JP4777190B2 - Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst - Google Patents

Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst Download PDF

Info

Publication number
JP4777190B2
JP4777190B2 JP2006227395A JP2006227395A JP4777190B2 JP 4777190 B2 JP4777190 B2 JP 4777190B2 JP 2006227395 A JP2006227395 A JP 2006227395A JP 2006227395 A JP2006227395 A JP 2006227395A JP 4777190 B2 JP4777190 B2 JP 4777190B2
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
mass
hydrogen
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006227395A
Other languages
Japanese (ja)
Other versions
JP2007098386A (en
Inventor
貴之 大崎
修 千代田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2006227395A priority Critical patent/JP4777190B2/en
Publication of JP2007098386A publication Critical patent/JP2007098386A/en
Application granted granted Critical
Publication of JP4777190B2 publication Critical patent/JP4777190B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、炭化水素から水素を製造するための触媒、特に燃料電池に使用される水素製造用触媒、および水素製造用触媒の製造方法、さらには水素製造法に関するものである。   The present invention relates to a catalyst for producing hydrogen from hydrocarbons, particularly a hydrogen production catalyst used in a fuel cell, a method for producing a hydrogen production catalyst, and a hydrogen production method.

従来、炭化水素からの水素製造方法として、Ni又はルテニウム触媒を用い、都市ガスやLPG、ナフサ留分を原料にする方法が多く行われてきた。
しかしながら、家庭用の小型燃料電池発電システムを想定した場合、天然ガス、LPGなどの軽質炭化水素は発熱量あたりのコストが高く、経済的観点から灯油などコストの安い重質炭化水素を原料に用いた水素製造方法が望まれている。
Conventionally, as a method for producing hydrogen from hydrocarbons, many methods using Ni or ruthenium catalyst and using city gas, LPG, or naphtha fraction as raw materials have been performed.
However, when assuming a small fuel cell power generation system for home use, light hydrocarbons such as natural gas and LPG have a high cost per calorific value, and low cost heavy hydrocarbons such as kerosene are used as raw materials from an economic viewpoint. A hydrogen production method that has been desired is desired.

しかし低コストの灯油などは重質炭化水素のため、触媒上に炭素析出しやすい。そのため運転条件の一つであるHO/Cを高くすれば触媒への炭素析出を抑制することができるが、水蒸気原単位(製品単位量あたりの水蒸気使用量)の増加を招くため、できるだけ低くすることが望ましい。
Ni触媒を用い、灯油のような重質炭化水素を原料とした水蒸気改質反応を行った場合、反応温度、HO/Cの条件に関わらず、触媒上に激しい炭素析出が起こり、活性が低下する問題や、触媒床の閉塞により差圧が上昇し、反応が継続できなくなるという問題が発生するので、比較的炭素析出の少ない触媒としてルテニウム系の水蒸気改質触媒も研究されている。
However, low-cost kerosene and the like are heavy hydrocarbons, so carbon is likely to deposit on the catalyst. Therefore, if H 2 O / C, which is one of the operating conditions, is increased, carbon deposition on the catalyst can be suppressed. However, since it causes an increase in water vapor intensity (water vapor consumption per product unit amount), It is desirable to make it low.
When a steam reforming reaction is performed using a Ni catalyst and a heavy hydrocarbon such as kerosene as a raw material, violent carbon deposition occurs on the catalyst regardless of the reaction temperature and H 2 O / C conditions. Ruthenium-based steam reforming catalysts have also been studied as a catalyst with relatively little carbon deposition.

また、水蒸気改質反応条件下に長時間曝されると、触媒強度が低下し、実用的な強度を維持できないことがある。そこで活性とともに強度の優れた触媒として、αアルミナ担体を用いることが知られている。特許文献1(特開2001−276623号公報)には、炭化水素の改質活性を効率的に向上せしめる触媒として、活性成分であるルテニウムを触媒外表面から触媒中心までの1/3までの部分に全ルテニウム担持量の50%以上を担持した、αアルミナ担体を用いる触媒が開示されている。しかしながら、αアルミナは表面積が小さく、灯油などの重質な原料を用いた場合、従来触媒では充分な改質活性が得られないという問題があった。   In addition, when exposed to steam reforming reaction conditions for a long time, the catalyst strength may decrease, and the practical strength may not be maintained. Therefore, it is known to use an α-alumina support as a catalyst having excellent strength as well as activity. In Patent Document 1 (Japanese Patent Laid-Open No. 2001-276623), as a catalyst for efficiently improving the reforming activity of hydrocarbons, ruthenium which is an active component is a portion of up to 1/3 from the catalyst outer surface to the center of the catalyst. Discloses a catalyst using an α-alumina carrier supporting 50% or more of the total amount of ruthenium supported. However, α-alumina has a small surface area, and when a heavy raw material such as kerosene is used, there is a problem that sufficient reforming activity cannot be obtained with conventional catalysts.

特開2001−276623号公報JP 2001-276623 A

本発明の目的は、灯油などの重質炭化水素を原料とした水素製造反応を行った場合でも、実用的な強度を有しながら、高活性を維持できる炭化水素の水蒸気改質触媒、該触媒の製造方法、及び該触媒を用いた水素製造方法を提供することにある。   An object of the present invention is to provide a hydrocarbon steam reforming catalyst capable of maintaining high activity while having a practical strength even when a hydrogen production reaction using heavy hydrocarbons such as kerosene is performed, and the catalyst And a hydrogen production method using the catalyst.

本発明は、上記目的を達成するために、以下の1〜に挙げた炭化水素からの水蒸気改質による水素製造用触媒、及び該触媒を用いた水素製造方法を提供する。
1.α-アルミナを含有する無機酸化物担体上に、ルテニウムを触媒基準、金属換算で0.5〜10質量%、カリウムを触媒基準、金属換算で0.5〜10質量%含み、かつ、EPMA(エレクトロンプローブマイクロアナライザー)により、触媒断面の中心を通るように触媒外表面から他の外表面まで一方向にルテニウムについて線分析測定したとき、触媒外表面から中心までの長さをrとし、触媒外表面から0.5rまでの距離におけるルテニウムの特性X線強度の和が全ルテニウムの特性X線強度の和の30〜70%の範囲であり、触媒外表面から0.7rまでの距離におけるルテニウムの特性X線強度の和が全ルテニウムの特性X線強度の和の40〜80%の範囲であることを特徴とする炭化水素からの水蒸気改質による水素製造用触媒。
.α-アルミナを含有する無機酸化物担体上に、ルテニウムを含む化合物を含有する溶液を用いて、ルテニウムを触媒基準、金属換算で0.5〜10質量%担持し、アルカリ処理を行い、その後少なくとも1種のカリウムを含む化合物を含有する溶液を用いて、カリウムを触媒基準、金属換算で0.5〜10質量%担持した後、乾燥させることを特徴とする上記1に記載の水蒸気改質による水素製造用触媒の製造方法。
.上記1に記載の触媒の存在下に、沸点が30〜350℃の範囲にある留分が90質量%以上存在する炭化水素と水蒸気とを、反応温度400〜900℃、反応圧力0〜5MPa−G、HO/C(モル比)=2.5〜5.0の条件下で、反応させることを特徴とする水蒸気改質による水素製造方法。
In order to achieve the above object, the present invention provides a catalyst for producing hydrogen by steam reforming from the hydrocarbons listed in the following 1-3 , and a method for producing hydrogen using the catalyst.
1. On the inorganic oxide carrier containing α-alumina, ruthenium is contained on a catalyst basis, 0.5 to 10% by mass in terms of metal, potassium is contained on a catalyst basis, 0.5 to 10% by mass in terms of metal, and EPMA ( Electron probe microanalyzer), when ruthenium was linearly measured in one direction from the outer surface of the catalyst to the other outer surface so as to pass through the center of the cross section of the catalyst, the length from the outer surface of the catalyst to the center was set to r 0. The sum of the characteristic X-ray intensities of ruthenium at a distance from the outer surface to 0.5r 0 is in the range of 30 to 70% of the sum of the characteristic X-ray intensities of all rutheniums, and the distance from the outer surface of the catalyst to 0.7r 0 hydrogen production by steam reforming from hydrocarbons, wherein the sum of the characteristic X-ray intensities of the ruthenium is from 40 to 80% of the sum of the characteristic X-ray intensities of all ruthenium in Catalyst.
2 . Using a solution containing a ruthenium-containing compound on an inorganic oxide carrier containing α-alumina, ruthenium is supported on a catalyst basis, 0.5 to 10% by mass in terms of metal, subjected to alkali treatment, and then at least using a solution containing a compound comprising one potassium, potassium catalyst criteria, after 0.5 to 10 mass% supported in terms of metal, by steam reforming according to the above 1, wherein the drying A method for producing a catalyst for hydrogen production.
3 . In the presence of the catalyst as described in 1 above, a hydrocarbon having a boiling point in the range of 30 to 350 ° C. and a steam having a fraction of 90% by mass or more is reacted with a reaction temperature of 400 to 900 ° C., a reaction pressure of 0 to 5 MPa- A method for producing hydrogen by steam reforming , characterized by reacting under conditions of G and H 2 O / C (molar ratio) = 2.5 to 5.0.

本発明の触媒は、長時間水蒸気改質反応条件下に暴されても強度低下が生じ難く、本発明の触媒を用いた水素製造方法は、炭化水素、特に灯油などの重質炭化水素からの水素製造を行うプロセスにおいて、低HO/C(モル比)=2.5〜5.0という触媒にとって過酷な反応条件下においても高活性を維持しつつ水素を製造することができる。 The catalyst of the present invention is unlikely to cause a decrease in strength even when exposed to steam reforming reaction conditions for a long time, and the hydrogen production method using the catalyst of the present invention can be obtained from hydrocarbons, particularly heavy hydrocarbons such as kerosene. In the process for producing hydrogen, hydrogen can be produced while maintaining high activity even under severe reaction conditions for a catalyst of low H 2 O / C (molar ratio) = 2.5 to 5.0.

以下に、本発明の触媒、その製造方法およびそれを用いた水素の製造方法について詳しく説明する。 本発明の水素製造用触媒は、α-アルミナ又はその前駆体を含む原料を、600〜1300℃で焼成してα-アルミナを含有する無機酸化物を調製し、担体として用いる。無機酸化物担体としては、α-アルミナを単独で使用することが好ましいが、チタニア、シリカ、ジルコニア、マグネシアなどの少なくとも一種をα-アルミナと混合して用いる複合酸化物であってもよい。また、水酸化アルミニウム、硝酸アルミニウム等のように、600〜1300℃での焼成によりα-アルミナを生成するアルミニウム化合物を担体原料として用いる事もできる。   Below, the catalyst of this invention, its manufacturing method, and the manufacturing method of hydrogen using the same are demonstrated in detail. The hydrogen production catalyst of the present invention prepares an inorganic oxide containing α-alumina by calcining a raw material containing α-alumina or a precursor thereof at 600 to 1300 ° C., and uses it as a carrier. As the inorganic oxide carrier, α-alumina is preferably used alone, but it may be a composite oxide in which at least one of titania, silica, zirconia, magnesia and the like is mixed with α-alumina. In addition, an aluminum compound that generates α-alumina by firing at 600 to 1300 ° C., such as aluminum hydroxide and aluminum nitrate, can also be used as a carrier raw material.

上記担体原料を、酸素雰囲気、例えば空気中で、600〜1300℃加熱焼成することによって、担体を調製することができる。焼成時間は特に限定されないが、通常、1〜20時間である。
担体の形状は、球状、楕円球状、角柱状、円柱状、中空状、リング状、打錠状等の種々の粒状体の他、任意の形状でよく、特に限定されないが、一般の水蒸気改質反応に用いられている円柱状、球状の粒状体が好ましく、球状が特に好ましい。また、担体の大きさは特に限定されないが、円柱、球状の場合、通常その直径が1〜6mm、好ましくは1〜4mmであることが好ましい。この場合、成形された担体原料を用いて焼成し、担体を調製することができる。
A carrier can be prepared by heating and baking the above carrier raw material in an oxygen atmosphere, for example, air, at 600 to 1300 ° C. Although baking time is not specifically limited, Usually, it is 1 to 20 hours.
The shape of the carrier may be any shape other than various granular materials such as spherical, elliptical, prismatic, cylindrical, hollow, ring, tableting, etc., and is not particularly limited. A cylindrical or spherical granular material used for the reaction is preferred, and a spherical shape is particularly preferred. The size of the carrier is not particularly limited, but in the case of a cylinder or a sphere, the diameter is usually 1 to 6 mm, preferably 1 to 4 mm. In this case, the carrier can be prepared by firing using the shaped carrier material.

本発明の触媒は、前記担体に水素製造活性成分としてルテニウムを触媒基準、金属換算で0.5〜10質量%、好ましくは1〜4質量%含有する。ルテニウム含有量が0.5質量%以上であれば、所望のレベルの活性点数と分散度を兼ね備えることができ、触媒性能を維持できる。また、10質量%以下であれば、経済的に好ましい。 触媒への担持の際には、ルテニウムを含む化合物を含有する溶液を用いる。該化合物としては、塩化ルテニウム水和物、塩化ルテニウム(IV価)、塩化ルテニウム無水物、ルテニウム酸カリウム等のルテニウム酸塩、硝酸ルテニウム等のルテニウム塩等を用いることができる。 また、担持方法としては、沈殿法、イオン交換法、共沈法、混練法、含浸法等の一般的な金属担持法を適用可能であるが、好ましくは含浸法である。   The catalyst of the present invention contains ruthenium as an active component for hydrogen production in the carrier in an amount of 0.5 to 10% by mass, preferably 1 to 4% by mass in terms of metal. When the ruthenium content is 0.5% by mass or more, the desired number of active sites and the degree of dispersion can be provided, and the catalyst performance can be maintained. Moreover, if it is 10 mass% or less, it is economically preferable. When loading on the catalyst, a solution containing a compound containing ruthenium is used. Examples of the compound include ruthenium chloride hydrate, ruthenium chloride (IV), ruthenium chloride anhydride, ruthenium salts such as potassium ruthenate, ruthenium salts such as ruthenium nitrate, and the like. In addition, as a supporting method, a general metal supporting method such as a precipitation method, an ion exchange method, a coprecipitation method, a kneading method, and an impregnation method can be applied, and an impregnation method is preferable.

また、本発明の触媒は、アルカリ金属を含有する。アルカリ金属の含有量は、触媒基準、金属換算で0.5〜10質量%、好ましくは2〜4質量%である。上記範囲内にあれば、本発明の触媒に炭素析出抑制能力及び水蒸気活性化能力を付与することができ、本発明の触媒の性能を長期間に渡って安定に保つことができ、又、担体上に活性成分であるルテニウムを高分散させることが可能となる。
アルカリ金属としては、Li、Na、K、Rb、Cs、Frを挙げることができるが、Na、Kが好ましく、特にKが好ましい。これらのアルカリ金属は、いずれか1種を単独で用いてもよく、また2種以上を組み合せて用いてもよい。触媒への担持の際には、アルカリ金属を含む化合物を含有する溶液を用いる。該化合物としては、アルカリ金属の前駆体であれば限定されないが、アルカリ金属塩が好ましく、例えば硝酸塩、炭酸塩又は水酸化物が好ましい。特に、Kの前駆体に関しては水酸化物、重炭酸塩、炭酸塩が好ましく、水酸化物が最も好ましい。
また、アルカリ金属の触媒への担持方法としては、沈殿法、イオン交換法、共沈法、混練法、含浸法等を挙げることができるがこれに限定されるものではない。
The catalyst of the present invention contains an alkali metal. The content of the alkali metal is 0.5 to 10% by mass, preferably 2 to 4% by mass in terms of catalyst and metal. Within the above range, the catalyst of the present invention can be imparted with the ability to suppress carbon deposition and the ability to activate steam, and the performance of the catalyst of the present invention can be kept stable over a long period of time. It becomes possible to highly disperse ruthenium which is an active ingredient on the top.
Examples of the alkali metal include Li, Na, K, Rb, Cs, and Fr. Na and K are preferable, and K is particularly preferable. Any one of these alkali metals may be used alone, or two or more thereof may be used in combination. In carrying the catalyst, a solution containing a compound containing an alkali metal is used. The compound is not limited as long as it is a precursor of an alkali metal, but an alkali metal salt is preferable, for example, nitrate, carbonate or hydroxide is preferable. In particular, with respect to the precursor of K, hydroxide, bicarbonate and carbonate are preferable, and hydroxide is most preferable.
Examples of the method for supporting the alkali metal on the catalyst include, but are not limited to, a precipitation method, an ion exchange method, a coprecipitation method, a kneading method, and an impregnation method.

さらに、本発明の触媒では、EPMA(エレクトロンプローブマイクロアナライザー)により、触媒断面の中心を通るように触媒外表面から他の外表面までに一方向にルテニウムについて線分析測定したとき、触媒外表面から中心までの長さをrとし、触媒外表面から0.5rまでの距離におけるルテニウムの特性X線強度の和が、全ルテニウムの特性X線強度の和の30〜70%の範囲である。さらに、触媒外表面から0.7rまでの距離におけるルテニウムの特性X線強度の和が全ルテニウムの特性X線強度の和の40〜80%の範囲である。活性成分であるルテニウムを触媒の外表面だけでなく、内部にも担持することにより、有効な活性点数を増やすことができる。 Furthermore, in the catalyst of the present invention, when ruthenium is linearly measured in one direction from the outer surface of the catalyst to the other outer surface so as to pass through the center of the cross section of the catalyst by EPMA (Electron Probe Microanalyzer), the length to the center and r 0, the sum of ruthenium characteristic X-ray intensity at a distance from the catalyst outer surface to 0.5r 0 is some 30 to 70% of the sum of the characteristic X-ray intensities of all ruthenium . Furthermore, the sum of the characteristic X-ray intensities of ruthenium at a distance from the outer surface of the catalyst to 0.7r 0 is in the range of 40 to 80% of the sum of the characteristic X-ray intensities of all ruthenium. By supporting ruthenium, which is an active component, not only on the outer surface of the catalyst but also on the inside, the number of effective active points can be increased.

次に本発明の触媒の製造方法について説明する。
本発明では、前記α-アルミナを含有する無機酸化物担体に、まずルテニウムを担持する。ルテニウムの担持には、沈殿法、イオン交換法、共沈法、混練法、含浸法等の通常の担持方法を適用できるが、含浸法が好ましい。ルテニウムを触媒基準、金属換算で0.5〜10質量%、好ましくは1〜4質量%となるようにルテニウム化合物を含有する溶液を調製し、担体を浸透、吸収させる。該化合物としては、塩化ルテニウム水和物、塩化ルテニウム(IV価)、塩化ルテニウム無水物、ルテニウム酸カリウム等のルテニウム酸塩、硝酸ルテニウム等のルテニウム塩等を用いることができる。含有溶液の温度は、ルテニウム化合物の分解を避けるため、50℃未満、特に室温が好ましい。
Next, the manufacturing method of the catalyst of this invention is demonstrated.
In the present invention, ruthenium is first supported on the inorganic oxide support containing α-alumina. For loading ruthenium, a conventional loading method such as a precipitation method, an ion exchange method, a coprecipitation method, a kneading method, and an impregnation method can be applied, but the impregnation method is preferable. A solution containing a ruthenium compound is prepared so that ruthenium is 0.5 to 10% by mass, preferably 1 to 4% by mass in terms of metal based on the catalyst, and the carrier is permeated and absorbed. Examples of the compound include ruthenium chloride hydrate, ruthenium chloride (IV), ruthenium chloride anhydride, ruthenium salts such as potassium ruthenate, ruthenium salts such as ruthenium nitrate, and the like. The temperature of the contained solution is preferably less than 50 ° C., particularly room temperature, in order to avoid decomposition of the ruthenium compound.

浸透時間は特に限定されないが、0.1〜1時間が好ましい。0.1時間より短くした場合は、溶液が触媒全体に行き渡らず、不均一となる場合がある。浸透時間がこの範囲にあれば、溶液が触媒全体に均一に行き渡り、内部にまでルテニウムが担持される。 無機酸化物担体にルテニウムを担持後は、120℃以下、好ましくは80℃以下、より好ましくは50℃以下にて乾燥を行うことが好ましい。乾燥はヘリウム、アルゴン等の希ガスあるいは窒素等の不活性ガス気流中で行うことが理にかなうが、120℃以下で操作をすれば、空気中であっても、酸化物の生成量は僅少であり問題にならない。そして120℃以下であれば、酸化ルテニウムが生成することなく、後の還元工程が容易に進む。また、乾燥方法は特に限定されないが、迅速に乾燥できる減圧乾燥が特に好ましい。   The permeation time is not particularly limited, but is preferably 0.1 to 1 hour. If the time is shorter than 0.1 hour, the solution does not reach the entire catalyst and may become non-uniform. If the permeation time is within this range, the solution spreads uniformly throughout the catalyst, and ruthenium is supported inside. After supporting ruthenium on the inorganic oxide carrier, it is preferable to perform drying at 120 ° C. or lower, preferably 80 ° C. or lower, more preferably 50 ° C. or lower. Although it makes sense to dry in a noble gas such as helium or argon or an inert gas stream such as nitrogen, the amount of oxide produced is small even in the air when operated at 120 ° C or lower. It is not a problem. And if it is 120 degrees C or less, a subsequent reduction | restoration process will advance easily, without producing | generating ruthenium oxide. Moreover, the drying method is not particularly limited, but vacuum drying that can be quickly dried is particularly preferable.

続いて、担持させたルテニウム量に対し、モル換算で3倍以上のアルカリ水溶液中にルテニウムを担持した担体を浸し、ルテニウムを水酸化ルテニウムに変換して、ルテニウムを担体上に不溶・固定化させる。このルテニウムの不溶・固定化に用いるアルカリ水溶液としては、アンモニア水、炭酸水素アンモニウム、炭酸アンモニウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等の水溶液を用いることができる。   Subsequently, the carrier carrying ruthenium is immersed in an alkaline aqueous solution 3 times or more in terms of mole relative to the amount of ruthenium carried, and the ruthenium is converted to ruthenium hydroxide so that the ruthenium is insoluble and immobilized on the carrier. . As the alkaline aqueous solution used for insolubilization / immobilization of ruthenium, aqueous solutions of ammonia water, ammonium hydrogen carbonate, ammonium carbonate, sodium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, lithium hydroxide and the like can be used. .

また、担体上にルテニウムを水酸化ルテニウムとして不溶・固定化したのち、この水酸化ルテニウムの酸化を抑制するために、120℃以下、好ましくは80℃以下で、減圧又は常圧下で、乾燥することが好ましい。乾燥は、ヘリウム、アルゴン等の希ガス、あるいは窒素等の不活性ガス気流中で行うことが理にかなうが、120℃以下で操作すれば、空気中であっても、酸化物の生成量は僅少であり問題にならない。空気中での乾燥では、乾燥温度は低ければ低いほど、酸化物の生成を抑制する点で有利になるが、乾燥温度が低すぎると、乾燥時間が著しく長くなるため、50℃程度以上とすることが好ましい。従って、乾燥時間は、乾燥温度、乾燥対象物の量等の条件に応じて適宜に選定すればよいが、通常は、1〜20時間程度が好ましい。   In addition, after ruthenium is insoluble and immobilized as ruthenium hydroxide on the support, it is dried at 120 ° C. or lower, preferably 80 ° C. or lower, under reduced pressure or normal pressure in order to suppress oxidation of this ruthenium hydroxide. Is preferred. It makes sense to dry in a noble gas such as helium or argon, or an inert gas stream such as nitrogen. However, if it is operated at 120 ° C. or lower, the amount of oxide produced is in air. It is scarce and does not matter. In drying in the air, the lower the drying temperature, the more advantageous in terms of suppressing the formation of oxides. However, if the drying temperature is too low, the drying time is significantly increased, so the temperature is about 50 ° C. or higher. It is preferable. Therefore, the drying time may be appropriately selected according to the conditions such as the drying temperature and the amount of the object to be dried, but usually about 1 to 20 hours is preferable.

次いで、上記のルテニウムを担持した担体にアルカリ金属を担持する。アルカリ金属の担持には、沈殿法、イオン交換法、共沈法、混練法、含浸法等の通常の担持方法を適用できるが、含浸法が好ましい。アルカリ金属を触媒基準、金属換算で0.5〜10質量%、好ましくは2〜4質量%となるようにアルカリ金属化合物を含有する溶液を調整し、ルテニウム担持担体に浸透、吸収させる。
浸透時間は特に限定されないが、0.1〜30時間が好ましい。より好ましくは1〜30時間であり、通常、1〜5時間で実施する。0.1時間以上とすることにより、溶液を触媒の所望の部位に行き渡らせ、均一に浸透、吸収させる事ができる。30時間以内とすることで調製時間の短縮が図れる。また、上記範囲内では、浸透時間が長いほど、得られる触媒の活性が高い傾向にある。
Next, an alkali metal is supported on the ruthenium-supported carrier. For supporting the alkali metal, a conventional supporting method such as a precipitation method, an ion exchange method, a coprecipitation method, a kneading method, and an impregnation method can be applied, but the impregnation method is preferable. A solution containing an alkali metal compound is prepared so that the alkali metal is 0.5 to 10% by mass, preferably 2 to 4% by mass, based on the catalyst, in terms of metal, and permeated and absorbed in the ruthenium-supported carrier.
The permeation time is not particularly limited, but is preferably 0.1 to 30 hours. More preferably, it is 1 to 30 hours, and usually 1 to 5 hours. By setting it to 0.1 hours or more, the solution can be spread to a desired portion of the catalyst, and can be uniformly permeated and absorbed. Preparation time can be shortened by setting it within 30 hours. Further, within the above range, the longer the permeation time, the higher the activity of the resulting catalyst.

その後、担体上に不溶・固定化した水酸化ルテニウムの酸化を抑制するために、乾燥を行う。ここでは120℃以下、好ましくは80℃以下で、減圧又は常圧下にて、乾燥することが好ましい。そうすることで本発明の所望の触媒を得ることができる。
乾燥は、ヘリウム、アルゴン等の希ガス、あるいは窒素等の不活性ガス気流中で行うことが理にかなうが、120℃以下で操作すれば、空気中であっても、酸化物の生成量は僅少であり問題にならない。空気中での乾燥では、乾燥温度は低ければ低いほど、酸化物の生成を抑制する点で有利になるが、乾燥温度が低すぎると、乾燥時間が著しく長くなるため、50℃程度以上とすることが好ましい。従って、乾燥時間は、乾燥温度、乾燥対象物の量等の条件に応じて適宜に選定すればよいが、通常は、1〜20時間程度が好ましい。また、アルカリ金属担持後は、焼成を行わない。
Thereafter, drying is performed to suppress oxidation of ruthenium hydroxide insoluble and immobilized on the support. Here, drying is preferably performed at 120 ° C. or lower, preferably 80 ° C. or lower, under reduced pressure or normal pressure. By doing so, the desired catalyst of the present invention can be obtained.
It makes sense to dry in a noble gas such as helium or argon, or an inert gas stream such as nitrogen. However, if it is operated at 120 ° C. or lower, the amount of oxide produced is in air. It is scarce and does not matter. In drying in the air, the lower the drying temperature, the more advantageous in terms of suppressing the formation of oxides. However, if the drying temperature is too low, the drying time is significantly increased, so the temperature is about 50 ° C. or higher. It is preferable. Therefore, the drying time may be appropriately selected according to the conditions such as the drying temperature and the amount of the object to be dried, but usually about 1 to 20 hours is preferable. Moreover, after carrying | supporting an alkali metal, baking is not performed.

本発明の製造方法によって得られた本発明の水素製造用触媒は、水素製造反応に供す前に、担体に不溶・固定化された水酸化ルテニウムを還元して使用するのが好ましい。
水酸化ルテニウムは、60〜80℃程度の低い温度領域で金属ルテニウムまで還元されるが、極めて微粒子状の活性金属の場合、極一部の活性点が熱による変化を受けることも考えられる。本発明では、長期間安定した触媒性能を保持させるため、水素製造反応に供すまえに、400〜950℃、好ましくは400〜800℃の温度にて触媒を還元する。触媒の還元温度が上記範囲内であれば、ルテニウムの凝集やシンタリングによる金属表面積の減少が少なく、さらに、担体の細孔が閉塞することもなく、所望の触媒活性を維持できる。還元用ガスは、水素ガス、水素・水蒸気混合ガス、一酸化炭素等を用いることができる。中でも、水素ガスや水素・水蒸気混合ガスが好ましく、水素ガスが特に好ましい。還元時間は、還元温度、還元用ガスの通気量等の条件に応じて適宜選択すればよいが、1〜20時間程度が実用的である。
The hydrogen production catalyst of the present invention obtained by the production method of the present invention is preferably used after reducing ruthenium hydroxide insoluble and immobilized on the support before being subjected to the hydrogen production reaction.
Ruthenium hydroxide is reduced to metal ruthenium in a low temperature range of about 60 to 80 ° C. However, in the case of an extremely fine particle active metal, it is conceivable that a very small part of the active sites are affected by heat. In the present invention, in order to maintain stable catalyst performance for a long period of time, the catalyst is reduced at a temperature of 400 to 950 ° C., preferably 400 to 800 ° C., before being subjected to a hydrogen production reaction. If the reduction temperature of the catalyst is within the above range, the metal surface area is not decreased by ruthenium aggregation or sintering, and the desired catalytic activity can be maintained without clogging the pores of the support. As the reducing gas, hydrogen gas, hydrogen / water vapor mixed gas, carbon monoxide, or the like can be used. Among these, hydrogen gas and hydrogen / water vapor mixed gas are preferable, and hydrogen gas is particularly preferable. The reduction time may be appropriately selected according to conditions such as the reduction temperature and the amount of the reducing gas flow, but about 1 to 20 hours is practical.

以上詳述した本発明の触媒の存在下で水素を製造する方法においては、原料として、硫黄含有量が0.1質量ppm以下、炭素数1以上、常圧における蒸留範囲が350℃以下の炭化水素が好適に用いられ、沸点範囲が30〜350℃にある留分が90質量%以上存在する炭化水素がより好ましく用いられ、特に灯油留分が好ましく用いることができる。このとき、反応圧力0〜5MPa−G、HO/C=2.5〜5とし、反応温度は特に限定されるものではないが、400〜800℃が適している。反応方式は、特に限定されるものではないが、固定床あるいは移動床反応装置を利用するバッチ式、半連続式、あるいは連続式操作が好ましい。
本発明の水素製造方法では、本発明の触媒を単独で使用してもよいし、本発明の触媒以外の触媒と併用してもよい。
In the method for producing hydrogen in the presence of the catalyst of the present invention described in detail above, as a raw material, carbonization having a sulfur content of 0.1 mass ppm or less, a carbon number of 1 or more, and a distillation range at atmospheric pressure of 350 ° C. or less. Hydrogen is preferably used, and hydrocarbons having a fraction having a boiling point range of 30 to 350 ° C. of 90% by mass or more are more preferably used, and a kerosene fraction can be particularly preferably used. At this time, the reaction pressure is 0 to 5 MPa-G, H 2 O / C = 2.5 to 5, and the reaction temperature is not particularly limited, but 400 to 800 ° C. is suitable. The reaction method is not particularly limited, but a batch type, semi-continuous type or continuous type operation using a fixed bed or moving bed reactor is preferable.
In the hydrogen production method of the present invention, the catalyst of the present invention may be used alone or in combination with a catalyst other than the catalyst of the present invention.

以下の実施例において、生成ガス分析はステンレス(SUS)製管(内径3mm、長さ2m)に、60〜80メッシュの充填剤(Unibeads−C、GLサイエンス社製)を充填し、これを分離カラムとして取り付けた熱伝導型検出器(TCD)付きガスクロマトグラフ(GC−390、GLサイエンス製)にて、H、CO、CO、CHについて行った。
また、生成ガス中のC〜Cの分析は、Al/KClのキャピラリーカラムを分離カラムとして取り付けた水素炎イオン化検出器(FID)付きガスクロマトグラフ(GC−390、GLサイエンス製)にて行った。触媒の金属担持量は、誘導結合プラズマ発光分析(ICP分析)によって確認した。
In the following examples, the generated gas analysis is performed by filling a stainless steel (SUS) tube (inner diameter: 3 mm, length: 2 m) with a 60-80 mesh filler (Unibeads-C, manufactured by GL Sciences) and separating it. H 2 , CO, CO 2 , and CH 4 were measured using a gas chromatograph (GC-390, manufactured by GL Science) with a thermal conductivity detector (TCD) attached as a column.
In addition, analysis of C 1 to C 5 in the product gas was performed on a gas chromatograph (GC-390, manufactured by GL Science) with a flame ionization detector (FID) equipped with a capillary column of Al 2 O 3 / KCl as a separation column. I went. The amount of metal supported on the catalyst was confirmed by inductively coupled plasma emission analysis (ICP analysis).

触媒中心を通るように一方向にルテニウムの線分析測定は、電子プローブマイクロアナライザー(日本電子株式会社製EPMA、JXA―8200)を用いて測定した。測定条件は加速電圧15kV、照射電流1×10−7A、測定点間のインターバル12〜15μm、計数時間30msecで行った。測定触媒の断面は、触媒をMMA(methyl methacrylate)に包埋し、研磨装置を用いて研磨し、カーボン蒸着することにより作製した。 The ruthenium line analysis was measured in one direction so as to pass through the center of the catalyst using an electron probe microanalyzer (EPMA, JXA-8200 manufactured by JEOL Ltd.). The measurement conditions were an acceleration voltage of 15 kV, an irradiation current of 1 × 10 −7 A, an interval between measurement points of 12 to 15 μm, and a counting time of 30 msec. The cross section of the measurement catalyst was prepared by embedding the catalyst in MMA (methyl methacrylate), polishing with a polishing apparatus, and depositing carbon.

本発明の触媒の活性は、下記数式1から求めた「原料C転化率」によって評価した。原料C転化率が高いほど改質能力が高いことを示すため、触媒活性が高いと言える。
原料C転化率は、下記数式1から求めた。
〔数式1〕: 原料C転化率(%)=〔M/M〕×100
(M:単位時間当りの供給原料炭化水素の炭素モル数、M :単位時間当りの生成ガス中のC化合物(CO、CO、CH)の炭素モル数 )
The activity of the catalyst of the present invention was evaluated by “raw material C 1 conversion” obtained from the following formula 1. To indicate that the higher raw material C 1 conversion is higher reforming ability, it can be said that a high catalytic activity.
The raw material C 1 conversion was determined from the following formula 1.
[Formula 1]: Raw material C 1 conversion (%) = [M / M 0 ] × 100
(M 0 : number of moles of carbon of feed hydrocarbon per unit time, M: number of carbon moles of C 1 compound (CO, CO 2 , CH 4 ) in product gas per unit time)

実施例1
αアルミナ粉末(200メッシュ)を、打錠成型器(FK−1型、システムズエンジニアリング社製)を用いて、成形圧2000MPa(20トン/cm)で、直径3.2mmの球状(球状ペレット)に成形し、マッフル炉にて窒素中、950℃で3時間焼成し、α-アルミナ担体を得た。
Example 1
Alpha alumina powder (200 mesh) is formed into a spherical shape (spherical pellet) with a molding pressure of 2000 MPa (20 tons / cm 2 ) and a diameter of 3.2 mm using a tableting molding machine (FK-1 type, manufactured by Systems Engineering). And calcined in a muffle furnace in nitrogen at 950 ° C. for 3 hours to obtain an α-alumina carrier.

塩化ルテニウム・水和物(RuCl・nHO、ルテニウム含量39質量%)1.81gを12.9gの水に溶解し、この水溶液を上記α-アルミナ担体30gに滴下し、室温で1時間静置した。続いて球状ペレットをロータリーエバポレーターにより、約2.7kPa(約20mmHg)程度の真空下、赤外線式ホットプレートで50℃に加熱して、乾燥した。
次いで、球状ペレットを7mol/Lアンモニア水約1L(市販試薬特級の約2倍希釈)中に移し、スターラーで1時間ゆっくり攪拌して、ルテニウムを不溶・固定化した。この球状ペレットを、ブフナー漏斗を用いてアンモニア水から回収した。回収した球状ペレットをイオン交換水で充分洗浄した。洗浄終了は、濾液の一部に硝酸銀水溶液を滴下し、塩化銀の白色沈殿が生じなくなる点とした。洗浄した球状ペレットは乾燥機中80℃で15時間乾燥した。次に水酸化カリウム1.57g(和光純薬製特級、純度85%)をイオン交換水14.1gに溶解し、ルテニウムを担持したアルミナ担体全量に滴下し、担体全体に水酸化カリウム水溶液が均一になるように攪拌後、1時間静置後、80℃にて乾燥し、触媒Aを得た。触媒Aは、ルテニウム1.9質量%(金属換算)、カリウム2.6質量%(金属換算)、残りアルミナからなる。触媒Aの物性を表1に示す。
Ruthenium chloride hydrate (RuCl 3 .nH 2 O, ruthenium content 39% by mass) 1.81 g was dissolved in 12.9 g of water, and this aqueous solution was added dropwise to 30 g of the α-alumina carrier, and the mixture was stirred at room temperature for 1 hour. Left to stand. Subsequently, the spherical pellets were heated to 50 ° C. with an infrared hot plate under a vacuum of about 2.7 kPa (about 20 mmHg) by a rotary evaporator and dried.
Next, the spherical pellet was transferred into about 1 L of 7 mol / L aqueous ammonia (diluted about twice as high as a commercially available reagent special grade), and stirred slowly with a stirrer for 1 hour to insolubilize and fix ruthenium. The spherical pellet was recovered from the aqueous ammonia using a Buchner funnel. The collected spherical pellets were thoroughly washed with ion exchange water. At the end of washing, an aqueous silver nitrate solution was dropped into a part of the filtrate, and the white precipitate of silver chloride was not generated. The washed spherical pellets were dried in a dryer at 80 ° C. for 15 hours. Next, 1.57 g of potassium hydroxide (special grade manufactured by Wako Pure Chemicals, purity of 85%) is dissolved in 14.1 g of ion-exchanged water and added dropwise to the total amount of the alumina carrier carrying ruthenium, so that the aqueous potassium hydroxide solution is uniformly distributed throughout the carrier. The mixture was stirred for 1 hour, allowed to stand for 1 hour, and then dried at 80 ° C. to obtain catalyst A. Catalyst A is composed of 1.9% by mass of ruthenium (in metal), 2.6% by mass of potassium (in metal), and the remaining alumina. Table 1 shows the physical properties of Catalyst A.

反応器に触媒Aを2.5ml充填し、0.9MPa−G、450℃、GHSV=400(v/v)h-1で1時間、マスフローコントローラで流量調整した水素で還元した。続いて、この反応器に原料油として、表2記載の脱硫灯油を水蒸気と共に導入し、水蒸気改質反応を、反応温度650℃、0.9MPa−G、HO/C=3.0、LHSV=5(v/v)h-1の条件下で行った。反応結果を表1に示す。 The reactor was charged with 2.5 ml of catalyst A, and reduced with hydrogen whose flow rate was adjusted with a mass flow controller at 0.9 MPa-G, 450 ° C., GHSV = 400 (v / v) h −1 for 1 hour. Subsequently, the desulfurized kerosene listed in Table 2 was introduced into the reactor as a raw material oil together with steam, and the steam reforming reaction was performed at a reaction temperature of 650 ° C., 0.9 MPa-G, H 2 O / C = 3.0, The test was performed under the condition of LHSV = 5 (v / v) h −1 . The reaction results are shown in Table 1.

実施例2
実施例1でカリウム浸透時間を3時間にすること以外は同様にして触媒Bを調製した。
Example 2
Catalyst B was prepared in the same manner as in Example 1 except that the potassium permeation time was 3 hours.

実施例3
実施例1でカリウム浸透時間を24時間にすること以外は同様にして触媒Cを調製した。
Example 3
Catalyst C was prepared in the same manner except that the potassium permeation time was 24 hours in Example 1.

比較例1
α−アルミナ粉末(200メッシュ)を、打錠成型器(FK−1型、システムズエンジニアリング社製)を用いて、成形圧2000MPa(20トン/cm)で、直径3.2mmの球状(球状ペレット)に成形し、マッフル炉にて空気中、900℃で3時間焼成し、α−アルミナ担体を得た。次に水酸化カリウム3.11gをイオン交換水16.5gに溶解し、30.0gの上記アルミナ担体に滴下し、担体全体に水酸化カリウム水溶液が均一になるように攪拌後、1時間静置後、乾燥した。次いで、マッフル炉にて空気中、950℃で3時間焼成し、α-アルミナ−酸化カリウム複合酸化物を得た。
Comparative Example 1
α-alumina powder (200 mesh) is formed into a spherical shape (spherical pellet) with a molding pressure of 2000 MPa (20 tons / cm 2 ) and a diameter of 3.2 mm using a tableting molding machine (FK-1 type, manufactured by Systems Engineering). And calcined in a muffle furnace at 900 ° C. for 3 hours in the air to obtain an α-alumina carrier. Next, 3.11 g of potassium hydroxide was dissolved in 16.5 g of ion-exchanged water, dropped onto 30.0 g of the above alumina carrier, stirred so that the aqueous potassium hydroxide solution was uniform over the entire carrier, and allowed to stand for 1 hour. After that, it was dried. Subsequently, it baked at 950 degreeC in the air in the muffle furnace for 3 hours, and obtained alpha-alumina-potassium oxide complex oxide.

三塩化ルテニウム・水和物(RuCl・nHO、ルテニウム含量39質量%)3.2gを12.8gの水に溶解し、この水溶液を上記のアルミナ−酸化カリウム複合酸化物30gに滴下し、室温で1時間静置した。続いて球状ペレットをロータリーエバポレーターにより、約2.7kPa(約20mmHg)程度の真空下、赤外線式ホットプレートで50℃に加熱して、乾燥した。
次いで、球状ペレットを7mol/Lアンモニア水約1L(市販試薬特級の約2倍希釈)中に移し、スターラーで1時間ゆっくり攪拌して、ルテニウムを不溶・固定化した。この球状ペレットを、ブフナー漏斗を用いてアンモニア水から回収した。回収した球状ペレットをイオン交換水で充分洗浄した。洗浄終了は、濾液の一部に硝酸銀水溶液を滴下し、塩化銀の白色沈殿が生じなくなる点とした。洗浄した球状ペレットは乾燥機中80℃で15時間乾燥し、触媒Dを得た。触媒Dは、ルテニウム2.0質量%(金属換算)、カリウム0.6質量%(金属換算)、残りアルミナからなる。触媒Dの物性を表1に示す。実施例1と同様に還元し、水蒸気改質反応を行った。反応結果を表1に示す。
Ruthenium trichloride hydrate (RuCl 3 · nH 2 O, ruthenium content 39 mass%) 3.2 g was dissolved in 12.8 g of water, and this aqueous solution was dropped into 30 g of the above-mentioned alumina-potassium oxide composite oxide. And left at room temperature for 1 hour. Subsequently, the spherical pellets were heated to 50 ° C. with an infrared hot plate under a vacuum of about 2.7 kPa (about 20 mmHg) by a rotary evaporator and dried.
Next, the spherical pellet was transferred into about 1 L of 7 mol / L aqueous ammonia (diluted about twice as high as a commercially available reagent special grade), and stirred slowly with a stirrer for 1 hour to insolubilize and fix ruthenium. The spherical pellet was recovered from the aqueous ammonia using a Buchner funnel. The collected spherical pellets were thoroughly washed with ion exchange water. At the end of washing, an aqueous silver nitrate solution was dropped into a part of the filtrate, and the white precipitate of silver chloride was not generated. The washed spherical pellets were dried in a dryer at 80 ° C. for 15 hours to obtain Catalyst D. The catalyst D is composed of 2.0% by mass of ruthenium (in metal), 0.6% by mass of potassium (in metal), and the remaining alumina. Table 1 shows the physical properties of Catalyst D. Reduction was performed in the same manner as in Example 1 to perform a steam reforming reaction. The reaction results are shown in Table 1.

Figure 0004777190
Figure 0004777190

Figure 0004777190
Figure 0004777190

実施例1〜3から明らかなように、本発明に係る触媒は、α-アルミナ担体に、ルテニウム、アルカリ金属の順に担持させ、金属担持後は焼成を行わずに製造し、ルテニウム及びアルカリ金属をそれぞれ0.5質量%から10質量%含むことで、ルテニウム金属を触媒内部まで担持している。そして、脱硫灯油など重質炭化水素を原料とした水蒸気改質反応においても、高い原料C転化率を得ることができる。
さらに、実施例1〜3を比較すると、カリウムの浸透時間が長いほど触媒の原料C転化率が高く、高活性な触媒であることが分かる。
As is clear from Examples 1 to 3, the catalyst according to the present invention is produced by supporting ruthenium and alkali metal in this order on an α-alumina support, and without rubbing after the metal is supported. By containing 0.5% by mass to 10% by mass of each, ruthenium metal is supported inside the catalyst. The heavy hydrocarbon desulfurization kerosene in the steam reforming reaction as a raw material, it is possible to obtain a high raw material C 1 conversion.
Furthermore, a comparison of Examples 1 to 3, the longer the penetration time of the potassium high raw material C 1 conversion of the catalyst, it can be seen that highly active catalysts.

Claims (3)

α-アルミナを含有する無機酸化物担体上に、ルテニウムを触媒基準、金属換算で0.5〜10質量%、カリウムを触媒基準、金属換算で0.5〜10質量%含み、かつ、EPMA(エレクトロンプローブマイクロアナライザー)により、触媒断面の中心を通るように触媒外表面から他の外表面まで一方向にルテニウムについて線分析測定したとき、触媒外表面から中心までの長さをrとし、触媒外表面から0.5rまでの距離におけるルテニウムの特性X線強度の和が全ルテニウムの特性X線強度の和の30〜70%の範囲であり、触媒外表面から0.7rまでの距離におけるルテニウムの特性X線強度の和が全ルテニウムの特性X線強度の和の40〜80%の範囲であることを特徴とする、炭化水素からの水蒸気改質による水素製造用触媒。 On the inorganic oxide carrier containing α-alumina, ruthenium is contained on a catalyst basis, 0.5 to 10% by mass in terms of metal, potassium is contained on a catalyst basis, 0.5 to 10% by mass in terms of metal, and EPMA ( Electron probe microanalyzer), when ruthenium was linearly measured in one direction from the outer surface of the catalyst to the other outer surface so as to pass through the center of the cross section of the catalyst, the length from the outer surface of the catalyst to the center was set to r 0. The sum of the characteristic X-ray intensities of ruthenium at a distance from the outer surface to 0.5r 0 is in the range of 30 to 70% of the sum of the characteristic X-ray intensities of all rutheniums, and the distance from the outer surface of the catalyst to 0.7r 0 wherein the sum of the characteristic X-ray intensities of the ruthenium is from 40 to 80% of the sum of the characteristic X-ray intensities of all ruthenium in, manufactured by hydrogen by steam reforming from hydrocarbons Use catalyst. α-アルミナを含有する無機酸化物担体上に、ルテニウムを含む化合物を含有する溶液を用いて、ルテニウムを触媒基準、金属換算で0.5〜10質量%担持し、アルカリ処理を行い、その後少なくとも1種のカリウムを含む化合物を含有する溶液を用いて、カリウムを触媒基準、金属換算で0.5〜10質量%担持した後、乾燥させることを特徴とする請求項に記載の水蒸気改質による水素製造用触媒の製造方法。 Using a solution containing a ruthenium-containing compound on an inorganic oxide carrier containing α-alumina, ruthenium is supported on a catalyst basis, 0.5 to 10% by mass in terms of metal, subjected to alkali treatment, and then at least 2. The steam reforming according to claim 1 , wherein a solution containing a compound containing one kind of potassium is used for supporting potassium in an amount of 0.5 to 10% by mass in terms of a catalyst, and then dried. Of producing a catalyst for hydrogen production by the method. 請求項に記載の触媒の存在下に、沸点が30〜350℃の範囲にある留分が90質量%以上存在する炭化水素と水蒸気とを、反応温度400〜900℃、反応圧力0〜5MPa−G、HO/C(モル比)=2.5〜5.0の条件下で、反応させることを特徴とする水蒸気改質による水素製造方法。 In the presence of the catalyst according to claim 1 , a hydrocarbon having a boiling point in the range of 30 to 350 ° C and a water vapor of 90% by mass or more is reacted with a reaction temperature of 400 to 900 ° C and a reaction pressure of 0 to 5 MPa. A method for producing hydrogen by steam reforming , characterized by reacting under the conditions of -G, H2O / C (molar ratio) = 2.5 to 5.0.
JP2006227395A 2005-09-08 2006-08-24 Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst Expired - Fee Related JP4777190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227395A JP4777190B2 (en) 2005-09-08 2006-08-24 Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005261016 2005-09-08
JP2005261016 2005-09-08
JP2006227395A JP4777190B2 (en) 2005-09-08 2006-08-24 Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst

Publications (2)

Publication Number Publication Date
JP2007098386A JP2007098386A (en) 2007-04-19
JP4777190B2 true JP4777190B2 (en) 2011-09-21

Family

ID=38025842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227395A Expired - Fee Related JP4777190B2 (en) 2005-09-08 2006-08-24 Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst

Country Status (1)

Country Link
JP (1) JP4777190B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5537232B2 (en) * 2010-03-31 2014-07-02 Jx日鉱日石エネルギー株式会社 Method for reducing carbon monoxide concentration, hydrogen production apparatus, and fuel cell system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3590654B2 (en) * 1994-08-05 2004-11-17 出光興産株式会社 Hydrocarbon steam reforming method
JPH10137587A (en) * 1996-11-11 1998-05-26 Cosmo Sogo Kenkyusho:Kk Production of noble metal catalyst on carrier
JP2001276623A (en) * 2000-03-30 2001-10-09 Idemitsu Kosan Co Ltd Reforming catalyst and reforming method for hydrocarbon
JP4648566B2 (en) * 2001-05-11 2011-03-09 Jx日鉱日石エネルギー株式会社 Autothermal reforming catalyst and method for producing fuel gas for fuel cell

Also Published As

Publication number Publication date
JP2007098386A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4758888B2 (en) Hydrocarbon reforming catalyst, hydrogen production method using the reforming catalyst, and fuel cell system
KR100928608B1 (en) Reforming Catalyst of Hydrocarbon and Method of Making the same, and Reforming Method of Hydrocarbon Using the Catalyst
JP5354175B2 (en) Porous catalyst body for decomposing hydrocarbon and method for producing the same, method for producing mixed reformed gas containing hydrogen from hydrocarbon, and fuel cell system
JP5531615B2 (en) Catalyst for cracking hydrocarbons
JP4312765B2 (en) SUPPORT FOR FUEL GAS REFORMING REACTION CATALYST AND ITS MANUFACTURING METHOD, SUPPORTED CATALYST AND FUEL TREATMENT DEVICE INCLUDING THE SAME
JP5778309B2 (en) Hydrogen production catalyst and hydrogen production method using the same
JP2008207186A (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP2016159209A (en) Ammonia decomposition catalyst, production method of catalyst, and ammonia decomposition method using catalyst
JP4717474B2 (en) Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst
JP2002535119A (en) Catalyst carrier supporting nickel, ruthenium and lanthanum
JP4494254B2 (en) Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst
JP2004230312A (en) Hydrocarbon reforming catalyst
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP4777190B2 (en) Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst
JPH09262468A (en) Catalyst for producing high calorie gas and its production
JP4647564B2 (en) Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst
JP4773418B2 (en) Method for producing catalyst for producing hydrogen from hydrocarbon, catalyst produced by the production method, and method for producing hydrogen using the catalyst
JP4316181B2 (en) Hydrocarbon reforming catalyst and method for producing the same, and hydrocarbon reforming method using the catalyst
JP2000061307A (en) High dispersion type steam reforming catalyst and method for producing hydrogen
JPH1024235A (en) Catalyst for producing high calorie gas and its production
JP3813646B2 (en) Method for producing steam reforming catalyst and method for producing hydrogen
JP6768225B2 (en) Carbon dioxide occlusion reduction catalyst and its manufacturing method
JP4340892B2 (en) Hydrocarbon cracking catalyst and method for producing the same, and method for producing hydrogen using the hydrocarbon cracking catalyst
JP2009297693A (en) Catalyst for producing hydrogen from hydrocarbon, method for manufacturing the same and method for producing hydrogen by using the same
JP2001276623A (en) Reforming catalyst and reforming method for hydrocarbon

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees