JP2798006B2 - Infrared solid-state imaging device and manufacturing method thereof - Google Patents

Infrared solid-state imaging device and manufacturing method thereof

Info

Publication number
JP2798006B2
JP2798006B2 JP7121137A JP12113795A JP2798006B2 JP 2798006 B2 JP2798006 B2 JP 2798006B2 JP 7121137 A JP7121137 A JP 7121137A JP 12113795 A JP12113795 A JP 12113795A JP 2798006 B2 JP2798006 B2 JP 2798006B2
Authority
JP
Japan
Prior art keywords
conductivity type
concentration
layer
epitaxially grown
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7121137A
Other languages
Japanese (ja)
Other versions
JPH08316446A (en
Inventor
茂 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7121137A priority Critical patent/JP2798006B2/en
Publication of JPH08316446A publication Critical patent/JPH08316446A/en
Application granted granted Critical
Publication of JP2798006B2 publication Critical patent/JP2798006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷却手段によって冷却
して駆動される赤外線固体撮像素子に関し、特に裏面照
射型赤外線固体撮像素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared solid-state imaging device driven by cooling by cooling means, and more particularly to a back-illuminated infrared solid-state imaging device.

【0002】[0002]

【従来の技術】従来、冷却手段によって冷却して駆動さ
れる裏面照射型赤外線固体撮像素子では、バルクシリコ
ン基板上に赤外線固体撮像素子を構成する受光部や電子
走査部等の機能素子群を形成する構成が知られている。
2. Description of the Related Art Conventionally, in a back-illuminated infrared solid-state imaging device driven by being cooled by a cooling means, a functional element group such as a light receiving portion and an electronic scanning portion constituting the infrared solid-state imaging device is formed on a bulk silicon substrate. A known configuration is known.

【0003】[0003]

【発明が解決しようとする課題】このような構成の赤外
線固体撮像素子は、シリコンインゴット引き上げの際の
不純物ムラに基づくスワールによって、画素間の特性バ
ラツキが発生し、ノイズが多くなってしまうという問題
がある。
The infrared solid-state image pickup device having such a structure has a problem that characteristics are varied among pixels due to swirl due to impurity unevenness when pulling up a silicon ingot, and noise is increased. There is.

【0004】一般的に、スワールによる特性ばらつきを
低減するために、他の半導体デバイスに置いて行われて
いる方法として、第1導電型バルクシリコン基板上に形
成したエピタキシャル成長シリコン層上に素子を形成す
る方法が知られている。この方法を赤外線固体撮像素子
に応用した例を図2に示す。つまり、第1導電型バルク
シリコン基板(P型シリコン基板1)上に形成した同一
導電型のエピタキシャル成長シリコン層(P型低濃度エ
ピタキシャル成長シリコン層3)上に赤外線固体撮像素
子を構成する受光部や電子走査部等の機能素子群4が形
成された赤外線固体撮像素子である。
In general, in order to reduce the variation in characteristics due to swirl, a method used in other semiconductor devices is to form an element on an epitaxially grown silicon layer formed on a first conductivity type bulk silicon substrate. There are known ways to do this. FIG. 2 shows an example in which this method is applied to an infrared solid-state imaging device. That is, a light-receiving portion and an electron constituting an infrared solid-state imaging device are formed on an epitaxially grown silicon layer (P-type low-concentration epitaxially grown silicon layer 3) of the same conductivity type formed on a first-conductivity-type bulk silicon substrate (P-type silicon substrate 1). This is an infrared solid-state imaging device on which a functional element group 4 such as a scanning unit is formed.

【0005】しかしながら、図2に示した構造では、半
導体製造プロセスを経た後に、バルクシリコン基板とエ
ピタキシャル成長シリコン層との界面近傍に、酸素含有
量差(バルクシリコン基板は通常固溶限近く酸素を含有
し、エピタキシャル成長シリコン層はほとんど酸素を含
有しない。)に基づく残留応力とそれに伴う欠陥層が導
入され、0.1〜0.2eV程度のポテンシャル障壁が
形成される。室温では、このポテンシャル障壁は電子や
正孔が熱エネルギーを得て容易に飛び越えることができ
るレベルなので問題にならないが、裏面照射型赤外線固
体撮像素子が動作する冷却温度、例えば、液体窒素温度
付近では、熱エネルギーが小さく、電子や正孔がポテン
シャル障壁を簡単に越えることができないため、エピタ
キシャル成長シリコン層がバルクシリコン基板から電気
的に絶縁された状態になるという問題がある。この状態
では、基準電位を保つべき、赤外線固体撮像素子を構成
する受光部や電子走査部等の機能素子群の下層が高抵抗
となるため、各種駆動信号の影響で該機能素子群の下層
に電位分布が発生し、印加した駆動信号に見合う性能が
得られなくなる。
However, in the structure shown in FIG. 2, after a semiconductor manufacturing process, a difference in oxygen content (the bulk silicon substrate usually contains oxygen near the solid solubility limit) near the interface between the bulk silicon substrate and the epitaxially grown silicon layer. However, a residual stress based on the epitaxially grown silicon layer containing almost no oxygen and a defect layer accompanying the residual stress are introduced, and a potential barrier of about 0.1 to 0.2 eV is formed. At room temperature, this potential barrier is at a level at which electrons and holes can easily jump over by obtaining thermal energy, but this is not a problem.However, at a cooling temperature at which the back-illuminated infrared solid-state imaging device operates, for example, near the temperature of liquid nitrogen, Since the thermal energy is small and electrons and holes cannot easily cross the potential barrier, there is a problem that the epitaxially grown silicon layer is electrically insulated from the bulk silicon substrate. In this state, since the lower layer of the functional element group such as the light receiving section and the electronic scanning section constituting the infrared solid-state imaging element to maintain the reference potential has high resistance, the lower layer of the functional element group is affected by various drive signals. A potential distribution occurs, and the performance corresponding to the applied drive signal cannot be obtained.

【0006】本発明の目的は、シリコンインゴット引き
上げに起因するスワールによる画素間特性バラツキを低
減し、かつ、赤外線固体撮像素子を構成する機能素子群
の下層が高抵抗となって電位分布を持つことによって、
印加した駆動信号に見合う性能が得られなくなる現象を
防止した、冷却手段によって冷却して駆動される裏面照
射型の赤外線撮像素子を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce variation in characteristics between pixels due to swirl caused by pulling up a silicon ingot, and to have a potential distribution due to a high resistance in a lower layer of a functional element group constituting an infrared solid-state imaging device. By
It is an object of the present invention to provide a back-illuminated infrared imaging device driven by cooling by cooling means, which prevents a phenomenon in which performance corresponding to an applied drive signal cannot be obtained.

【0007】[0007]

【課題を解決するための手段】前述の課題を解決するた
めに本発明の赤外線固体撮像素子は、第1導電型バルク
シリコン基板上に、同一導電型の高濃度エピタキシャル
成長シリコン層とその上の同一導電型の低濃度エピタキ
シャル成長シリコン層とから成る2層構造のエピタキシ
ャル成長シリコン層を有し、その上に機能素子群が形成
されている。
In order to solve the above-mentioned problems, an infrared solid-state imaging device according to the present invention comprises a high-concentration epitaxially grown silicon layer of the same conductivity type on a bulk silicon substrate of a first conductivity type. It has an epitaxially grown silicon layer having a two-layer structure composed of a conductive type low-concentration epitaxially grown silicon layer, and a functional element group is formed thereon.

【0008】[0008]

【作用】第1導電型バルクシリコン基板上に、同一導電
型の高濃度エピタキシャル成長シリコン層を形成し、そ
の上に引続き同一導電型の低濃度エピタキシャル成長シ
リコン層を形成した場合、第1層目の高濃度エピタキシ
ャル成長シリコン層と第2層目の低濃度エピタキシャル
成長シリコン層との間には、熱処理中に応力差を生じる
要因となる酸素含有量差がないため、半導体製造プロセ
スを経た後にも、界面に欠陥層やポテンシャル障壁が導
入されることはない。
When a high-concentration epitaxially grown silicon layer of the same conductivity type is formed on a bulk silicon substrate of the first conductivity type, and subsequently a low-concentration epitaxially grown silicon layer of the same conductivity type is formed thereon, the high-concentration silicon layer of the first conductivity type is formed. Since there is no difference in oxygen content between the high-concentration epitaxially-grown silicon layer and the second low-concentration epitaxially-grown silicon layer, which causes a stress difference during the heat treatment, defects are present at the interface even after the semiconductor manufacturing process. No layers or potential barriers are introduced.

【0009】一方、第1導電型バルクシリコン基板と第
1層目の高濃度エピタキシャル成長シリコン層との間に
は、酸素含有量に大きな差があるため、従来と同様に界
面近傍にポテンシャル障壁が形成されるが、第1導電型
バルクシリコン基板上に第1層及び第2層のエピタキシ
ャル成長シリコン層を形成する際、あるいは、半導体製
造プロセス中の熱処理によって、第1層目の高濃度エピ
タキシャル成長シリコン層から第1導電型バルクシリコ
ン基板へ不純物が拡散し、第1導電型バルクシリコン基
板側界面近傍に高濃度不純物層が形成されるため、界面
近傍のポテンシャル障壁は高濃度に不純物を含有したシ
リコン内に埋没した状態になる。このような状況下で
は、ポテンシャル障壁が形成される領域の厚さが極めて
薄くなり、電子や正孔がポテンシャル障壁を突き抜ける
トンネリング確率が非常に大きくなるため、液体窒素温
度付近に冷却されたとしても、ポテンシャル障壁が電子
や正孔の往来を妨げなくなる。従って、前述の問題が解
決される。
On the other hand, since there is a large difference in oxygen content between the first conductivity type bulk silicon substrate and the first high-concentration epitaxially grown silicon layer, a potential barrier is formed near the interface as in the conventional case. However, when the first and second epitaxial growth silicon layers are formed on the first conductivity type bulk silicon substrate, or by heat treatment during the semiconductor manufacturing process, the first high concentration epitaxial growth silicon layer is removed. Impurities are diffused into the first conductivity type bulk silicon substrate, and a high concentration impurity layer is formed near the first conductivity type bulk silicon substrate side interface. Therefore, the potential barrier near the interface is formed in the silicon containing the impurity at a high concentration. It is buried. Under such circumstances, the thickness of the region where the potential barrier is formed becomes extremely thin, and the probability of tunneling of electrons and holes passing through the potential barrier becomes extremely large. In addition, the potential barrier does not hinder the flow of electrons and holes. Therefore, the above-mentioned problem is solved.

【0010】バルクシリコン基板全体が高濃度に不純物
を含むと、多数キャリアによる赤外線吸収が無視できな
いほどになるが、本発明では高濃度エピタキシャル成長
シリコン層は厚くても10数μm 程度、高濃度エピタキ
シャル成長シリコン層と低濃度エピタキシャル成長シリ
コン層をあわせても数十μm 程度の極薄いエピタキシャ
ル成長シリコン層なので、赤外線吸収による感度低下も
起こらない。
If the bulk silicon substrate contains a high concentration of impurities, the absorption of infrared rays by majority carriers is not negligible. However, in the present invention, the high-concentration epitaxially grown silicon layer is at most about 10 μm thick, Even if the layer and the low-concentration epitaxially grown silicon layer are combined, it is an extremely thin epitaxially grown silicon layer of about several tens of μm, so that the sensitivity does not decrease due to infrared absorption.

【0011】[0011]

【実施例】次に、本発明の一実施例について、図面を用
いて詳細に説明する。
Next, an embodiment of the present invention will be described in detail with reference to the drawings.

【0012】図1は、本発明の赤外線固体撮像素子の一
実施例の構造概略図である。P型シリコン基板1上に形
成した、P+ 型高濃度エピタキシャル成長シリコン層2
とP型低濃度エピタキシャル成長シリコン層3から成る
2層構造のエピタキシャル成長シリコン層上に、赤外線
固体撮像素子を構成する受光部や電子走査部等の機能素
子群4を設けている。
FIG. 1 is a schematic structural view of an embodiment of an infrared solid-state image sensor according to the present invention. P + type high concentration epitaxially grown silicon layer 2 formed on P type silicon substrate 1
A functional element group 4 such as a light receiving unit and an electronic scanning unit that constitutes an infrared solid-state imaging device is provided on an epitaxially grown silicon layer having a two-layer structure including a P-type low-concentration epitaxially grown silicon layer 3.

【0013】第1層目のP+ 型高濃度エピタキシャル成
長シリコン層2と第2層目のP型低濃度エピタキシャル
成長シリコン層3の形成は、その間でエピタキシャル成
長装置内から空気中に取り出すことなしに、連続して行
なう。添加する不純物としては、例えば、第1層目のP
+ 型高濃度エピタキシャル成長シリコン層2には1016
〜1019cm-3程度のボロンを添加し膜厚を5μm とし
た。また、第2層目のP型低濃度エピタキシャル成長シ
リコン層3には1014〜1015cm-3程度のボロンを添加
し、膜厚を25μm とした。このように形成した第1層
目のP+ 型高濃度エピタキシャル成長シリコン層2と第
2層目のP型低濃度エピタキシャル成長シリコン層3と
の間には酸素含有量の差はなく、界面に汚染物質が混入
する危険もないので、高い結晶性が保たれ、半導体製造
プロセスを経た後にも、界面に欠陥層やポテンシャル障
壁は導入されない。
The formation of the first P + -type high-concentration epitaxially grown silicon layer 2 and the second P-type low-concentration epitaxially grown silicon layer 3 is carried out continuously without taking out the air from the inside of the epitaxial growth apparatus. And do it. As an impurity to be added, for example, P
10 16 for the + type high concentration epitaxial growth silicon layer 2
Boron of about 10 19 cm -3 was added to make the film thickness 5 μm. Further, about 10 14 to 10 15 cm −3 of boron was added to the second P-type low-concentration epitaxially grown silicon layer 3 to have a thickness of 25 μm. There is no difference in oxygen content between the first P + -type high-concentration epitaxially grown silicon layer 2 and the second P-type low-concentration epitaxially grown silicon layer 3. Since there is no danger of contamination, high crystallinity is maintained, and no defect layer or potential barrier is introduced at the interface even after the semiconductor manufacturing process.

【0014】それに対して、P型シリコン基板1と第1
層目のP+ 型高濃度エピタキシャル成長シリコン層2と
の間には、前述のように酸素含有量に大きな差があり、
熱膨張率差がある。このため、エピタキシャル成長後に
残留応力があり、従来と同様に、半導体製造プロセス中
の熱処理を経る毎に、膨張・収縮差の応力に起因する欠
陥が両者の界面近傍に導入される。この結果、界面にポ
テンシャル障壁が形成されるが、本発明の構造では、第
1層目のP+ 型高濃度エピタキシャル成長シリコン層2
を形成する際、あるいは、半導体製造プロセス中の熱処
理によって、第1層目のP+ 型高濃度エピタキシャル成
長シリコン層2からP型シリコン基板1へ不純物である
ボロンが拡散し、P型シリコン基板1内のP+ 型高濃度
エピタキシャル成長シリコン層2との界面近傍にP+
高濃度不純物層が形成されるので、界面近傍のポテンシ
ャル障壁は高濃度にボロンを含有したP+ 型シリコン内
に埋没した状態になる。
On the other hand, the P-type silicon substrate 1 and the first
As described above, there is a large difference in oxygen content between the layer and the P + -type high-concentration epitaxially grown silicon layer 2.
There is a difference in thermal expansion coefficient. For this reason, there is a residual stress after the epitaxial growth, and as in the conventional case, every time heat treatment is performed during the semiconductor manufacturing process, a defect caused by the stress due to the difference in expansion and contraction is introduced near the interface between the two. As a result, a potential barrier is formed at the interface. In the structure of the present invention, the first P + -type high-concentration epitaxially grown silicon layer 2 is formed.
Is formed, or by heat treatment during the semiconductor manufacturing process, boron as an impurity diffuses from the first P + -type high-concentration epitaxially grown silicon layer 2 into the P-type silicon substrate 1, and state since the vicinity of the interface to the P + -type high concentration impurity layer of the P + -type highly-doped epitaxial silicon layer 2 of is formed, a potential barrier near the interface which is buried in the P + -type silicon containing boron at a high concentration become.

【0015】図3(a)に本発明のP型低濃度エピタキ
シャル成長シリコン層/P+ 型高濃度エピタキシャル成
長シリコン層/P型シリコン基板の構造におけるエネル
ギー帯図、及び、図3(b)に図2に示したP型低濃度
エピタキシャル成長シリコン層/P型シリコン基板の構
造におけるエネルギー帯図をそれぞれ示す。図2の構造
では(b)に示すように、ポテンシャル障壁が形成され
る領域が厚いので、低温においては正孔6はP型低濃度
エピタキシャル成長シリコン層3とP型シリコン基板1
との界面を通り抜けることが容易にできないが、(a)
の構造では、P+ 型高濃度エピタキシャル成長シリコン
層2とP型シリコン基板1内に形成されたP+ 型高濃度
不純物層5とによってポテンシャル障壁が挟まれる結
果、ポテンシャル障壁が形成される領域が極めて薄くな
り、正孔6はトンネリングによってP+ 型高濃度エピタ
キシャル成長シリコン層2とP型シリコン基板1との間
を自由に行き来できる。
FIG. 3A shows an energy band diagram in the structure of the P-type low-concentration epitaxially grown silicon layer / P + -type high-concentration epitaxially grown silicon layer / P-type silicon substrate of the present invention, and FIG. 2 shows energy band diagrams in the structure of the P-type low-concentration epitaxial growth silicon layer / P-type silicon substrate shown in FIG. In the structure of FIG. 2, as shown in FIG. 2B, since the region where the potential barrier is formed is thick, the holes 6 are formed at low temperature by the P-type low-concentration epitaxial growth silicon layer 3 and the P-type silicon substrate 1.
(A) cannot easily pass through the interface with
In the structure (1), the potential barrier is sandwiched between the P + -type high-concentration epitaxially grown silicon layer 2 and the P + -type high-concentration impurity layer 5 formed in the P-type silicon substrate 1, so that the region where the potential barrier is formed is extremely large. The holes 6 become thin, and the holes 6 can freely move between the P + -type high-concentration epitaxially grown silicon layer 2 and the P-type silicon substrate 1 by tunneling.

【0016】以上より、本発明の赤外線固体撮像素子の
構造では、赤外線固体撮像素子を構成する受光部や電子
走査部等の機能素子群の下層が高抵抗にならず、印加し
た駆動信号に見合う高性能が得られる。
As described above, in the structure of the infrared solid-state imaging device of the present invention, the lower layer of the functional element group such as the light receiving section and the electronic scanning section constituting the infrared solid-state imaging element does not have a high resistance and corresponds to the applied drive signal. High performance can be obtained.

【0017】なお、本実施例では、第1導電型をP型と
しているが、これをN型としても本発明は有効である。
In the present embodiment, the first conductivity type is a P-type, but the present invention is also effective when the first conductivity type is an N-type.

【0018】[0018]

【発明の効果】以上、説明したように、本発明の赤外線
固体撮像素子によれば、画素間の特性バラツキが抑えら
れるエピタキシャル成長シリコン層上に受光部や電子走
査部等の機能素子群があり、しかも、該機能素子群の下
層が高抵抗になることもないので、高性能の赤外線固体
撮像素子にできる効果がある。
As described above, according to the infrared solid-state imaging device of the present invention, a functional device group such as a light receiving portion and an electronic scanning portion is provided on an epitaxially grown silicon layer capable of suppressing variation in characteristics between pixels. In addition, since the lower layer of the functional element group does not have high resistance, there is an effect that a high-performance infrared solid-state imaging element can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の赤外線固体撮像素子の一実施例の構造
概略図である。
FIG. 1 is a schematic structural diagram of an embodiment of an infrared solid-state imaging device according to the present invention.

【図2】スワールによる特性ばらつきの一般的な低減方
法を適用した赤外線固体撮像素子の一例の構造概略図で
ある。
FIG. 2 is a schematic structural diagram of an example of an infrared solid-state imaging device to which a general method of reducing variation in characteristics due to swirl is applied.

【図3】本発明の一実施例の構造、及び図2に示した構
造におけるエネルギー帯図を示す図である。
3 is a diagram showing a structure of an embodiment of the present invention and an energy band diagram in the structure shown in FIG. 2;

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2 P+ 型高濃度エピタキシャル成長シリコン層 3 P型低濃度エピタキシャル成長シリコン層 4 赤外線固体撮像素子を構成する機能素子群 5 シリコン基板中のP+ 型高濃度不純物層 6 正孔 7 価電子帯 8 禁制帯 9 伝導帯 10 フェルミ準位REFERENCE SIGNS LIST 1 P-type silicon substrate 2 P + -type high-concentration epitaxially grown silicon layer 3 P-type low-concentration epitaxially grown silicon layer 4 Functional element group constituting infrared solid-state imaging device 5 P + -type high-concentration impurity layer in silicon substrate 6 Hole 7 valence Electronic band 8 Forbidden band 9 Conduction band 10 Fermi level

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】冷却手段によって冷却して駆動され、機能
素子群が形成された面と逆の裏面から光入射される裏面
照射型の赤外線固体撮像素子において、第1導電型バル
クシリコン基板上に、同一導電型の高濃度エピタキシャ
ル成長シリコン層とその上の同一導電型の低濃度エピタ
キシャル成長シリコン層とから成る2層構造のエピタキ
シャル成長シリコン層を有し、その上に機能素子群が形
成されていることを特徴とする赤外線固体撮像素子。
1. A back-illuminated infrared solid-state imaging device driven by being cooled by a cooling means and receiving light from a back surface opposite to a surface on which a functional element group is formed, wherein the first conductivity type bulk silicon substrate is A two-layer epitaxially grown silicon layer composed of a high-concentration epitaxially grown silicon layer of the same conductivity type and a low-concentration epitaxially grown silicon layer of the same conductivity type thereon, on which a functional element group is formed. Characteristic infrared solid-state imaging device.
【請求項2】冷却手段によって冷却して駆動され、機能2. A cooling device driven by cooling means,
素子群が形成された面と逆の裏面から光入射される裏面Back side where light enters from the back side opposite to the side on which the element group was formed
照射型の赤外線固体撮像素子において、第1導電型バルIn the irradiation type infrared solid-state imaging device, the first conductivity type
クシリコン基板上に、同一導電型の高濃度エピタキシャHigh-concentration epitaxy of the same conductivity type on a silicon substrate
ル成長シリコン層とその上の同一導電型の低濃度エピタ-Grown silicon layer and overlying low-concentration epitaxial film of the same conductivity type
キシャル成長シリコン層とから成る2層構造のエピタキEpitaxy of a two-layer structure consisting of an axially grown silicon layer
シャル成長シリコン層を有し、その上に機能素子群が形It has a char-grown silicon layer on which functional element groups are formed.
成され、前記同一導電型の高濃度エピタキシャル成長シAnd a high-concentration epitaxial growth system of the same conductivity type.
リコン層から前記第1導電型バルクシリコン基板へ不純Impurities from the recon layer to the first conductivity type bulk silicon substrate
物が拡散することによって前記第1導電型バルクシリコThe first conductivity type bulk silicon is diffused by
ン基板側界面近傍に高濃度不純物層が形成されることHigh-concentration impurity layer is formed near the interface on the substrate side
で、界面近傍のポテンシャル障壁が高濃度に不純物を含And the potential barrier near the interface contains a high concentration of impurities.
有するシリコンである前記同一導電型の高濃度エピタキHigh-concentration epitaxy of the same conductivity type which is silicon having
シャル成長シリコン層内と前記第1導電型バルクシリコIn the silicon film grown in the first conductivity type and the first conductivity type bulk silicon
ン基板の高濃度不純物層内に埋没した状態となっているBuried in the high-concentration impurity layer of the substrate
ことを特徴とする赤外線固体撮像素子。An infrared solid-state imaging device, characterized in that:
【請求項3】 前記同一導電型の高濃度エピタキシャル成
長シリコン層の膜厚が5μm〜10数μmであることを
特徴とする請求項1または2記載の赤外線固体撮像素
子。
3. The infrared solid-state imaging device according to claim 1, wherein the high-concentration epitaxially grown silicon layer of the same conductivity type has a thickness of 5 μm to 10s μm.
【請求項4】第1導電型バルクシリコン基板上に同一導4. The same conductive type bulk silicon substrate on a first conductive type.
電型の高濃度エピタキシャル成長シリコン層を形成したFormed high-concentration epitaxially grown silicon layer
後、エピタキシャル成長装置内から取り出すことなしにLater, without removing from the epitaxial growth equipment
連続して同一導電型の低濃度エピタキシャル成長シリコContinuously low-concentration epitaxially grown silicon of the same conductivity type
ン層を形成して2層構造のエピタキシャル成長シリコン-Layer epitaxially grown silicon with a two-layer structure
層を形成し、その上に機能素子部を設けることを特徴とForming a layer and providing a functional element section thereon.
する赤外線固体撮像素子の製造方法。Of manufacturing an infrared solid-state imaging device.
【請求項5】前記同一導電型の高濃度エピタキシャル成5. A high-concentration epitaxial growth of the same conductivity type.
長シリコン層は10Long silicon layer is 10 1616 〜10-10 1919 cmcm -3-3 、前記同一導電型, The same conductivity type
の低濃度エピタキシャル成長シリコン層は10Of the low-concentration epitaxially grown silicon layer is 10 1414 〜10-10
15Fifteen cmcm -3-3 のボロンを添加することを特徴とする請求項45. The method according to claim 4, wherein boron is added.
記載の赤外線固体撮像素子の製造方法。A method for manufacturing the infrared solid-state imaging device according to the above.
JP7121137A 1995-05-19 1995-05-19 Infrared solid-state imaging device and manufacturing method thereof Expired - Lifetime JP2798006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7121137A JP2798006B2 (en) 1995-05-19 1995-05-19 Infrared solid-state imaging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7121137A JP2798006B2 (en) 1995-05-19 1995-05-19 Infrared solid-state imaging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08316446A JPH08316446A (en) 1996-11-29
JP2798006B2 true JP2798006B2 (en) 1998-09-17

Family

ID=14803793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7121137A Expired - Lifetime JP2798006B2 (en) 1995-05-19 1995-05-19 Infrared solid-state imaging device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2798006B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4980665B2 (en) * 2006-07-10 2012-07-18 ルネサスエレクトロニクス株式会社 Solid-state imaging device
JP6355311B2 (en) 2013-10-07 2018-07-11 キヤノン株式会社 Solid-state imaging device, manufacturing method thereof, and imaging system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278278A (en) * 1988-09-13 1990-03-19 Nec Corp Infrared sensor
JPH0590558A (en) * 1991-09-30 1993-04-09 Mitsubishi Electric Corp Solid-state image pick-up device

Also Published As

Publication number Publication date
JPH08316446A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
US5708281A (en) Semiconductor device and photoelectric conversion apparatus using the same
US5581099A (en) CCD solid state image device which has a semiconductor substrate with a P-type region with an N-type region formed therein by injection of arsenic
US5557118A (en) Hetero-junction type bipolar transistor
US5288656A (en) Method of manufacturing a CCD solid state image sensing device
US10340400B2 (en) Photoelectric conversion device, method of manufacturing the same, and camera
JP7041337B2 (en) Infrared detector, image sensor, and image pickup system
JP2798006B2 (en) Infrared solid-state imaging device and manufacturing method thereof
JPH08139295A (en) Soi substrate
Yoshikawa et al. Electrical effect of growth striations in the silicon vidicon‐type camera tubes
JPH04318981A (en) Manufacture of infrared detector
KR100263979B1 (en) Method of fabricating solid state image pick up device having ccd register
Hiroshima et al. Elimination of fixed pattern noise in super-8 format CCD image sensor by the use of epitaxial wafers
Ashokan et al. Characteristics of MBE-grown heterostructure HgCdTe/CdTe/Si materials and planar photovoltaic devices
JP2699838B2 (en) Infrared detector and manufacturing method thereof
JP2848345B2 (en) Infrared detector
JP2716025B2 (en) Array type infrared detector and method of manufacturing the same
JPH07211882A (en) Solid-state image sensing device
JP2751702B2 (en) Infrared detector and manufacturing method thereof
JPH0983010A (en) Infrared light emitting device and fabrication thereof
JP2616707B2 (en) Manufacturing method of infrared detector
JP2664747B2 (en) Semiconductor device and photoelectric conversion device using the same
JPH0590558A (en) Solid-state image pick-up device
JP2936826B2 (en) Solid-state imaging device
JPH08111539A (en) Manufacture of photovoltaic type hgcdte infrared ray detector
JPH05343727A (en) Infrared detector and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980602