JPH08316222A - Method and apparatus for heat treatment - Google Patents

Method and apparatus for heat treatment

Info

Publication number
JPH08316222A
JPH08316222A JP14565895A JP14565895A JPH08316222A JP H08316222 A JPH08316222 A JP H08316222A JP 14565895 A JP14565895 A JP 14565895A JP 14565895 A JP14565895 A JP 14565895A JP H08316222 A JPH08316222 A JP H08316222A
Authority
JP
Japan
Prior art keywords
wafer
heat
heat treatment
substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14565895A
Other languages
Japanese (ja)
Inventor
Wataru Okase
亘 大加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Tokyo Electron Tohoku Ltd
Original Assignee
Tokyo Electron Ltd
Tokyo Electron Tohoku Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Tokyo Electron Tohoku Ltd filed Critical Tokyo Electron Ltd
Priority to JP14565895A priority Critical patent/JPH08316222A/en
Publication of JPH08316222A publication Critical patent/JPH08316222A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To stabilize a substrate, to be treated, quickly to a prescribed temperature and to perform a uniform heat treatment when the substrate to be treated is carried into a reaction container so as to be heat-treated. CONSTITUTION: The absorptivity of heat rays differs according to their angle of incidence when the temperature of a wafer W is, e.g. near 500 deg.C, and the absorptivity is small when the heat rays are vertically incident. When a wafer holding implement 3 is raised, a wafer holding plate 31 is pushed up by, e.g. a thrust pin, and the wafer holding plate 31 is held in a state that it is tilted from a horizontal plane. Then, the heat rays which are reached directly from a heating source 24 are obliquely incident on the wafer W at a prescribed angle of incidence, the heat rays can be absorbed with a large absorptivity, and temperature rises in respective positions of the wafer W become uniform. Consequently, the temperature of the wafer W is stabilized quickly to a prescribed temperature, and, as a result, a heat treatment whose in-plane uniformity is high can be executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱処理方法及びその装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method and an apparatus therefor.

【0002】[0002]

【従来の技術】半導体デバイスの製造プロセスの中に、
高温下においてシリコンの表面部を酸化しこれにより酸
化膜(絶縁膜)を得る酸化処理や、不純物層を表面に形
成したシリコン層を加熱し、これにより不純物をシリコ
ン層内に熱拡散する拡散処理などがある。
2. Description of the Related Art During the manufacturing process of semiconductor devices,
Oxidation treatment to oxidize the surface of silicon at high temperature to obtain an oxide film (insulating film), or diffusion treatment to heat the silicon layer with an impurity layer formed on the surface and thereby diffuse impurities into the silicon layer. and so on.

【0003】この種の酸化、拡散を行う熱処理装置とし
てバッチ式である縦型熱処理装置が知られているが、例
えばキャパシタ絶縁膜の酸化膜やゲート酸化膜の形成あ
るいは不純物イオンの拡散処理では、極めて薄い膜や浅
い接合を得る場合、膜質、膜厚や拡散深さがサーマルバ
ジェット(熱履歴)の影響を大きく受け、バッチ式の熱
処理装置では、先に反応管内に搬入されたウエハと最後
の方に搬入されたウエハとではサーマルバジェットに大
きな差が生じてしまう。
A batch type vertical heat treatment apparatus is known as a heat treatment apparatus for performing this kind of oxidation and diffusion. For example, in forming an oxide film or a gate oxide film of a capacitor insulating film or diffusing treatment of impurity ions, When obtaining an extremely thin film or shallow junction, the film quality, film thickness, and diffusion depth are greatly affected by the thermal budget (thermal history), and in batch type heat treatment equipment, the wafer previously loaded into the reaction tube and the last There is a large difference in thermal budget from the wafer loaded in one direction.

【0004】そこで上述の熱処理炉を改良し、反応管内
の設定位置に1枚づつウエハを保持具に載せて搬入した
後急加熱する枚葉式の熱処理装置についても検討が進め
られている。このような枚葉式の熱処理装置について図
8(a)に示す概略図を参照しながら説明すると、1は
縦型の反応容器であり、熱処理領域を含む部分が断熱体
10で囲まれている。この反応容器1には、上から下へ
向って処理ガスが流れるように処理ガス供給管11及び
排気管12が設けられている。
Therefore, studies are being made on a single-wafer type heat treatment apparatus in which the above-mentioned heat treatment furnace is improved so that wafers are loaded one by one onto a holder at a set position in a reaction tube and then rapidly heated. Such a single-wafer-type heat treatment apparatus will be described with reference to the schematic diagram shown in FIG. 8A. 1 is a vertical reaction vessel, and a portion including a heat treatment region is surrounded by a heat insulator 10. . The reaction container 1 is provided with a processing gas supply pipe 11 and an exhaust pipe 12 so that the processing gas flows from top to bottom.

【0005】反応容器1の中には、ウエハWを水平に保
持するウエハ保持具13が設けられており、このウエハ
保持具13には反応容器1の下方側の図示しない移載室
にて図示しない搬送手段により1枚のウエハWが載置さ
れ、ウエハWが所定位置まで上昇される。一方抵抗発熱
体15a及び均熱体15bよりなる加熱部15により前
記ウエハWが所定の熱処理温度まで加熱されると共に処
理ガス供給管11より処理ガスが供給されて例えば常圧
雰囲気で酸化処理される。
A wafer holder 13 for holding the wafer W horizontally is provided in the reaction vessel 1. The wafer holder 13 is shown in a transfer chamber (not shown) below the reaction vessel 1. One wafer W is placed by the transfer means, and the wafer W is raised to a predetermined position. On the other hand, the wafer W is heated to a predetermined heat treatment temperature by the heating unit 15 composed of the resistance heating element 15a and the heat equalizing element 15b, and the processing gas is supplied from the processing gas supply pipe 11 to oxidize in a normal pressure atmosphere, for example. .

【0006】[0006]

【発明が解決しようとしている課題】上述の熱処理装置
では、ウエハWはウエハ保持具13に水平に保持された
状態で反応容器1内の熱処理領域に搬入されるが、ウエ
ハ保持具13が上昇する間ウエハWは図9(b)に実線
の矢印で示すように加熱部15より垂直方向に直接に入
射する熱線を受けると共に、点線の矢印で示すように断
熱体10より反射されて斜めに入射する熱線(二次輻射
熱)をも受ける。このようにウエハWには加熱部15よ
り入射角の異なる熱線が入射するが、入射角が異なると
熱線の透過率や反射率が異なり、これによりウエハWに
吸収される熱線の量も変ってくる。
In the above-mentioned heat treatment apparatus, the wafer W is carried into the heat treatment area in the reaction vessel 1 while being held horizontally by the wafer holder 13, but the wafer holder 13 rises. The inter-wafer W receives the heat rays directly incident in the vertical direction from the heating portion 15 as shown by solid arrows in FIG. 9B, and is reflected obliquely by the heat insulator 10 as shown by dotted arrows. It also receives heat rays (secondary radiant heat). As described above, heat rays having different incident angles are incident on the wafer W from the heating unit 15. However, when the incident angles are different, the transmittance and the reflectance of the heat rays are different, and the amount of heat rays absorbed by the wafer W is also changed. come.

【0007】ところで反応容器1内を予熱する際、ウエ
ハWの温度が例えば600℃程度と低い場合には、ウエ
ハWの表面は鏡面であり、波長の短い例えば0.9μm
〜3μm程度の熱線の一部は透過、反射してしまうの
で、熱線の透過や反射の割合が入射角によって大きく異
なり、被処理面に垂直に入射するものほど吸収率が小さ
く、垂直に入射する熱線では吸収率は例えば0.1程度
と非常に小さい。
When the temperature of the wafer W is as low as about 600 ° C. when preheating the inside of the reaction vessel 1, the surface of the wafer W is a mirror surface and has a short wavelength, for example, 0.9 μm.
Since a part of the heat ray of about 3 μm is transmitted and reflected, the rate of transmission and reflection of the heat ray is largely different depending on the incident angle. With heat rays, the absorptance is very small, for example, about 0.1.

【0008】従ってウエハWを水平に保持する場合に
は、ウエハWの加熱にあたっては、比較的吸収率の高い
斜めから入射する熱線の影響が大きくなるが、斜めに入
射する熱線の量はウエハWの各位置において異なると共
に夫々の入射角も異なり、これに応じて吸収される熱線
の量も異なるため、各位置において温度上昇にばらつき
を生じてしまう。このためウエハWを熱処理領域まで上
昇させたときにウエハWの温度が全面に亘って熱処理温
度に安定するまでの時間が長くなってしまい、この結果
熱処理速度例えば酸化膜の成長速度にばらつきが生じ、
膜厚についての面内均一性が低くなってしまうという問
題があった。
Therefore, when the wafer W is held horizontally, when the wafer W is heated, the influence of obliquely incident heat rays having a relatively high absorptivity is large, but the amount of obliquely incident heat rays is large. Since the angle of incidence is different at each position and the incident angle is also different, and the amount of heat ray absorbed is also different accordingly, the temperature rise varies at each position. Therefore, when the temperature of the wafer W is raised to the heat treatment region, it takes a long time for the temperature of the wafer W to be stabilized at the heat treatment temperature over the entire surface. As a result, the heat treatment rate, for example, the growth rate of the oxide film varies. ,
There is a problem that the in-plane uniformity of the film thickness becomes low.

【0009】またウエハWを水平に保持して熱処理領域
に搬入すると、ウエハWの表面積が大きいため、ウエハ
Wが大きな抵抗(風圧)を受け、これによりウエハWの
直ぐ後方領域が負圧となり、ウエハWの表面側の圧力と
裏面側の圧力に圧力差が生じてしまい、処理ガスの流れ
が乱されてしまうという問題もあった。
When the wafer W is held horizontally and carried into the heat treatment area, the surface area of the wafer W is large, so that the wafer W is subjected to a large resistance (wind pressure), and the area immediately behind the wafer W becomes negative pressure. There is also a problem that a pressure difference occurs between the pressure on the front surface side and the pressure on the back surface side of the wafer W, and the flow of the processing gas is disturbed.

【0010】本発明はこのような事情の下になされたも
のであり、その目的は被処理基板の温度を短時間で安定
させ、これにより面内均一性の高い熱処理を行うことが
できる熱処理方法及びその装置を提供することにある。
The present invention has been made under the above circumstances, and an object thereof is to stabilize the temperature of a substrate to be processed in a short time, thereby enabling a heat treatment with high in-plane uniformity. And to provide the device.

【0011】[0011]

【課題を解決するための手段】請求項1の発明では、被
処理基板をほぼ水平な状態で保持具に保持させて反応容
器内に下方側から搬入し、反応容器の外に設けられた加
熱源からの輻射熱により熱処理する熱処理方法におい
て、前記被処理基板を傾けた状態で反応容器内の熱処理
領域まで上昇させることを特徴とする。
According to the first aspect of the invention, the substrate to be processed is held in a substantially horizontal state by a holder and is carried into the reaction vessel from below, and the heating is provided outside the reaction vessel. In the heat treatment method of performing heat treatment by radiant heat from a source, the substrate to be processed is raised to a heat treatment region in a reaction container in a tilted state.

【0012】請求項2の発明では、被処理基板をほぼ水
平な状態で保持具に保持させて反応容器内に下方側から
搬入し、反応容器の外に設けられた加熱源からの輻射熱
により熱処理する熱処理方法において、前記被処理基板
の中で上端位置が時間と共に周方向に移動するように、
前記被処理基板を傾けた状態で反応容器内の熱処理領域
まで上昇させることを特徴とする。
According to the second aspect of the present invention, the substrate to be processed is held by the holding tool in a substantially horizontal state and carried into the reaction vessel from below, and is heat-treated by radiant heat from a heating source provided outside the reaction vessel. In the heat treatment method, the upper end position of the substrate to be processed moves in the circumferential direction with time,
It is characterized in that the substrate to be processed is raised to a heat treatment region in a reaction container in a tilted state.

【0013】請求項3の発明は、被処理基板をほぼ水平
な状態で保持具に保持させて反応容器内に下方側から搬
入し、反応容器の外に設けられた加熱源からの輻射熱に
より熱処理する熱処理装置において、被処理基板を傾け
るための機構を前記保持具に組み合わせて設けたことを
特徴とする。
According to a third aspect of the present invention, the substrate to be processed is held by a holder in a substantially horizontal state, carried into the reaction vessel from below, and heat-treated by radiant heat from a heating source provided outside the reaction vessel. In the above heat treatment apparatus, a mechanism for tilting the substrate to be processed is provided in combination with the holder.

【0014】[0014]

【作用】例えば反応容器の上方に加熱源を設けると共に
反応容器の周囲にこれを囲むように断熱材を設けると、
被処理基板の被処理面には加熱源から垂直方向に直接に
熱線が入射すると共に、断熱材などで反射された熱線も
入射するが、被処理基板を水平面に対して傾けながら反
応容器内の熱処理領域まで上昇させると、加熱源から直
接入射する熱線は斜めから被処理面に入射する。
For example, if a heat source is provided above the reaction vessel and a heat insulating material is provided around the reaction vessel so as to surround it,
While the heat rays from the heat source are directly incident on the surface to be treated of the substrate to be treated in the vertical direction, the heat rays reflected by the heat insulating material are also incident, but while the substrate to be treated is inclined with respect to the horizontal plane, When the temperature is increased to the heat treatment area, the heat rays directly incident from the heating source are incident on the surface to be treated obliquely.

【0015】ここで被処理基板が例えば500℃付近の
低温の場合には、熱線の透過や反射の割合が入射角によ
って大きく異なり、被処理面に垂直に入射するものほど
吸収率が小さく、斜めから入射するものとの間では吸収
率の差が大きい。また加熱源から直接入射する熱線は、
断熱材によって反射されて入射する熱線よりも量が多い
ので、この直接の熱線を斜めから入射するようにすれ
ば、大きな吸収率で熱線を吸収することができ、被処理
面の各位置での温度上昇も揃ってくる。従って被処理体
の温度が速やかに所定温度に安定し、この結果面内均一
性の高い熱処理を行なうことができる。
Here, when the substrate to be processed is at a low temperature of, for example, about 500 ° C., the rate of transmission or reflection of heat rays greatly differs depending on the incident angle. There is a large difference in absorptivity between the incident light and the incident light. In addition, the heat rays that are directly incident from the heating source are
Since the amount of heat rays is larger than that of heat rays reflected by the heat insulating material and incident, if this direct heat ray is made incident obliquely, the heat ray can be absorbed with a large absorptivity, and at each position on the surface to be treated. The temperature rise will also come together. Therefore, the temperature of the object to be processed is quickly stabilized at a predetermined temperature, and as a result, heat treatment with high in-plane uniformity can be performed.

【0016】また被処理基板の中で上端位置が時間と共
に周方向に移動するように、被処理基板を傾けた状態で
反応容器内の熱処理領域まで上昇させるようにすると、
被処理基板の各位置において加熱源に近い部分が時間と
共に変化していくので、加熱源から受ける熱線の強さの
ばらつきが抑えられ、より面内均一性の高い熱処理を行
なうことができる。
When the substrate to be processed is tilted and moved up to the heat treatment region in the reaction vessel so that the upper end position of the substrate to be processed moves in the circumferential direction with time,
At each position of the substrate to be processed, the portion close to the heating source changes with time, so that variations in the intensity of heat rays received from the heating source are suppressed, and heat treatment with higher in-plane uniformity can be performed.

【0017】[0017]

【実施例】図1は本発明の実施例に係る熱処理方法を実
施するための熱処理装置を示す断面図である。図1中2
は例えば石英よりなる、下端部が開口した管状の反応容
器であり、この反応容器2により被処理基板例えば半導
体ウエハWに対して熱処理を行う処理室が構成されてい
る。この反応容器2は加熱炉20の中に配置されてお
り、この加熱炉20は、反応容器2の周囲及び上面を間
隙を介して覆うように設けられた例えば炭化ケイ素(S
iC)よりなる均熱部材21を備えている。
1 is a sectional view showing a heat treatment apparatus for carrying out a heat treatment method according to an embodiment of the present invention. 2 in FIG.
Is a tubular reaction container made of, for example, quartz and having an open lower end, and this reaction container 2 constitutes a processing chamber for performing heat treatment on a substrate to be processed, for example, a semiconductor wafer W. The reaction vessel 2 is arranged in a heating furnace 20, which is provided, for example, with silicon carbide (S) so as to cover the periphery and the upper surface of the reaction vessel 2 with a gap.
The heat equalizing member 21 made of iC) is provided.

【0018】更に均熱部材21の外側には断熱体22及
び、水冷ジャケット23aを備えた外装体23が設けら
れている。また均熱部材21の上面と断熱体22との間
には抵抗発熱体よりなる加熱源24が配置されている。
さらに、前記反応容器2には、図示しない処理ガス供給
源からの処理ガスを、後述するウエハ保持具3上のウエ
ハWに供給するように、処理ガス供給管25が設けられ
ると共に、反応容器2内を排気する排気管26が接続さ
れている。
Further, on the outside of the heat equalizing member 21, a heat insulating body 22 and an exterior body 23 having a water cooling jacket 23a are provided. A heating source 24 composed of a resistance heating element is arranged between the upper surface of the heat equalizing member 21 and the heat insulating body 22.
Further, the reaction container 2 is provided with a processing gas supply pipe 25 so as to supply a processing gas from a processing gas supply source (not shown) to the wafer W on the wafer holder 3 described later, and the reaction container 2 An exhaust pipe 26 for exhausting the inside is connected.

【0019】前記反応容器2内には被処理基板の保持具
であるウエハ保持具3が設けられており、このウエハ保
持具3は、図2及び図3に示すようにウエハを載置する
ウエハ保持板31を支持部32にて支持するように構成
されている。ウエハ保持板31は、例えば図2に示すよ
うに、底面に搬送ア−ム30aが水平方向に挿脱できる
ように周縁から中央へ切り込まれた段差30を形成する
と共に、ウエハWの脱落を防ぐために周縁を起立して構
成されている。
A wafer holder 3, which is a holder for a substrate to be processed, is provided in the reaction container 2. The wafer holder 3 is a wafer on which a wafer is placed as shown in FIGS. 2 and 3. The holding plate 31 is configured to be supported by the support portion 32. For example, as shown in FIG. 2, the wafer holding plate 31 has a step 30 formed in the bottom surface from the peripheral edge to the center so that the transfer arm 30a can be horizontally inserted and removed, and the wafer W can be removed. In order to prevent it, the periphery is set up.

【0020】前記支持部32は、例えば円柱形状をなし
ており、その上面の中央部には支持棒33が突設されて
いる。前記ウエハ保持板31は、鉛直軸及び水平軸のい
ずれの軸まわりにも回動できるように前記支持棒33に
ボールジョイント部34を介して支持されている。また
支持部32には、支持棒33を挟んで径方向に対向する
位置に設けられた突上げピンP,Pを1組として、周方
向にn等分例えば8等分する位置に、4組のピンP1〜
P4(1組のピンは同符号を付してある)が配列されて
いる。なお各ピンPの上端はウエハ保持板31の支持を
確実にするために例えば平面が円弧形状の平板状に形成
されている。
The support portion 32 has, for example, a columnar shape, and a support rod 33 is projectingly provided at the center of the upper surface thereof. The wafer holding plate 31 is supported by the support rod 33 via a ball joint portion 34 so as to be rotatable about both a vertical axis and a horizontal axis. Further, in the support portion 32, as one set of push-up pins P, P provided at positions facing each other in the radial direction with the support rod 33 sandwiched therebetween, four sets are provided at positions equally divided into n, for example, 8 in the circumferential direction. Pins P1 to
P4 (one set of pins is given the same reference numeral) is arranged. The upper end of each pin P is formed in a flat plate shape having an arc shape, for example, to ensure the support of the wafer holding plate 31.

【0021】これら一組の突上げピンP、Pは、例えば
同時に上下方向に移動するように構成されており、ウエ
ハ保持板31を水平に支持する場合には、図3(a)に
示すように、1組の突上げピンP、Pが、ウエハ保持板
31の下面と支持部材32の上面との間の距離である長
さL分上昇して、これら1組の突上げピンPと支持部3
6とにより、ウエハ保持板31が支持される。またウエ
ハ保持板31を水平面から傾けて支持する場合には、図
3(b)に示すように、1組の突上げピンPの一方が長
さLの位置から△L分上昇すると共に、他方のピンが長
さLの位置から△L分下降して、これら1組の突上げピ
ンP、Pと支持棒33とにより、ボールジョイント部3
4を介してウエハ保持板31が水平面から傾くように支
持される。
The pair of push-up pins P, P are configured to move in the vertical direction at the same time, for example, and when horizontally supporting the wafer holding plate 31, as shown in FIG. In addition, the set of push-up pins P, P is raised by the length L which is the distance between the lower surface of the wafer holding plate 31 and the upper surface of the support member 32 to support the set of push-up pins P and P. Part 3
The wafer holding plate 31 is supported by 6. When the wafer holding plate 31 is tilted and supported from the horizontal plane, as shown in FIG. 3B, one of the push-up pins P moves up from the position of the length L by ΔL and the other Of the ball joint portion 3 is lowered from the position of the length L by ΔL, and the set of the push-up pins P, P and the support rod 33 causes the ball joint portion 3 to move.
The wafer holding plate 31 is supported via 4 so as to be inclined from the horizontal plane.

【0022】このとき△Lはウエハ保持板31の水平面
からの傾きの角度に応じて決定されるが、この傾きの角
度は後述するように例えば加熱源24からの直接の熱線
Hを高い吸収率で吸収するために必要な熱線Hの入射角
に応じて所定の角度に設定される。例えばウエハ保持板
31は水平面から例えば30度以内の範囲で傾くように
△Lが設定される。この実施例では、支持部32、突き
上げピンP、支持棒33及びボールジョイント部34に
より、ウエハ保持板31を傾けるための傾斜機構が構成
されている。
At this time, ΔL is determined according to the angle of inclination of the wafer holding plate 31 from the horizontal plane, and this angle of inclination has a high absorption rate for the direct heat ray H from the heating source 24, as will be described later. The angle is set to a predetermined angle according to the incident angle of the heat ray H required for absorption by. For example, ΔL is set so that the wafer holding plate 31 is inclined within a range of, for example, 30 degrees from the horizontal plane. In this embodiment, the support portion 32, the push-up pin P, the support rod 33, and the ball joint portion 34 constitute a tilting mechanism for tilting the wafer holding plate 31.

【0023】またこのウエハ保持具3は、回転テ−ブル
41を介して昇降軸42の頂部に取り付けられ、昇降軸
42は図1に示すように反応容器2の下方側の後述の筒
状体5の下端部にてボールネジなどを含む昇降機構43
により昇降できるように構成されている。そして昇降軸
42内には軸受け部42aを介して回転軸44を有して
おり、モータMにより回転軸44が回転し、これにより
回転テ−ブル41を介してウエハ保持具3が回転できる
ようになっている。
The wafer holder 3 is attached to the top of an elevating shaft 42 via a rotary table 41, and the elevating shaft 42 is a cylindrical body below the reaction container 2 as shown in FIG. Lifting mechanism 43 including a ball screw, etc. at the lower end of 5.
It is configured so that it can be raised and lowered by. A rotary shaft 44 is provided in the lift shaft 42 via a bearing 42a, and the rotary shaft 44 is rotated by the motor M, so that the wafer holder 3 can be rotated via the rotary table 41. It has become.

【0024】前記反応容器2の下方側には、上端部が反
応容器2の下端部に気密に接続され、内部空間が反応容
器2内の空間に連続する、水冷ジャケットを有する筒状
体5が配設されている。この筒状体5には前記ウエハ保
持具3と外部との間でウエハの移載を行うための移載室
51が形成されており、この移載室51の側壁部にはゲ
ートバルブにより開閉されるウエハWの搬入出口52が
形成されている。また移載室51の上部両側には、反応
容器側からの輻射熱を遮断するためのシャッタS1、S
2が設けられると共に、移載室51の下部両側にも、筒
状体5の底部側との間を遮断するように、シャッタS
3、S4が設けられており、シャッタS3、S4は閉じ
たときに昇降軸42を囲む半円状の切り欠きが先端に形
成されている。53、54、55、56はシャッタの待
機室である。
On the lower side of the reaction vessel 2, there is provided a tubular body 5 having a water cooling jacket, the upper end of which is hermetically connected to the lower end of the reaction vessel 2 and the inner space of which is continuous with the space inside the reaction vessel 2. It is arranged. A transfer chamber 51 for transferring a wafer between the wafer holder 3 and the outside is formed in the cylindrical body 5, and a side wall of the transfer chamber 51 is opened and closed by a gate valve. A loading / unloading port 52 for the wafer W to be formed is formed. Shutters S1 and S for blocking radiant heat from the reaction container side are provided on both sides of the upper portion of the transfer chamber 51.
2 is provided, and the shutter S is also provided on both sides of the lower part of the transfer chamber 51 so as to block the bottom side of the tubular body 5.
3 and S4 are provided, and the shutters S3 and S4 each have a semicircular cutout formed at the tip thereof when the shutters S3 and S4 surround the lift shaft 42. Reference numerals 53, 54, 55 and 56 are shutter waiting chambers.

【0025】次に上述実施例の作用について述べる。先
ずウエハ保持具3を鎖線の如く移載室51内に位置させ
ておき、搬入出口52より被処理基板であるウエハWを
搬入してウエハ保持板31上に載置する。この際ウエハ
保持板31は、図4(a)に示すように1組の突上げピ
ンPと支持部36とにより水平に支持されており、搬送
ア−ム30a(図2参照)はウエハWを載せた状態で、
段差部30内に収まるように下降し、ウエハWをウエハ
保持板31上へ載置した後抜き出される。
Next, the operation of the above embodiment will be described. First, the wafer holder 3 is positioned in the transfer chamber 51 as shown by a chain line, the wafer W to be processed is loaded from the loading / unloading port 52 and placed on the wafer holding plate 31. At this time, the wafer holding plate 31 is horizontally supported by a pair of push-up pins P and a supporting portion 36, as shown in FIG. 4A, and the transfer arm 30a (see FIG. 2) is the wafer W. With the
The wafer W is lowered so as to be accommodated in the step portion 30, the wafer W is placed on the wafer holding plate 31, and then taken out.

【0026】一方加熱源24よりの輻射熱が均熱体21
を通じて反応容器2内に入射し、所定温度の均熱領域が
形成されると共に、処理ガス供給管25から処理ガス例
えばO2 ガス及びHClガスの混合ガスが反応容器2内
に供給される。このときシャッタS1、S2、及びS
3、S4は閉じられており、反応管2からの輻射熱がシ
ャッタS1、S2で遮られている。
On the other hand, the radiant heat from the heating source 24 is applied to the heat equalizer 21.
The reaction gas enters the reaction vessel 2 through the above, and a soaking region of a predetermined temperature is formed, and a processing gas, for example, a mixed gas of O 2 gas and HCl gas is supplied into the reaction vessel 2 from the processing gas supply pipe 25. At this time, the shutters S1, S2, and S
3 and S4 are closed, and the radiant heat from the reaction tube 2 is blocked by the shutters S1 and S2.

【0027】次いでシャッタ(S1、S2)を開いた
後、ウエハ保持具3を回転軸44、回転テ−ブル41を
介して回転させながら、昇降軸42により上昇させる
が、このとき突上げ部材35より1組の突上げピンPが
周方向に順次上下方向に移動し、これによってウエハ保
持板31は水平面から所定角度例えば0〜30度傾くと
共に、その上端の位置が時間と共に周方向に移動しなが
ら上昇していく。
Next, after opening the shutters (S1, S2), the wafer holder 3 is raised by the elevating shaft 42 while rotating it through the rotating shaft 44 and the rotating table 41. At this time, the push-up member 35 is used. As a result, a set of push-up pins P sequentially moves in the vertical direction in the circumferential direction, whereby the wafer holding plate 31 is tilted at a predetermined angle, for example, 0 to 30 degrees from the horizontal plane, and the position of its upper end moves in the circumferential direction with time. While rising.

【0028】即ち先ず上述のように1組の突上げピンP
1、P1が共に長さL分上昇してウエハ保持板31を支
持し、次いで一方の突上げピンP1が△L分上昇すると
共に他方の突上げピンP1が△L分下降して、ウエハ保
持板31を水平面から傾けて支持する。この後再び突上
げピンP1が共に元の位置(Lの位置)に戻りウエハ保
持板31を水平に支持すると共に、これら突上げピンP
1と周方向に隣接する1組の突上げピンP2、P2が共
に長さL分上昇してウエハ保持板31を水平に支持し、
一方1組の突上げピンP1、P1は共に下降する。次い
で突上げピンP1と同様に突上げピンP2を移動させて
ウエハ保持板31を水平面から傾けて支持した後、さら
に突上げピンP3、突上げピンP4を順次上下方向に移
動させる。
That is, first, as described above, a set of push-up pins P is provided.
1 and P1 both rise by the length L to support the wafer holding plate 31, and then one push-up pin P1 rises by ΔL and the other push-up pin P1 descends by ΔL to hold the wafer. The plate 31 is supported by tilting it from the horizontal plane. Thereafter, the push-up pins P1 are returned to their original positions (positions L) again to support the wafer holding plate 31 horizontally, and the push-up pins P1 are also returned.
1, a pair of push-up pins P2, P2 adjacent to each other in the circumferential direction rise by the length L to horizontally support the wafer holding plate 31,
On the other hand, the pair of push-up pins P1 and P1 both move down. Then, the push-up pin P2 is moved similarly to the push-up pin P1 to tilt and support the wafer holding plate 31 from the horizontal plane, and then the push-up pin P3 and the push-up pin P4 are sequentially moved in the vertical direction.

【0029】このようにして図4(b),(c)に示す
ように、ウエハ保持板31を突上げピンP1,P2,P
3,P4により順次突き上げることにより、ウエハ保持
板31を、その上端位置が時間と共に移動するように傾
けて支持しながら、図4(d)に示すように反応容器2
内の所定位置まで上昇させる。これによりウエハWが所
定温度例えば1100℃まで昇温する。そしてウエハ保
持具3を所定時間この高さ位置に停止させておくことに
よりウエハWの表面に例えば厚さ50オングストローム
の酸化膜を形成させ、この後ウエハ保持板31を例えば
水平面に対して傾けながら、図4(c),(b),
(a)の順番でウエハ保持具3を下降させる。
In this way, as shown in FIGS. 4B and 4C, the wafer holding plate 31 is pushed up by the push-up pins P1, P2, P.
3 and P4, the wafer holding plate 31 is tilted and supported so that its upper end position moves with time, and the reaction container 2 is moved as shown in FIG.
To a predetermined position inside. As a result, the temperature of the wafer W is raised to a predetermined temperature, for example, 1100 ° C. Then, the wafer holder 3 is stopped at this height position for a predetermined time to form an oxide film having a thickness of, for example, 50 Å on the surface of the wafer W, and then the wafer holding plate 31 is tilted with respect to a horizontal plane, for example. , FIG. 4 (c), (b),
The wafer holder 3 is lowered in the order of (a).

【0030】このようにウエハ保持具3を上昇させる
と、加熱源24から直接にウエハWの被処理面に入射す
る熱線Hは、図5に示すようにウエハWに対して斜めに
入射する。ここで入射角が異なると熱線Hの透過率や反
射率が異なり、熱線Hの吸収率は、熱線Hが垂直に入射
するほど低くなる。この傾向は温度が低くなる程大き
く、例えばウエハWが500℃前後の場合には吸収率が
相当小さい。
When the wafer holder 3 is lifted in this manner, the heat rays H directly incident on the surface to be processed of the wafer W from the heating source 24 are obliquely incident on the wafer W as shown in FIG. Here, if the incident angle is different, the transmittance and the reflectance of the heat ray H are different, and the absorptance of the heat ray H becomes lower as the heat ray H enters vertically. This tendency becomes larger as the temperature becomes lower, and the absorptance is considerably small when the wafer W is around 500 ° C., for example.

【0031】一方ウエハWの被処理面は、加熱源24か
ら直接に入射する熱線Hと、断熱体22で反射されて入
射する熱線H(二次輻射熱)とを受けることになるが、
熱線Hの量としては直接に入射するもののほうが圧倒的
に多く、この熱線HはウエハWの全面にほぼ同じ角度で
入射する。
On the other hand, the surface to be processed of the wafer W receives the heat ray H directly incident from the heating source 24 and the heat ray H (secondary radiant heat) reflected by the heat insulator 22 and incident.
The amount of the heat ray H that is directly incident is overwhelmingly larger, and the heat ray H is incident on the entire surface of the wafer W at substantially the same angle.

【0032】ここでウエハWを移載室51から上昇させ
るときに傾けるようにすれば、加熱源24からの直接の
熱線HはウエハWの被処理面に斜めから入射するので高
い吸収率で吸収される。一方断熱体22で反射して入射
する二次的な熱線は反射の仕方が多様であり、被処理面
の入射位置によって入射角も異なり、吸熱量が異なる。
If the wafer W is tilted when it is lifted from the transfer chamber 51, the heat ray H directly from the heating source 24 is obliquely incident on the surface to be processed of the wafer W and is absorbed at a high absorption rate. To be done. On the other hand, the secondary heat rays reflected and incident on the heat insulating body 22 have various ways of reflection, and the incident angle differs depending on the incident position on the surface to be processed, and the heat absorption amount also differs.

【0033】従って二次的な熱線の影響についてみれ
ば、被処理面の位置によって吸熱量のばらつきがある
が、加熱源24から直接入射する熱線の吸熱量が多いの
で二次的な熱線Hの吸熱量のばらつきの影響が少なく、
ウエハWの各位置での温度上昇が揃ってくる。従って面
内温度が所定温度例えば1100℃に短時間で安定する
ため、酸化膜の成長を左右する熱処理温度付近の温度に
よる熱履歴のばらつきが小さくなるため酸化膜の膜厚の
面内均一性が高くなる。
Therefore, regarding the influence of the secondary heat ray, although the heat absorption amount varies depending on the position of the surface to be processed, the heat ray directly incident from the heating source 24 has a large heat absorption amount, and thus the secondary heat ray H Less affected by variations in heat absorption,
The temperature rise at each position of the wafer W is uniform. Therefore, since the in-plane temperature stabilizes at a predetermined temperature, for example, 1100 ° C. in a short time, the variation in thermal history due to the temperature near the heat treatment temperature that influences the growth of the oxide film is reduced, and thus the in-plane uniformity of the film thickness of the oxide film is reduced. Get higher

【0034】またウエハWをその上端位置が時間と共に
移動するように傾けながら上昇させると、ウエハWの各
位置において加熱源24に近い部分が時間と共に変化し
ていくので、加熱源24から受ける熱線Hの強さのばら
つきが抑えられ、より高い面内均一性で熱処理を行なう
ことができる。
When the wafer W is raised while being inclined so that its upper end position moves with time, the portions near the heating source 24 at each position of the wafer W change with time, so the heat rays received from the heating source 24. The variation in the strength of H is suppressed, and the heat treatment can be performed with higher in-plane uniformity.

【0035】ここで図6(a)は上述実施例のように、
ウエハWを上昇時させたときにおける面内温度の経時変
化を示し、図6(b)は、ウエハWを水平に保持した状
態でウエハ保持具3を上昇させた場合についての面内温
度の経時変化である。この図のように、面内温度が11
00℃に安定するまでの時間T1、T2は、ウエハを傾
けた場合の方が水平の場合よりも短く(T1<T2)、
また面内温度が1100℃に収束したときの面内温度差
も小さい。
Here, in FIG. 6A, as in the above-mentioned embodiment,
FIG. 6B shows a change with time in the in-plane temperature when the wafer W is raised, and FIG. 6B shows a change in the in-plane temperature with respect to the case where the wafer holder 3 is raised with the wafer W held horizontally. It's a change. As shown in this figure, the in-plane temperature is 11
Times T1 and T2 until stabilization at 00 ° C. are shorter when the wafer is tilted than when it is horizontal (T1 <T2),
The in-plane temperature difference when the in-plane temperature converges to 1100 ° C is also small.

【0036】さらにウエハ保持具3の昇降時にウエハ保
持板31を水平面から傾けて支持するようにすると、ウ
エハWの受ける抵抗(風圧)の程度が小さくなり、これ
によりウエハWの上昇時にはウエハWの裏面側が、また
下降時にはウエハWの表面側が負圧となるが、その負圧
の程度が小さく、このためウエハWの表面側と裏面側の
圧力の差も小さくなる。従って反応容器2内の気流の乱
れが抑えられ、この結果処理ガスはほぼ均一にウエハW
の表面へ流れるので酸化膜の成長の乱れが少くなり、高
い面内均一性を得ることができるという利点も合わせて
得られる。
Further, when the wafer holding plate 31 is tilted and supported from the horizontal plane when the wafer holder 3 is moved up and down, the resistance (wind pressure) received by the wafer W is reduced, and when the wafer W is raised, the resistance of the wafer W is increased. Negative pressure is generated on the back surface side and on the front surface side of the wafer W when descending, but the degree of the negative pressure is small, and therefore the difference in pressure between the front surface side and the back surface side of the wafer W is also small. Therefore, the turbulence of the air flow in the reaction vessel 2 is suppressed, and as a result, the processing gas is almost uniformly distributed on the wafer
Since it flows to the surface of the oxide film, the disorder of the growth of the oxide film is reduced, and it is possible to obtain an advantage that a high in-plane uniformity can be obtained.

【0037】更に本発明を実施するための熱処理装置と
しては、上述の構成に限らず、例えば図8に示すように
ウエハ保持具にシ−ソ−機構6を組み合わせて構成して
もよい。即ちこのシ−ソ−機構6は軸部61により可動
板62がシーソー運動する第1のシ−ソ−部63と、軸
部64により可動板65がシーソー運動する第2のシ−
ソ−部64とを互いに直交するように上下に重ねて構成
されている。
Further, the heat treatment apparatus for carrying out the present invention is not limited to the above-mentioned constitution, but may be constituted by combining the wafer holder with the seesaw mechanism 6 as shown in FIG. 8, for example. That is, in the see-saw mechanism 6, a first see-saw portion 63 in which the movable plate 62 moves in a seesaw motion by the shaft portion 61, and a second sheath in which the movable plate 65 moves in a seesaw motion by the shaft portion 64.
The saw portion 64 is vertically stacked so as to be orthogonal to each other.

【0038】このような構成では、ウエハ保持具3が上
昇する際、ウエハ保持板31は先ず第1のシ−ソ−部6
3によりその一部が持ち上げられて、水平面から傾いた
状態で支持され、次いでこのシ−ソ−部63のシ−ソ−
運動に合わせて先に持ち上げられた位置から周方向に1
80度移動した位置が持上げられる。この後第2のシ−
ソ−部66により、前記位置から周方向に90度移動し
た位置が持ち上げられ、さらに当該位置から周方向に1
80度移動した位置が持上げられる。従ってこのような
例においてもウエハWは水平面から傾いた状態で支持さ
れながら熱処理領域まで上昇し、ウエハWの上端位置が
時間と共に90度ずつ変化する。
In such a structure, when the wafer holder 3 is raised, the wafer holding plate 31 first moves the first seesaw portion 6 first.
A part of it is lifted by 3 and supported in a state of being inclined from the horizontal plane, and then the seesaw portion of this seesaw portion 63.
1 in the circumferential direction from the previously lifted position according to the movement
The position moved by 80 degrees is lifted. After this, the second sea
The saw portion 66 lifts the position that is moved 90 degrees in the circumferential direction from the position, and further moves 1 position in the circumferential direction from the position.
The position moved by 80 degrees is lifted. Therefore, also in such an example, the wafer W rises to the heat treatment region while being supported in a state of being inclined from the horizontal plane, and the upper end position of the wafer W changes by 90 degrees with time.

【0039】以上において本発明では、ウエハが熱処理
領域まで到達した後その位置に停止して熱処理が行われ
ている間においても、ウエハを傾けるようにしてもよ
い。また本発明は、上述実施例のような枚葉式の熱処理
装置に限らず、複数枚のウエハを保持具に棚状に配列し
て保持し、これらウエハを一括して熱処理するバッチ式
の熱処理装置に適用してもよい。なお本発明は、酸化膜
の形成に限らず他の熱処理例えば不純物イオンの拡散処
理やCVD処理、あるいはアニール処理などの熱処理を
行う場合に適用することができる。
As described above, in the present invention, the wafer may be tilted even while the wafer reaches the heat treatment area and then stops at that position to perform the heat treatment. Further, the present invention is not limited to the single-wafer type heat treatment apparatus as in the above-described embodiment, but a batch type heat treatment in which a plurality of wafers are arranged in a holder and arranged in a shelf shape, and these wafers are collectively heat-treated. It may be applied to the device. The present invention can be applied not only to the formation of an oxide film, but also to other heat treatments such as impurity ion diffusion treatment, CVD treatment, and annealing treatment.

【0040】[0040]

【発明の効果】以上のように本発明によれば、被処理基
板を傾けた状態で熱処理領域まで上昇させるようにした
ので、被処理基板を所定温度に速やかに安定させて、面
内均一性の高い熱処理を行うことができる。
As described above, according to the present invention, since the substrate to be processed is raised to the heat treatment region in a tilted state, the substrate to be processed can be quickly stabilized at a predetermined temperature to achieve in-plane uniformity. High heat treatment can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の一実施例に用いられる熱処理装置
を示す断面図である。
FIG. 1 is a sectional view showing a heat treatment apparatus used in an embodiment of the method of the present invention.

【図2】本発明方法の一実施例に用いられるウエハ保持
板、支持部を示す斜視図である。
FIG. 2 is a perspective view showing a wafer holding plate and a supporting portion used in one embodiment of the method of the present invention.

【図3】本発明方法の一実施例に用いられる支持部を示
す断面図である。
FIG. 3 is a cross-sectional view showing a supporting portion used in an embodiment of the method of the present invention.

【図4】本発明方法の作用を示す説明図である。FIG. 4 is an explanatory view showing the operation of the method of the present invention.

【図5】本発明方法の一実施例の工程を示す説明図であ
る。
FIG. 5 is an explanatory view showing steps of one embodiment of the method of the present invention.

【図6】ウエハの面内温度の経時変化を示す特性図であ
る。
FIG. 6 is a characteristic diagram showing a change with time of in-plane temperature of a wafer.

【図7】本発明方法の他の実施例に用いられるシ−ソ−
機構を示す斜視図である。
FIG. 7 is a seesaw used in another embodiment of the method of the present invention.
It is a perspective view showing a mechanism.

【図8】従来の熱処理装置を示す概略断面図である。FIG. 8 is a schematic sectional view showing a conventional heat treatment apparatus.

【符号の説明】[Explanation of symbols]

2 反応容器 20 加熱炉 22 断熱体 24 加熱源 3 ウエハ保持具 31 ウエハ保持板 32 支持部 33 支持棒 34 ボールジョイント部 P(P1〜P4)突上げピン 41 回転テ−ブル H 熱線 W ウエハ 2 Reaction Container 20 Heating Furnace 22 Heat Insulator 24 Heat Source 3 Wafer Holding Tool 31 Wafer Holding Plate 32 Supporting Part 33 Supporting Rod 34 Ball Joint Part P (P1 to P4) Push-up Pin 41 Rotating Table H Heat Wire W Wafer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被処理基板をほぼ水平な状態で保持具に
保持させて反応容器内に下方側から搬入し、反応容器の
外に設けられた加熱源からの輻射熱により熱処理する熱
処理方法において、 前記被処理基板を傾けた状態で反応容器内の熱処理領域
まで上昇させることを特徴とする熱処理方法。
1. A heat treatment method in which a substrate to be processed is held by a holder in a substantially horizontal state, carried into a reaction vessel from below, and heat-treated by radiant heat from a heating source provided outside the reaction vessel, A heat treatment method comprising raising the substrate to be treated to a heat treatment region in a reaction container in a tilted state.
【請求項2】 被処理基板をほぼ水平な状態で保持具に
保持させて反応容器内に下方側から搬入し、反応容器の
外に設けられた加熱源からの輻射熱により熱処理する熱
処理方法において、 前記被処理基板の中で上端位置が時間と共に周方向に移
動するように、前記被処理基板を傾けた状態で反応容器
内の熱処理領域まで上昇させることを特徴とする熱処理
方法。
2. A heat treatment method in which a substrate to be processed is held by a holder in a substantially horizontal state, carried into a reaction vessel from below, and heat-treated by radiant heat from a heating source provided outside the reaction vessel, A heat treatment method, wherein the substrate to be processed is raised to a heat treatment region in a reaction container while being tilted so that the upper end position of the substrate to be processed moves in the circumferential direction with time.
【請求項3】 被処理基板をほぼ水平な状態で保持具に
保持させて反応容器内に下方側から搬入し、反応容器の
外に設けられた加熱源からの輻射熱により熱処理する熱
処理装置において、 被処理基板を傾けるための機構を前記保持具に組み合わ
せて設けたことを特徴とする熱処理装置。
3. A heat treatment apparatus in which a substrate to be processed is held by a holder in a substantially horizontal state, loaded into a reaction vessel from below, and heat-treated by radiant heat from a heating source provided outside the reaction vessel, A heat treatment apparatus comprising a mechanism for inclining a substrate to be processed in combination with the holder.
JP14565895A 1995-05-19 1995-05-19 Method and apparatus for heat treatment Pending JPH08316222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14565895A JPH08316222A (en) 1995-05-19 1995-05-19 Method and apparatus for heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14565895A JPH08316222A (en) 1995-05-19 1995-05-19 Method and apparatus for heat treatment

Publications (1)

Publication Number Publication Date
JPH08316222A true JPH08316222A (en) 1996-11-29

Family

ID=15390106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14565895A Pending JPH08316222A (en) 1995-05-19 1995-05-19 Method and apparatus for heat treatment

Country Status (1)

Country Link
JP (1) JPH08316222A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348397B2 (en) 1998-01-30 2002-02-19 Nec Corporation Method for diffusion of an impurity into a semiconductor wafer with high in-plane diffusion uniformity
JP2002530847A (en) * 1998-11-13 2002-09-17 マットソン テクノロジイ インコーポレイテッド Heat treatment apparatus, system and method for treating semiconductor substrate
KR100420204B1 (en) * 2001-06-29 2004-03-04 주식회사 하이닉스반도체 Method of etching using a plasma etch equipment
JP2008251627A (en) * 2007-03-29 2008-10-16 Tokyo Electron Ltd Processor, processing method, and storage medium
WO2016174860A1 (en) * 2015-04-27 2016-11-03 株式会社Sumco Susceptor, epitaxial growth device, and epitaxial wafer
TWI658169B (en) * 2017-07-26 2019-05-01 上海新昇半導體科技有限公司 Gas phase deposition apparatus and method of gas phase deposition
US11274371B2 (en) 2015-04-27 2022-03-15 Sumco Corporation Susceptor and epitaxial growth device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348397B2 (en) 1998-01-30 2002-02-19 Nec Corporation Method for diffusion of an impurity into a semiconductor wafer with high in-plane diffusion uniformity
US6506256B2 (en) 1998-01-30 2003-01-14 Nec Corporation Method and apparatus for diffusion of an impurity into a semiconductor wafer with high in-plane diffusion uniformity
JP2002530847A (en) * 1998-11-13 2002-09-17 マットソン テクノロジイ インコーポレイテッド Heat treatment apparatus, system and method for treating semiconductor substrate
KR100420204B1 (en) * 2001-06-29 2004-03-04 주식회사 하이닉스반도체 Method of etching using a plasma etch equipment
JP2008251627A (en) * 2007-03-29 2008-10-16 Tokyo Electron Ltd Processor, processing method, and storage medium
WO2016174860A1 (en) * 2015-04-27 2016-11-03 株式会社Sumco Susceptor, epitaxial growth device, and epitaxial wafer
JPWO2016174860A1 (en) * 2015-04-27 2017-09-07 株式会社Sumco Susceptor, epitaxial growth apparatus, and epitaxial wafer
KR20170122277A (en) * 2015-04-27 2017-11-03 가부시키가이샤 사무코 Susceptor, epitaxial growth device, and epitaxial wafer
TWI615917B (en) * 2015-04-27 2018-02-21 Sumco股份有限公司 Susceptor and epitaxial growth device
US11274371B2 (en) 2015-04-27 2022-03-15 Sumco Corporation Susceptor and epitaxial growth device
TWI658169B (en) * 2017-07-26 2019-05-01 上海新昇半導體科技有限公司 Gas phase deposition apparatus and method of gas phase deposition

Similar Documents

Publication Publication Date Title
JP3218164B2 (en) Support boat for object to be processed, heat treatment apparatus and heat treatment method
JP3125199B2 (en) Vertical heat treatment equipment
US5820367A (en) Boat for heat treatment
JP3504784B2 (en) Heat treatment method
KR101005953B1 (en) Insulating film forming method
JPH0897167A (en) Processing system and heat-treatment system
US5407485A (en) Apparatus for producing semiconductor device and method for producing semiconductor device
US6259061B1 (en) Vertical-heat-treatment apparatus with movable lid and compensation heater movable therewith
JPH07122513A (en) Vertical heat treatment device
JPH06302523A (en) Vertical thermal treatment equipment
JP3242281B2 (en) Heat treatment equipment
JPH07283160A (en) Heat treatment device
US5500388A (en) Heat treatment process for wafers
JP2006229040A (en) Method and apparatus for heat treatment
JPH08316222A (en) Method and apparatus for heat treatment
JPH08335575A (en) Heat treatment equipment and its method
JP3421465B2 (en) Heat treatment apparatus and method
JP3507548B2 (en) Heat treatment method
JP3084232B2 (en) Vertical heat treatment equipment
JPH09246261A (en) Heat treatment equipment and its temperature control method
JP3510329B2 (en) Heat treatment equipment
JPH07326593A (en) Method and device for heat treatment
JP3240187B2 (en) Heat treatment method and vertical heat treatment apparatus used therefor
JP4549484B2 (en) Single wafer heat treatment system
JPH08222556A (en) Heat treatment equipment