JPH08316446A - Infrared solid-state image sensing element - Google Patents

Infrared solid-state image sensing element

Info

Publication number
JPH08316446A
JPH08316446A JP7121137A JP12113795A JPH08316446A JP H08316446 A JPH08316446 A JP H08316446A JP 7121137 A JP7121137 A JP 7121137A JP 12113795 A JP12113795 A JP 12113795A JP H08316446 A JPH08316446 A JP H08316446A
Authority
JP
Japan
Prior art keywords
silicon layer
type
epitaxial growth
layer
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7121137A
Other languages
Japanese (ja)
Other versions
JP2798006B2 (en
Inventor
Shigeru Toyama
茂 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7121137A priority Critical patent/JP2798006B2/en
Publication of JPH08316446A publication Critical patent/JPH08316446A/en
Application granted granted Critical
Publication of JP2798006B2 publication Critical patent/JP2798006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE: To provide an infrared image sensing element of a rear irradiation type which is cooled and driven, wherein characteristic variation due to swirl caused by the pulling-up of silicon ingot is reduced, and it is prevented that the lower layer of a function element group constituting an infrared image sensing element turns to high resistance and has a potential distribution and therefore the performance commensurate with a driving signal is not obtained. CONSTITUTION: On a P-type silicon substrate 1 as a first conductivity type bulk silicon substrate, an epitaxial growth silicon layer of two-layered structure composed of a same conductivity P<+> type high concentration epitaxial growth silicon layer 2 and a P-type low concentration epitaxial growth silicon layer 3 is formed. A function element group 4 constituting an infrared solid-state image sensing element is formed on the epitaxial growth silicon layer of the two-layered structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷却手段によって冷却
して駆動される赤外線固体撮像素子に関し、特に裏面照
射型赤外線固体撮像素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared solid-state image sensor driven by being cooled by cooling means, and more particularly to a backside illuminated infrared solid-state image sensor.

【0002】[0002]

【従来の技術】従来、冷却手段によって冷却して駆動さ
れる裏面照射型赤外線固体撮像素子では、バルクシリコ
ン基板上に赤外線固体撮像素子を構成する受光部や電子
走査部等の機能素子群を形成する構成が知られている。
2. Description of the Related Art Conventionally, in a backside illumination type infrared solid-state image pickup device which is driven by being cooled by a cooling means, a functional element group such as a light-receiving part and an electronic scanning part forming the infrared solid-state image pickup device is formed on a bulk silicon substrate. The configuration is known.

【0003】[0003]

【発明が解決しようとする課題】このような構成の赤外
線固体撮像素子は、シリコンインゴット引き上げの際の
不純物ムラに基づくスワールによって、画素間の特性バ
ラツキが発生し、ノイズが多くなってしまうという問題
がある。
In the infrared solid-state image pickup device having such a structure, the swirl caused by the unevenness of impurities during the pulling up of the silicon ingot causes characteristic variations among the pixels, resulting in a large amount of noise. There is.

【0004】一般的に、スワールによる特性ばらつきを
低減するために、他の半導体デバイスに置いて行われて
いる方法として、第1導電型バルクシリコン基板上に形
成したエピタキシャル成長シリコン層上に素子を形成す
る方法が知られている。この方法を赤外線固体撮像素子
に応用した例を図2に示す。つまり、第1導電型バルク
シリコン基板(P型シリコン基板1)上に形成した同一
導電型のエピタキシャル成長シリコン層(P型低濃度エ
ピタキシャル成長シリコン層3)上に赤外線固体撮像素
子を構成する受光部や電子走査部等の機能素子群4が形
成された赤外線固体撮像素子である。
Generally, in order to reduce the characteristic variation due to the swirl, a device is formed on an epitaxially grown silicon layer formed on a first conductivity type bulk silicon substrate, which is a method used in other semiconductor devices. It is known how to do it. An example in which this method is applied to an infrared solid-state image sensor is shown in FIG. That is, a light receiving portion or an electron constituting an infrared solid-state imaging device is formed on an epitaxially grown silicon layer of the same conductivity type (P type low concentration epitaxially grown silicon layer 3) formed on a first conductivity type bulk silicon substrate (P type silicon substrate 1). This is an infrared solid-state image sensor in which a functional element group 4 such as a scanning unit is formed.

【0005】しかしながら、図2に示した構造では、半
導体製造プロセスを経た後に、バルクシリコン基板とエ
ピタキシャル成長シリコン層との界面近傍に、酸素含有
量差(バルクシリコン基板は通常固溶限近く酸素を含有
し、エピタキシャル成長シリコン層はほとんど酸素を含
有しない。)に基づく残留応力とそれに伴う欠陥層が導
入され、0.1〜0.2eV程度のポテンシャル障壁が
形成される。室温では、このポテンシャル障壁は電子や
正孔が熱エネルギーを得て容易に飛び越えることができ
るレベルなので問題にならないが、裏面照射型赤外線固
体撮像素子が動作する冷却温度、例えば、液体窒素温度
付近では、熱エネルギーが小さく、電子や正孔がポテン
シャル障壁を簡単に越えることができないため、エピタ
キシャル成長シリコン層がバルクシリコン基板から電気
的に絶縁された状態になるという問題がある。この状態
では、基準電位を保つべき、赤外線固体撮像素子を構成
する受光部や電子走査部等の機能素子群の下層が高抵抗
となるため、各種駆動信号の影響で該機能素子群の下層
に電位分布が発生し、印加した駆動信号に見合う性能が
得られなくなる。
However, in the structure shown in FIG. 2, after the semiconductor manufacturing process, a difference in oxygen content (a bulk silicon substrate usually contains oxygen near the solid solubility limit) near the interface between the bulk silicon substrate and the epitaxially grown silicon layer. However, the epitaxially grown silicon layer contains almost no oxygen) and a residual stress due to the residual stress and a defect layer accompanying it are introduced, and a potential barrier of about 0.1 to 0.2 eV is formed. At room temperature, this potential barrier is not a problem because it is a level at which electrons and holes can easily jump by obtaining thermal energy, but at a cooling temperature at which the back-illuminated infrared solid-state imaging device operates, for example, near liquid nitrogen temperature. However, since the thermal energy is small and electrons and holes cannot easily cross the potential barrier, there is a problem that the epitaxially grown silicon layer is electrically insulated from the bulk silicon substrate. In this state, since the lower layer of the functional element group such as the light receiving section and the electronic scanning section that configures the infrared solid-state image sensor, which should maintain the reference potential, has a high resistance, the lower layer of the functional element group is affected by various drive signals. A potential distribution is generated, and the performance commensurate with the applied drive signal cannot be obtained.

【0006】本発明の目的は、シリコンインゴット引き
上げに起因するスワールによる画素間特性バラツキを低
減し、かつ、赤外線固体撮像素子を構成する機能素子群
の下層が高抵抗となって電位分布を持つことによって、
印加した駆動信号に見合う性能が得られなくなる現象を
防止した、冷却手段によって冷却して駆動される裏面照
射型の赤外線撮像素子を提供することである。
An object of the present invention is to reduce variations in characteristics between pixels due to swirl caused by pulling up of a silicon ingot, and to provide a lower resistance layer of a functional element group forming an infrared solid-state image pickup element with a high potential distribution. By
It is an object of the present invention to provide a backside illumination type infrared imaging device which is driven by being cooled by a cooling means, which prevents a phenomenon in which performance commensurate with an applied drive signal cannot be obtained.

【0007】[0007]

【課題を解決するための手段】前述の課題を解決するた
めに本発明の赤外線固体撮像素子は、第1導電型バルク
シリコン基板上に、同一導電型の高濃度エピタキシャル
成長シリコン層とその上の同一導電型の低濃度エピタキ
シャル成長シリコン層とから成る2層構造のエピタキシ
ャル成長シリコン層を有し、その上に機能素子群が形成
されている。
In order to solve the above-mentioned problems, an infrared solid-state imaging device according to the present invention comprises a high-concentration epitaxially grown silicon layer of the same conductivity type and a high-concentration epitaxially grown silicon layer of the same conductivity type on a first conductivity type bulk silicon substrate. It has an epitaxially grown silicon layer having a two-layer structure composed of a conductive type low concentration epitaxially grown silicon layer, and a functional element group is formed thereon.

【0008】[0008]

【作用】第1導電型バルクシリコン基板上に、同一導電
型の高濃度エピタキシャル成長シリコン層を形成し、そ
の上に引続き同一導電型の低濃度エピタキシャル成長シ
リコン層を形成した場合、第1層目の高濃度エピタキシ
ャル成長シリコン層と第2層目の低濃度エピタキシャル
成長シリコン層との間には、熱処理中に応力差を生じる
要因となる酸素含有量差がないため、半導体製造プロセ
スを経た後にも、界面に欠陥層やポテンシャル障壁が導
入されることはない。
When a high-concentration epitaxially grown silicon layer of the same conductivity type is formed on a bulk silicon substrate of the first conductivity type, and a low-concentration epitaxial growth silicon layer of the same conductivity type is subsequently formed thereon, the first layer of Since there is no oxygen content difference between the high-concentration epitaxially grown silicon layer and the second low-concentration epitaxially grown silicon layer, which causes a stress difference during the heat treatment, even if a defect occurs at the interface even after the semiconductor manufacturing process. No layers or potential barriers are introduced.

【0009】一方、第1導電型バルクシリコン基板と第
1層目の高濃度エピタキシャル成長シリコン層との間に
は、酸素含有量に大きな差があるため、従来と同様に界
面近傍にポテンシャル障壁が形成されるが、第1導電型
バルクシリコン基板上に第1層及び第2層のエピタキシ
ャル成長シリコン層を形成する際、あるいは、半導体製
造プロセス中の熱処理によって、第1層目の高濃度エピ
タキシャル成長シリコン層から第1導電型バルクシリコ
ン基板へ不純物が拡散し、第1導電型バルクシリコン基
板側界面近傍に高濃度不純物層が形成されるため、界面
近傍のポテンシャル障壁は高濃度に不純物を含有したシ
リコン内に埋没した状態になる。このような状況下で
は、ポテンシャル障壁が形成される領域の厚さが極めて
薄くなり、電子や正孔がポテンシャル障壁を突き抜ける
トンネリング確率が非常に大きくなるため、液体窒素温
度付近に冷却されたとしても、ポテンシャル障壁が電子
や正孔の往来を妨げなくなる。従って、前述の問題が解
決される。
On the other hand, since there is a large difference in oxygen content between the first conductivity type bulk silicon substrate and the first high-concentration epitaxially grown silicon layer, a potential barrier is formed in the vicinity of the interface as in the conventional case. However, when the first and second epitaxial growth silicon layers are formed on the first conductivity type bulk silicon substrate, or by heat treatment during the semiconductor manufacturing process, the first high concentration epitaxial growth silicon layer is removed. Impurities are diffused into the first conductivity type bulk silicon substrate, and a high-concentration impurity layer is formed near the interface of the first conductivity type bulk silicon substrate side. Therefore, the potential barrier near the interface is in the silicon containing high concentration of impurities. It will be buried. In such a situation, the region where the potential barrier is formed becomes extremely thin, and the tunneling probability that electrons and holes penetrate through the potential barrier becomes very large. Therefore, even if the region is cooled near the liquid nitrogen temperature. , The potential barrier does not obstruct the movement of electrons and holes. Therefore, the above problem is solved.

【0010】バルクシリコン基板全体が高濃度に不純物
を含むと、多数キャリアによる赤外線吸収が無視できな
いほどになるが、本発明では高濃度エピタキシャル成長
シリコン層は厚くても10数μm 程度、高濃度エピタキ
シャル成長シリコン層と低濃度エピタキシャル成長シリ
コン層をあわせても数十μm 程度の極薄いエピタキシャ
ル成長シリコン層なので、赤外線吸収による感度低下も
起こらない。
When the bulk silicon substrate as a whole contains impurities at a high concentration, infrared absorption due to majority carriers becomes non-negligible. However, in the present invention, the high concentration epitaxially grown silicon layer has a thickness of about a few tens of μm. Even if the layer and the low-concentration epitaxially grown silicon layer are combined, it is an ultrathin epitaxially grown silicon layer with a thickness of about several tens of μm, so sensitivity deterioration due to infrared absorption does not occur.

【0011】[0011]

【実施例】次に、本発明の一実施例について、図面を用
いて詳細に説明する。
Next, one embodiment of the present invention will be described in detail with reference to the drawings.

【0012】図1は、本発明の赤外線固体撮像素子の一
実施例の構造概略図である。P型シリコン基板1上に形
成した、P+ 型高濃度エピタキシャル成長シリコン層2
とP型低濃度エピタキシャル成長シリコン層3から成る
2層構造のエピタキシャル成長シリコン層上に、赤外線
固体撮像素子を構成する受光部や電子走査部等の機能素
子群4を設けている。
FIG. 1 is a structural schematic view of an embodiment of an infrared solid-state image pickup device of the present invention. P + -type high-concentration epitaxial growth silicon layer 2 formed on P-type silicon substrate 1
A functional element group 4 such as a light receiving portion and an electronic scanning portion forming an infrared solid-state image pickup device is provided on the epitaxially grown silicon layer having a two-layer structure composed of the P-type low concentration epitaxially grown silicon layer 3.

【0013】第1層目のP+ 型高濃度エピタキシャル成
長シリコン層2と第2層目のP型低濃度エピタキシャル
成長シリコン層3の形成は、その間でエピタキシャル成
長装置内から空気中に取り出すことなしに、連続して行
なう。添加する不純物としては、例えば、第1層目のP
+ 型高濃度エピタキシャル成長シリコン層2には1016
〜1019cm-3程度のボロンを添加し膜厚を5μm とし
た。また、第2層目のP型低濃度エピタキシャル成長シ
リコン層3には1014〜1015cm-3程度のボロンを添加
し、膜厚を25μm とした。このように形成した第1層
目のP+ 型高濃度エピタキシャル成長シリコン層2と第
2層目のP型低濃度エピタキシャル成長シリコン層3と
の間には酸素含有量の差はなく、界面に汚染物質が混入
する危険もないので、高い結晶性が保たれ、半導体製造
プロセスを経た後にも、界面に欠陥層やポテンシャル障
壁は導入されない。
The P + type high-concentration epitaxially grown silicon layer 2 of the first layer and the P-type low-concentration epitaxially grown silicon layer 3 of the second layer are continuously formed without being taken out into the air from the epitaxial growth apparatus between them. Then do it. The impurities to be added are, for example, P of the first layer.
The + type high concentration epitaxially grown silicon layer 2 has 10 16
Boron of about 10 19 cm -3 was added to make the film thickness 5 μm. Further, boron of about 10 14 to 10 15 cm −3 was added to the P-type low-concentration epitaxially grown silicon layer 3 of the second layer to have a film thickness of 25 μm. There is no difference in oxygen content between the P + -type high-concentration epitaxially grown silicon layer 2 of the first layer and the P-type low-concentration epitaxially-grown silicon layer 3 of the second layer thus formed, and there is no contaminant on the interface. Since there is no risk of contamination by the impurities, high crystallinity is maintained and no defect layer or potential barrier is introduced at the interface even after the semiconductor manufacturing process.

【0014】それに対して、P型シリコン基板1と第1
層目のP+ 型高濃度エピタキシャル成長シリコン層2と
の間には、前述のように酸素含有量に大きな差があり、
熱膨張率差がある。このため、エピタキシャル成長後に
残留応力があり、従来と同様に、半導体製造プロセス中
の熱処理を経る毎に、膨張・収縮差の応力に起因する欠
陥が両者の界面近傍に導入される。この結果、界面にポ
テンシャル障壁が形成されるが、本発明の構造では、第
1層目のP+ 型高濃度エピタキシャル成長シリコン層2
を形成する際、あるいは、半導体製造プロセス中の熱処
理によって、第1層目のP+ 型高濃度エピタキシャル成
長シリコン層2からP型シリコン基板1へ不純物である
ボロンが拡散し、P型シリコン基板1内のP+ 型高濃度
エピタキシャル成長シリコン層2との界面近傍にP+
高濃度不純物層が形成されるので、界面近傍のポテンシ
ャル障壁は高濃度にボロンを含有したP+ 型シリコン内
に埋没した状態になる。
On the other hand, the P-type silicon substrate 1 and the first
As described above, there is a large difference in oxygen content between the P + -type high-concentration epitaxially grown silicon layer 2 of the layer,
There is a difference in coefficient of thermal expansion. Therefore, there is a residual stress after the epitaxial growth, and like the conventional case, a defect due to the stress due to the difference between expansion and contraction is introduced in the vicinity of the interface between the two, every time the heat treatment is performed during the semiconductor manufacturing process. As a result, a potential barrier is formed at the interface, but in the structure of the present invention, the P + -type high-concentration epitaxially grown silicon layer 2 of the first layer is formed.
In forming the Pd or by heat treatment during the semiconductor manufacturing process, boron as an impurity diffuses from the P + type high concentration epitaxial growth silicon layer 2 of the first layer to the P type silicon substrate 1, state since the vicinity of the interface to the P + -type high concentration impurity layer of the P + -type highly-doped epitaxial silicon layer 2 of is formed, a potential barrier near the interface which is buried in the P + -type silicon containing boron at a high concentration become.

【0015】図3(a)に本発明のP型低濃度エピタキ
シャル成長シリコン層/P+ 型高濃度エピタキシャル成
長シリコン層/P型シリコン基板の構造におけるエネル
ギー帯図、及び、図3(b)に図2に示したP型低濃度
エピタキシャル成長シリコン層/P型シリコン基板の構
造におけるエネルギー帯図をそれぞれ示す。図2の構造
では(b)に示すように、ポテンシャル障壁が形成され
る領域が厚いので、低温においては正孔6はP型低濃度
エピタキシャル成長シリコン層3とP型シリコン基板1
との界面を通り抜けることが容易にできないが、(a)
の構造では、P+ 型高濃度エピタキシャル成長シリコン
層2とP型シリコン基板1内に形成されたP+ 型高濃度
不純物層5とによってポテンシャル障壁が挟まれる結
果、ポテンシャル障壁が形成される領域が極めて薄くな
り、正孔6はトンネリングによってP+ 型高濃度エピタ
キシャル成長シリコン層2とP型シリコン基板1との間
を自由に行き来できる。
FIG. 3 (a) is an energy band diagram of the structure of the P type low concentration epitaxial growth silicon layer / P + type high concentration epitaxial growth silicon layer / P type silicon substrate of the present invention, and FIG. 3 (b) is shown in FIG. Energy band diagrams in the structure of the P-type low-concentration epitaxially grown silicon layer / P-type silicon substrate shown in FIG. In the structure of FIG. 2, since the region in which the potential barrier is formed is thick, as shown in (b), the holes 6 are generated in the P-type low-concentration epitaxial growth silicon layer 3 and the P-type silicon substrate 1 at low temperature.
It cannot be easily passed through the interface with and, but (a)
In the above structure, the potential barrier is sandwiched between the P + -type high-concentration epitaxially grown silicon layer 2 and the P + -type high-concentration impurity layer 5 formed in the P-type silicon substrate 1, and as a result, the region where the potential barrier is formed is extremely large. The holes 6 become thin and can freely move back and forth between the P + -type high-concentration epitaxially grown silicon layer 2 and the P-type silicon substrate 1 by tunneling.

【0016】以上より、本発明の赤外線固体撮像素子の
構造では、赤外線固体撮像素子を構成する受光部や電子
走査部等の機能素子群の下層が高抵抗にならず、印加し
た駆動信号に見合う高性能が得られる。
As described above, in the structure of the infrared solid-state image pickup device of the present invention, the lower layer of the functional element group such as the light receiving part and the electronic scanning part forming the infrared solid-state image pickup device does not have a high resistance and is suitable for the applied drive signal. High performance can be obtained.

【0017】なお、本実施例では、第1導電型をP型と
しているが、これをN型としても本発明は有効である。
Although the first conductivity type is the P type in the present embodiment, the present invention is also effective if the first conductivity type is the N type.

【0018】[0018]

【発明の効果】以上、説明したように、本発明の赤外線
固体撮像素子によれば、画素間の特性バラツキが抑えら
れるエピタキシャル成長シリコン層上に受光部や電子走
査部等の機能素子群があり、しかも、該機能素子群の下
層が高抵抗になることもないので、高性能の赤外線固体
撮像素子にできる効果がある。
As described above, according to the infrared solid-state image pickup device of the present invention, there is a functional element group such as a light receiving portion and an electronic scanning portion on the epitaxially grown silicon layer in which the characteristic variation between pixels can be suppressed. Moreover, since the lower layer of the functional element group does not have high resistance, there is an effect that a high-performance infrared solid-state imaging element can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の赤外線固体撮像素子の一実施例の構造
概略図である。
FIG. 1 is a structural schematic view of an embodiment of an infrared solid-state image pickup device of the present invention.

【図2】スワールによる特性ばらつきの一般的な低減方
法を適用した赤外線固体撮像素子の一例の構造概略図で
ある。
FIG. 2 is a structural schematic diagram of an example of an infrared solid-state image sensor to which a general method of reducing characteristic variation due to swirl is applied.

【図3】本発明の一実施例の構造、及び図2に示した構
造におけるエネルギー帯図を示す図である。
FIG. 3 is a diagram showing a structure of an embodiment of the present invention and an energy band diagram in the structure shown in FIG.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2 P+ 型高濃度エピタキシャル成長シリコン層 3 P型低濃度エピタキシャル成長シリコン層 4 赤外線固体撮像素子を構成する機能素子群 5 シリコン基板中のP+ 型高濃度不純物層 6 正孔 7 価電子帯 8 禁制帯 9 伝導帯 10 フェルミ準位1 P-type silicon substrate 2 P + type high-concentration epitaxial growth silicon layer 3 P-type low-concentration epitaxial growth silicon layer 4 Functional element group that constitutes an infrared solid-state imaging device 5 P + type high-concentration impurity layer 6 hole 7 valence in silicon substrate Electronic band 8 Forbidden band 9 Conduction band 10 Fermi level

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】冷却手段によって冷却して駆動され、機能
素子群が形成された面と逆の裏面から光入射される裏面
照射型の赤外線固体撮像素子において、第1導電型バル
クシリコン基板上に、同一導電型の高濃度エピタキシャ
ル成長シリコン層とその上の同一導電型の低濃度エピタ
キシャル成長シリコン層とから成る2層構造のエピタキ
シャル成長シリコン層を有し、その上に機能素子群が形
成されていることを特徴とする赤外線固体撮像素子。
1. A back-illuminated infrared solid-state imaging device, which is driven by being cooled by a cooling means and is incident from the back surface opposite to the surface on which the functional element group is formed, on a first conductivity type bulk silicon substrate. , Having a two-layer structure epitaxial growth silicon layer composed of a high-concentration epitaxial growth silicon layer of the same conductivity type and a low-concentration epitaxial growth silicon layer of the same conductivity type on which a functional element group is formed. Characteristic infrared solid-state image sensor.
JP7121137A 1995-05-19 1995-05-19 Infrared solid-state imaging device and manufacturing method thereof Expired - Lifetime JP2798006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7121137A JP2798006B2 (en) 1995-05-19 1995-05-19 Infrared solid-state imaging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7121137A JP2798006B2 (en) 1995-05-19 1995-05-19 Infrared solid-state imaging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08316446A true JPH08316446A (en) 1996-11-29
JP2798006B2 JP2798006B2 (en) 1998-09-17

Family

ID=14803793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7121137A Expired - Lifetime JP2798006B2 (en) 1995-05-19 1995-05-19 Infrared solid-state imaging device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2798006B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130241017A1 (en) * 2006-07-10 2013-09-19 Renesas Electronics Corporation Solid-state image pickup device
US9761618B2 (en) 2013-10-07 2017-09-12 Canon Kabushiki Kaisha Solid-state imaging apparatus, method for manufacturing the same, and imaging system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278278A (en) * 1988-09-13 1990-03-19 Nec Corp Infrared sensor
JPH0590558A (en) * 1991-09-30 1993-04-09 Mitsubishi Electric Corp Solid-state image pick-up device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278278A (en) * 1988-09-13 1990-03-19 Nec Corp Infrared sensor
JPH0590558A (en) * 1991-09-30 1993-04-09 Mitsubishi Electric Corp Solid-state image pick-up device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130241017A1 (en) * 2006-07-10 2013-09-19 Renesas Electronics Corporation Solid-state image pickup device
US9761618B2 (en) 2013-10-07 2017-09-12 Canon Kabushiki Kaisha Solid-state imaging apparatus, method for manufacturing the same, and imaging system
US9947702B2 (en) 2013-10-07 2018-04-17 Canon Kabushiki Kaisha Solid-state imaging apparatus, method for manufacturing the same, and imaging system
US10217780B2 (en) 2013-10-07 2019-02-26 Canon Kabushiki Kaisha Solid-state imaging apparatus, method for manufacturing the same, and imaging system

Also Published As

Publication number Publication date
JP2798006B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
EP0132076B1 (en) Photoelectric converter
US6777682B2 (en) Infrared detector
KR102289111B1 (en) Solid-state image-capturing device, method for manufacturing same, and electronic device
EP1681723B1 (en) Infrared solid-state image pickup apparatus and a production method thereof
KR100237133B1 (en) Photoelectric conversion apparatus and image reading apparatus
JPS63128677A (en) Mamufacture of semiconductor photodetector
Tsaur et al. Long-wavelength GexSi1-x/Si heterojunction infrared detectors and focal-plane arrays
JP7041337B2 (en) Infrared detector, image sensor, and image pickup system
JPH0447983B2 (en)
JP2798006B2 (en) Infrared solid-state imaging device and manufacturing method thereof
JP3108528B2 (en) Optical position detection semiconductor device
US4831428A (en) Infrared ray detection device
US5198370A (en) Method for producing an infrared detector
JP2664459B2 (en) Infrared detector
JP2848345B2 (en) Infrared detector
JP2716025B2 (en) Array type infrared detector and method of manufacturing the same
JP2699838B2 (en) Infrared detector and manufacturing method thereof
JPH06181334A (en) Manufacture of semiconductor element
JPH06326342A (en) Manufacture of arrayed infrared detector
JP2000323742A (en) Infrared ray detecting device
JP2657119B2 (en) Optical semiconductor device
JPH0590558A (en) Solid-state image pick-up device
JP2751702B2 (en) Infrared detector and manufacturing method thereof
JPH07211882A (en) Solid-state image sensing device
JP2616707B2 (en) Manufacturing method of infrared detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980602