高カロリーガスを製造するた
めの触媒。
1. A ruthenium is supported on an activated alumina composite carrier containing an oxide of a IIa group, a IIIa group and / or a lanthanoid metal, which is insoluble and fixed as a ruthenium hydroxide using an alkaline aqueous solution, which is then fixed. Charcoal at low temperature of 350-500 ℃
Steam reforming of hydrogen fluoride to produce high calorie gas
Because of the catalyst.
【請求項2】アルカリ水溶液が、アンモニア水である請
求項1記載の触媒。
Wherein the alkali aqueous solution, catalysts according to claim 1, wherein the aqueous ammonia.
【請求項3】還元処理温度が、80〜180℃である請
求項1又は2記載の触媒。
3. A reduction treatment temperature, according to claim 1 or 2 wherein the catalytic is 80 to 180 ° C..
【請求項4】IIa属、IIIa属及び/又はランタノイド金
属の酸化物を5〜30重量%含有する活性アルミナ複合
体であって、比表面積が60m2/g以上で、かつ細孔容
積が0.2〜0.5ml/gである担体に、ルテニウムを
0.5〜5重量%担持させ、次いで還元処理をして得ら
れるものである請求項1〜3のいずれか1項記載の触
媒。
4. A genus IIa, genus IIIa and / or lanthanoid gold
Activated alumina composite containing 5 to 30% by weight of oxides of the genus
A body with a specific surface area of 60 m2/ G or more and pore volume
Ruthenium is added to a carrier whose product is 0.2 to 0.5 ml / g.
0.5 to 5% by weight is supported, and then reduction treatment is performed.Obtained
Is something thatThe method according to any one of claims 1 to 3.Touch
Medium.
JP18940494A 1994-08-11 1994-08-11 Catalyst for high calorie gas production Expired - Fee Related JP3534451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18940494A JP3534451B2 (en) 1994-08-11 1994-08-11 Catalyst for high calorie gas production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18940494A JP3534451B2 (en) 1994-08-11 1994-08-11 Catalyst for high calorie gas production

Publications (2)

Publication Number Publication Date
JPH0852355A JPH0852355A (en) 1996-02-27
JP3534451B2 true JP3534451B2 (en) 2004-06-07

Family

ID=16240723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18940494A Expired - Fee Related JP3534451B2 (en) 1994-08-11 1994-08-11 Catalyst for high calorie gas production

Country Status (1)

Country Link
JP (1) JP3534451B2 (en)

Also Published As

Publication number Publication date
JPH0852355A (en) 1996-02-27

Similar Documents

Publication Publication Date Title
US6808652B2 (en) Modified ⊖-alumina-supported nickel reforming catalyst and its use for producing synthesis gas from natural gas
JP4159874B2 (en) Hydrocarbon reforming catalyst and hydrocarbon reforming method using the same
Mitchell et al. Adsorption and catalytic behavior of palladium dispersed on rare earth oxides
WO2002078840A1 (en) Catalyst for reforming hydrocarbon and method for preparation thereof, and process for reforming hydrocarbon using said catalyst
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JPH08196907A (en) Production of ruthenium catalyst and steam reforming method for hydrocarbon employing the catalyst
JPH08231204A (en) Production of hydrogen and carbon monoxide by carbon dioxide performing reaction
JP2002535119A (en) Catalyst carrier supporting nickel, ruthenium and lanthanum
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP3717219B2 (en) Method for producing highly dispersed steam reforming catalyst and method for producing hydrogen
JP3638358B2 (en) Carbon dioxide reforming catalyst and reforming method using the same
JPS5929633B2 (en) Low-temperature steam reforming method for hydrocarbons
JP3534451B2 (en) Catalyst for high calorie gas production
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP3813646B2 (en) Method for producing steam reforming catalyst and method for producing hydrogen
JPH09262468A (en) Catalyst for producing high calorie gas and its production
JP4316181B2 (en) Hydrocarbon reforming catalyst and method for producing the same, and hydrocarbon reforming method using the catalyst
JP2001054734A (en) Catalyst for selectively oxidizing carbon monoxide, selective removal of carbon monoxide and catalyst and method for purifying hydrogen
JPH1024235A (en) Catalyst for producing high calorie gas and its production
JPH10192708A (en) Catalyst for reforming of carbon dioxide and reforming method
JP3226556B2 (en) Catalyst for steam reforming of hydrocarbons
JP4226685B2 (en) Method for producing hydrogen
JP4358405B2 (en) Hydrocarbon reforming catalyst and steam reforming method
CN112691679B (en) High-pressure low-temperature sulfur-resistant pre-shift catalyst, and preparation method and application thereof
JP2000103604A (en) Preparation of reforming catalyst for hydrocarbon and molded product of magnesium oxide for forming the same catalyst support

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees