JPH09246261A - Heat treatment equipment and its temperature control method - Google Patents

Heat treatment equipment and its temperature control method

Info

Publication number
JPH09246261A
JPH09246261A JP8095496A JP8095496A JPH09246261A JP H09246261 A JPH09246261 A JP H09246261A JP 8095496 A JP8095496 A JP 8095496A JP 8095496 A JP8095496 A JP 8095496A JP H09246261 A JPH09246261 A JP H09246261A
Authority
JP
Japan
Prior art keywords
temperature
heat treatment
contact type
measuring means
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8095496A
Other languages
Japanese (ja)
Inventor
Wataru Okase
亘 大加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP8095496A priority Critical patent/JPH09246261A/en
Publication of JPH09246261A publication Critical patent/JPH09246261A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat treatment equipment capable of accurately measuring the temperature of a body to be treated and accurately controlling this temperature. SOLUTION: This equipment has a stacking base 10 for stacking a plurality of bodies W to be treated at predetermined intervals housed in a cylindrical treatment container 8, the bodies W to be treated are heated by heating means 28 arranged on the outer periphery of the treatment container. In this case, non-contact type temperature measuring means 54 are provided so as to face the surface of the bodies W to be treated on the upper side or the lower side of the treatment container 8, contact type temperature measuring means 34 is provided for measuring the temperature in the heating means 28, and temperature control means 44 for controlling the quantity of heat of the heating means 28 is provided based on the measured values of the non-contact type and contact type temperature measuring means 54. By doing this, the temperature of the bodies W to be treated can be measured accurately, so that highly accurate temperature control can be performed based on the measured values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体ウエ
ハの被処理体に熱処理を施すための熱処理装置とその温
度制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment apparatus for performing heat treatment on an object to be processed such as a semiconductor wafer and a temperature control method thereof.

【0002】[0002]

【従来の技術】一般に、半導体デバイスの高密度化及び
高集積化に伴って、デバイスの各層の薄膜化が推進され
る一方、半導体ウエハのサイズについても6インチから
8インチへと大口径化が進められており、これに伴って
各ウエハ処理工程において処理温度や処理ガス等の各パ
ラメータのより精度の高い制御が求められている。例え
ば、成膜処理に例をとれば、キャパシタ絶縁膜の酸化膜
やゲート酸化膜の膜質や膜厚等の均一化及び特性の向上
を図るためには成膜中の温度制御を精度良く行なわなけ
ればならない。
2. Description of the Related Art In general, as the density and integration of semiconductor devices have increased, thinning of each layer of the device has been promoted, while the size of semiconductor wafers has also increased from 6 inches to 8 inches. With this progress, more precise control of each parameter such as processing temperature and processing gas is required in each wafer processing step. For example, in the case of film formation processing, temperature control during film formation must be performed accurately in order to make the film quality and film thickness of the oxide film of the capacitor insulating film and the gate oxide film uniform and to improve the characteristics. I have to.

【0003】ここで、量産性が優れていることから一般
的に用いられているバッチ式の従来の縦型熱処理装置に
ついて図8を参照して説明する。この縦型処理装置2
は、例えば高純度の石英により形成された円筒体状の内
筒4とその外周に所定の間隙を隔てて同心状に配置され
た外筒6とよりなる処理容器8を有しており、この中に
半導体ウエハWを所定のピッチで保持する例えば石英製
の載置台としてのウエハボート10が収容されている。
このウエハボート10は、保温筒台12上に設けた石英
製の保温筒14の上部に載置され、この保温筒台12
は、回転軸16を介してボートエレベータ18に回転可
能に支持されている。また、この回転軸16は、内筒4
の下端のマニホールド部20の開口部を気密に閉じるキ
ャップ部22を、保持具24を介して貫通しており、こ
の保持具24は、気密性を保持しつつ回転軸16の回転
を許容する例えば磁性流体シールを内部に保有する。上
記ボートエレベータ18は、昇降機構26に支持されて
おり、キャップ部22やウエハボート10全体を昇降さ
せて、必要に応じてボート10を処理容器8内に挿脱し
得るようになっている。
A conventional batch type vertical heat treatment apparatus which is generally used because of its excellent mass productivity will be described with reference to FIG. This vertical processing device 2
Has a processing container 8 including, for example, a cylindrical inner cylinder 4 made of high-purity quartz and an outer cylinder 6 concentrically arranged on the outer circumference of the cylindrical inner cylinder 4 with a predetermined gap. A wafer boat 10 as a mounting table made of, for example, quartz for holding the semiconductor wafers W at a predetermined pitch is accommodated therein.
The wafer boat 10 is placed on a heat insulating cylinder 14 made of quartz provided on the heat insulating cylinder base 12.
Are rotatably supported by a boat elevator 18 via a rotating shaft 16. In addition, the rotating shaft 16 is provided in the inner cylinder 4
The cap portion 22 that hermetically closes the opening of the manifold portion 20 at the lower end of the is penetrated through a holder 24. The holder 24 allows the rotation shaft 16 to rotate while maintaining airtightness, for example. It has a magnetic fluid seal inside. The boat elevator 18 is supported by an elevating mechanism 26 so that the cap portion 22 and the entire wafer boat 10 can be raised and lowered, and the boat 10 can be inserted into and removed from the processing container 8 as needed.

【0004】一方、処理容器8の外側には、この全体を
覆うようにウエハWを加熱するための加熱ヒータ28が
設けられており、この加熱ヒータ28は断熱材30を介
してステンレススチールのような外側シェル32により
覆われている。この加熱ヒータ28は、ボート10の高
さ方向において熱的条件が異なることからウエハ温度を
精度良く制御するために上下方向において複数に、図示
例においては5つのゾーンに区分されており、ゾーン毎
に加熱ヒータ28の近傍に主熱電対34を設けて個々に
その温度制御を行ない得るようになっている。このよう
な構成において、処理ガスは、マニホールド部20に設
けたガス導入ノズル35から内部に導入された処理ガス
は内筒4内を上昇しつつウエハWと接触して、例えばこ
れに成膜を施し、処理済みのガスは内筒4と外筒6との
間隙を降下して排気口36から系外へ排出されることに
なる。
On the other hand, a heating heater 28 for heating the wafer W is provided outside the processing container 8 so as to cover the entire processing container 8. The heating heater 28 is made of stainless steel through a heat insulating material 30. It is covered by a transparent outer shell 32. Since the heaters 28 have different thermal conditions in the height direction of the boat 10, they are divided into a plurality of zones in the vertical direction in order to accurately control the wafer temperature, and in the illustrated example, they are divided into five zones. A main thermocouple 34 is provided in the vicinity of the heater 28 so that the temperature can be controlled individually. In such a configuration, the processing gas is introduced from the gas introduction nozzle 35 provided in the manifold portion 20 into the inner cylinder 4, and the processing gas comes into contact with the wafer W to form a film thereon, for example. The applied and treated gas descends through the gap between the inner cylinder 4 and the outer cylinder 6 and is discharged from the system through the exhaust port 36.

【0005】[0005]

【発明が解決しようとする課題】ところで、前述のよう
にウエハに対して熱処理を行なう時には、均一な膜質及
び特性の良好な成膜等を行なうためには、各ウエハ面内
の温度の均一性が高いことは勿論のこと、上下方向の異
なる位置に設置されているウエハ間、すなわち、ウエハ
面間の温度も高い均一性が要求される。ウエハボート1
0の上下の熱的条件は、例えばウエハボートの上部及び
下部は放熱量が多いのに対して中央部は放熱量が少ない
と言うように場所により異なり、また、ウエハWと主熱
電対34との間も一定の距離があり、そのため各熱電対
34も当然のこととしてウエハの正確な温度を反映して
いるものではない。
By the way, when heat-treating a wafer as described above, in order to form a film having a uniform film quality and good characteristics, the uniformity of the temperature within each wafer surface should be considered. In addition to the high temperature, it is also required that the temperature between wafers installed at different positions in the vertical direction, that is, the temperature between the wafer surfaces be high and uniform. Wafer boat 1
The thermal conditions above and below 0 differ depending on the location, for example, the amount of heat radiation is high in the upper and lower portions of the wafer boat, but the amount of heat radiation is low in the central portion, and the wafer W and the main thermocouple 34 are different from each other. There is also a constant distance between them, so that each thermocouple 34 naturally does not reflect the exact temperature of the wafer.

【0006】そこで、この欠点を補うために一般的に
は、次のような操作が行なわれる。すなわち実際にウエ
ハWに対して熱処理を施す前に、内筒4内に各ゾーンに
対応させた位置に副熱電対38を配置した検査用熱電対
管40を挿入し、この状態でプロセス時と同様な温度
に、例えばダミーウエハを加熱して成膜処理を行ない、
その時の、各ゾーン毎の副熱電対38の検出値と主熱電
対34の検出値を測定し、両者の相関をとっておく。そ
して、実際のウエハの処理は上記検査用の熱電対管40
を取り除いた状態で行ない、この時、上記した相関関係
を参照しながら主熱電対34の測定値が所定の値を維持
するようにヒータへの供給電力を制御する。
Therefore, in order to compensate for this drawback, the following operation is generally performed. That is, before actually performing the heat treatment on the wafer W, the inspection thermocouple tube 40 in which the sub-thermocouple 38 is arranged at the position corresponding to each zone is inserted in the inner cylinder 4, and in this state For example, the dummy wafer is heated to a similar temperature to perform the film forming process,
At that time, the detection value of the sub-thermocouple 38 and the detection value of the main thermocouple 34 for each zone are measured, and the correlation between them is obtained. The actual wafer processing is performed by the thermocouple tube 40 for inspection.
Is removed, and at this time, the electric power supplied to the heater is controlled so that the measured value of the main thermocouple 34 maintains a predetermined value while referring to the above-mentioned correlation.

【0007】しかしながら、上記した副熱電対38を用
いた相関関係の取得操作は、例えば処理容器や検査用熱
電対管等に付着した成膜を除去するクリーニング処理を
行なう毎に実施されるが、処理容器や熱電対管に付着し
た成膜のクリーニングが十分でなかったり、或いは過度
に行ない過ぎて容器や熱電対管40の構成材料である石
英を削ってしまう場合もある。また、熱電対管40にマ
イクロクラック等が生ずる場合もあり、この結果、全体
として容器や熱電対管40の光透過率が僅かではあるが
変動し、熱電対の相関が狂ってしまい、ウエハ温度を高
い精度で正確に制御し得ない場合が生じた。
However, the above-described operation of obtaining the correlation using the sub-thermocouple 38 is carried out every time the cleaning process for removing the film adhered to the processing container, the thermocouple tube for inspection, etc. is performed. In some cases, the film deposited on the processing container or the thermocouple tube may not be sufficiently cleaned or may be excessively cleaned to scrape off quartz, which is a constituent material of the container and the thermocouple tube 40. In addition, micro cracks or the like may occur in the thermocouple tube 40, and as a result, the light transmittance of the container or the thermocouple tube 40 fluctuates slightly, and the correlation of the thermocouple is deviated. In some cases, it could not be controlled accurately with high accuracy.

【0008】また、相関関係取得時には検査用熱電対管
40をウエハ近傍に設けてウエハ温度を計測することと
しているが、この場合でも、熱電対をウエハWに直接接
触させている訳ではないので、副熱電対38の検出値が
実際のウエハ温度を反映しているのではなく、両者間に
は僅かなずれが生ずることは避けることができない。本
発明は、以上のような問題点に着目し、これを有効に解
決すべく創案されたものである。本発明の目的は、被処
理体の温度を正確に測定してこの温度を良く制御するこ
とができる熱処理装置とその温度制御方法を提供するこ
とにある。
Further, when the correlation is obtained, the inspection thermocouple tube 40 is provided near the wafer to measure the wafer temperature, but even in this case, the thermocouple is not in direct contact with the wafer W. The detected value of the sub-thermocouple 38 does not reflect the actual wafer temperature, and it is inevitable that a slight deviation occurs between the two. The present invention has been devised in view of the above problems and effectively solving them. An object of the present invention is to provide a heat treatment apparatus and a temperature control method therefor capable of accurately measuring the temperature of an object to be processed and controlling the temperature well.

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、上記
問題点を解決するために、処理容器内に載置した被処理
体を加熱手段により加熱して所定の熱処理を施すように
した熱処理装置において、前記被処理体の温度を測定す
るために非接触型の温度測定手段を設けるように構成し
たものである。請求項2の発明は、複数の被処理体を所
定のピッチで載置する載置台を円筒体状の処理容器内に
収容し、この処理容器の外周に配置した加熱手段により
前記被処理体を加熱して所定の熱処理を施す熱処理装置
において、前記処理容器の上方或いは下方に前記被処理
体の表面を臨むように非接触型の温度測定手段を設け、
前記加熱手段にこの温度を測定するための接触型の温度
測定手段を設け、前記非接触型と接触型の温度測定手段
の測定値に基づいて前記加熱手段の発熱量を制御する温
度制御手段とを備えるように構成したものである。
In order to solve the above problems, the invention of claim 1 heats an object to be processed placed in a processing container by a heating means to perform a predetermined heat treatment. In the heat treatment apparatus, a non-contact type temperature measuring means is provided to measure the temperature of the object to be treated. According to a second aspect of the present invention, a mounting table on which a plurality of objects to be processed are placed at a predetermined pitch is housed in a cylindrical processing container, and the objects to be processed are heated by heating means arranged on the outer periphery of the processing container. In a heat treatment apparatus for performing a predetermined heat treatment by heating, a non-contact type temperature measuring means is provided above or below the treatment container so as to face the surface of the object to be treated,
The heating means is provided with a contact type temperature measuring means for measuring this temperature, and a temperature control means for controlling the heat generation amount of the heating means based on the measurement values of the non-contact type and contact type temperature measuring means. It is configured to include.

【0010】請求項1の発明によれば、被処理体の温度
を、非接触型の温度測定手段により検出するようにして
いるので、被処理体の温度を精度良く検出することがで
き、これに基づいて加熱手段の発熱量を制御することに
より被処理体の温度を正確に制御することが可能とな
る。
According to the first aspect of the present invention, the temperature of the object to be processed is detected by the non-contact type temperature measuring means. Therefore, the temperature of the object to be processed can be accurately detected. By controlling the amount of heat generated by the heating means based on the above, the temperature of the object to be processed can be controlled accurately.

【0011】請求項2の発明によれば、この場合には処
理容器としてバッチ式の縦型の処理容器が用いられてお
り、非接触型の温度測定手段で被処理体の表面温度を精
度良く検出し、また、接触型の温度測定手段により加熱
手段の温度を測定する。そして、両温度測定手段の測定
値に基づいて温度制御手段は加熱手段の発熱量を制御
し、被処理体の温度を正確に制御する。上記非接触型の
温度測定手段としては、例えば被処理体からの放射光を
検出してその温度を求める放射温度計を用い、また、接
触型の温度測定手段としては、例えば熱電対を用いるこ
とができる。
According to the second aspect of the present invention, in this case, a batch type vertical processing container is used as the processing container, and the surface temperature of the object to be processed is accurately measured by the non-contact temperature measuring means. The temperature of the heating means is detected by the contact-type temperature measuring means. Then, the temperature control means controls the amount of heat generated by the heating means based on the measured values of both temperature measurement means, and accurately controls the temperature of the object to be processed. As the non-contact type temperature measuring means, for example, a radiation thermometer that detects radiation from the object to be processed and obtains its temperature is used, and as the contact type temperature measuring means, for example, a thermocouple is used. You can

【0012】また、被処理体の熱処理時には、載置台の
上部及び下部に一般的にはモニタ用のダミー被処理体を
載置する場合があるが、この場合にはこのダミー被処理
体に光通過孔を形成して被処理体から非接触型の温度測
定手段に通じる光路を作り、被処理体からの温度を計測
できるようにしておく。更に、この非接触型の温度測定
手段には焦点調整用光学系を設けておき、載置台の高さ
方向へ異なる位置に保持された任意の被処理体に対して
その焦点を合わせ得るようにしておく。そして、例えば
ダミー被処理体を用いて載置台の高さ方向に異なる位置
でその温度を非接触型の温度測定手段により測定すると
同時に接触型の温度測定手段でもその時の加熱手段の温
度を測定して両者の相関関係をとっておく。そして、被
処理体を実際に処理する時には、上記相関関係を参照し
つつ加熱手段の発熱量制御する。これにより、被処理体
の温度を精度良く制御することが可能となる。
In addition, during heat treatment of the object to be processed, a dummy object to be processed may be generally placed on the upper and lower portions of the mounting table. In this case, the dummy object to be processed is exposed to light. A through hole is formed to form an optical path from the object to be processed to the non-contact type temperature measuring means so that the temperature from the object to be processed can be measured. Further, this non-contact type temperature measuring means is provided with a focus adjusting optical system so that the focus can be adjusted to an arbitrary object to be processed held at different positions in the height direction of the mounting table. Keep it. Then, for example, the temperature of the heating means at that time is measured by the non-contact type temperature measuring means at the same time by measuring the temperature at different positions in the height direction of the mounting table using the dummy object to be processed. The correlation between the two is taken. Then, when the object to be processed is actually processed, the heating value of the heating means is controlled while referring to the above correlation. This makes it possible to control the temperature of the object to be processed with high accuracy.

【0013】[0013]

【発明の実施の形態】以下に、本発明に係る熱処理装置
とその温度制御方法の一実施例を添付図面に基づいて詳
述する。図1は本発明に係る熱処理装置の一例を示す構
成図、図2は本発明の主要部である非接触型の温度測定
手段の取り付け状態を示す拡大断面図、図3は本発明の
熱処理装置の温度制御系を示すブロック図である。図8
に示す装置と同一部分については同一符号を付す。尚、
本実施例では熱処理装置としてCVD(Chemica
l Vapor Deposition)により膜付け
を行なう成膜処理装置を例にとって説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a heat treatment apparatus and a temperature control method therefor according to the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a block diagram showing an example of a heat treatment apparatus according to the present invention, FIG. 2 is an enlarged sectional view showing an attached state of a non-contact type temperature measuring means which is a main part of the present invention, and FIG. 3 is a heat treatment apparatus of the present invention. 3 is a block diagram showing the temperature control system of FIG. FIG.
The same parts as those of the device shown in FIG. still,
In this embodiment, a CVD (Chemica) is used as a heat treatment apparatus.
An example of a film formation processing apparatus for forming a film by means of 1 Vapor Deposition will be described.

【0014】図示するように縦型の熱処理装置である成
膜処理装置2は、例えば高純度の石英により形成された
円筒体状の内筒4とその外周に所定の間隔を隔てて同心
状に配置された同じく高純度石英製の外筒6とよりなる
処理容器8を有しており、上記外筒6の下端はベース4
2に支持されると共にこの処理容器8の下端開口部に
は、例えばステンレススチール製のマニホールド部20
が接続される。この処理容器8内に、被処理体としての
半導体ウエハWを所定のピッチで多数枚、例えば120
枚程度保持する載置台としてのウエハボート10が収容
される。このウエハボート10も例えば耐熱性の高純度
石英により形成される。上記処理容器8の外側には、こ
の全体を覆うようにウエハWを加熱するための加熱手段
としての抵抗加熱ヒータ28が設けられており、この抵
抗加熱ヒータ28は断熱材30を介して例えばステンレ
ススチール製の外側シェル32に覆われている。
As shown in the figure, the film forming apparatus 2 which is a vertical heat treatment apparatus is concentrically arranged with a predetermined interval between the inner cylinder 4 and the outer circumference of the cylindrical inner cylinder 4 made of high-purity quartz, for example. It has a processing container 8 composed of an outer cylinder 6 which is also made of high-purity quartz and is arranged at the lower end of the base 4.
2, and the manifold portion 20 made of, for example, stainless steel is provided at the lower end opening of the processing container 8.
Is connected. In this processing container 8, a large number of semiconductor wafers W to be processed at a predetermined pitch, for example, 120
A wafer boat 10 as a mounting table for holding about one wafer is accommodated. This wafer boat 10 is also made of, for example, heat-resistant high-purity quartz. A resistance heater 28 as a heating means for heating the wafer W is provided on the outside of the processing container 8 so as to cover the entire processing container 8. The resistance heater 28 is made of, for example, stainless steel via a heat insulating material 30. It is covered by an outer shell 32 made of steel.

【0015】この抵抗加熱ヒータ28は、ボード10の
高さ方向において熱的条件が異なることから上下方向に
おいて複数に、図示例では5つのゾーンに区分されてお
り、各ゾーン毎に独立して温度制御を行ない得るように
なっている。各ゾーンの抵抗加熱ヒータ28の近傍には
接触型の温度測定手段、例えば主熱電対34が設けらて
れおり、この測定値は、例えばマイクロコンピュータ等
よりなる温度制御手段44へ入力されており、個々にそ
の温度を制御し得るようになっている。
Since the resistance heater 28 has different thermal conditions in the height direction of the board 10, the resistance heater 28 is divided into a plurality of zones in the vertical direction, ie, five zones in the illustrated example, and each zone independently has a temperature. You have control over it. A contact type temperature measuring means, for example, a main thermocouple 34 is provided in the vicinity of the resistance heater 28 in each zone, and the measured value is inputted to the temperature control means 44 composed of, for example, a microcomputer. , The temperature can be controlled individually.

【0016】一方、上記ウエハボート10は、保温筒台
12上に設けた石英製の保温筒14の上部に載置され、
この保温筒台12は回転軸16を介してボートエレベー
タ18に支持されている。また、マニホールド部20の
下端開口部は、例えばOリング等のシール部材46を介
して開閉可能になされたキャップ部22により気密に閉
じられている。図2にも示すように上記回転軸16は、
上記キャップ部22を貫通してボートエレベータ18に
固定された保持具24内に挿通されて回転軸受48及び
磁性流体シール50を介して気密性を保持しつつ回転可
能に支持される。また、キャップ部22は、止め具52
により上記保持具24に固定されており、両者は一体的
に結合されている。図示されていないが、この回転軸1
6は、これに間接的に掛け渡される駆動ベルトによりウ
エハ処理時に回転される。
On the other hand, the wafer boat 10 is mounted on the quartz heat insulating cylinder 14 provided on the heat insulating cylinder base 12,
The heat insulation cylinder base 12 is supported by a boat elevator 18 via a rotary shaft 16. Further, the lower end opening of the manifold portion 20 is hermetically closed by a cap portion 22 that can be opened and closed via a seal member 46 such as an O-ring. As shown in FIG. 2, the rotary shaft 16 is
The cap portion 22 is penetrated and inserted into a holder 24 fixed to the boat elevator 18, and is rotatably supported while maintaining airtightness via a rotary bearing 48 and a magnetic fluid seal 50. In addition, the cap portion 22 has a stopper 52.
Are fixed to the holder 24 by means of, and the both are integrally connected. Although not shown, this rotary shaft 1
6 is rotated at the time of wafer processing by a drive belt indirectly wound around this.

【0017】そして、このボートエレベータ18は、例
えばリニアボールネジ等よりなる昇降機構26(図1参
照)に支持されており、キャップ部22やウエハボート
10の全体を一体的に昇降させて、必要に応じてボート
10を処理容器8内に挿脱し得るようになっている。そ
して、このように構成された装置例のボートエレベータ
18に、本発明の特徴とする非接触型の温度測定手段、
例えば放射温度計54が設けられる。この放射温度計5
4は、被測定体、ここでは被処理体から放出される放射
光を検出して非接触でその温度を測定する計測器であ
り、そのために上記保温筒14、保温筒台12及び回転
軸16を上下に貫通させて形成した光路56が設けられ
ており、ウエハWからの放射光をこの光路56内を通過
させ得るようになっている。
The boat elevator 18 is supported by an elevating mechanism 26 (see FIG. 1) composed of, for example, a linear ball screw, and integrally elevates and lowers the cap portion 22 and the wafer boat 10 as necessary. Accordingly, the boat 10 can be inserted into and removed from the processing container 8. Then, in the boat elevator 18 of the device example configured as described above, the non-contact type temperature measuring means, which is a feature of the present invention,
For example, a radiation thermometer 54 is provided. This radiation thermometer 5
Reference numeral 4 denotes a measuring instrument that detects radiation emitted from the object to be measured, here the object to be processed, and measures its temperature in a non-contact manner. Therefore, the heat retaining cylinder 14, the heat retaining cylinder base 12 and the rotating shaft 16 are provided for this purpose. An optical path 56 is formed by penetrating vertically through the optical path 56, so that the emitted light from the wafer W can pass through the optical path 56.

【0018】上記放射温度計54は、上記光路56の延
長線上に位置するところに取付部材58及びボルト60
を介して取り付け固定されており、その光路56側に
は、その焦点位置を自由に調整することができる焦点調
整用光学系62が設けられており、ボート10上の任意
の高さ位置のウエハWに対して合焦し得るようになって
いる。上記放射温度計54に対向する上記回転軸16の
下端はその径が拡大されて段部状に開口されており、こ
の部分にOリング等よりなるシール部材64を介して例
えば石英製の光透過窓66が、リング状の押さえリング
68及びボルト70により取り付け固定されている。
尚、光透過窓66の取り付け構造はこれに限定されず、
容器内部側の気密性を保持しつつ放射温度計54に対し
てウエハからの投射光を直接投入し得る構造ならばどの
ような構造でもよい。
The radiation thermometer 54 has a mounting member 58 and a bolt 60 at a position located on an extension of the optical path 56.
A focus adjusting optical system 62 capable of freely adjusting the focus position is provided on the optical path 56 side thereof, and the wafer is located at an arbitrary height position on the boat 10. It is possible to focus on W. The lower end of the rotating shaft 16 facing the radiation thermometer 54 has an enlarged diameter and is opened in a stepped shape, and a light transmission member made of, for example, quartz is transmitted through a sealing member 64 made of an O-ring or the like to this portion. The window 66 is attached and fixed by a ring-shaped pressing ring 68 and a bolt 70.
The mounting structure of the light transmitting window 66 is not limited to this.
Any structure may be used as long as the projection light from the wafer can be directly input to the radiation thermometer 54 while maintaining the airtightness inside the container.

【0019】この放射温度計54にて得られた測定値
は、図3に示すように前記温度制御手段44へ伝送さ
れ、この測定値や上記各主熱電対34からの測定値等に
基づいて上記温度制御手段44はヒータ駆動部72を制
御して、ウエハの温度コントロールを行なう。尚、図3
中において、記憶部76は、後述するテーブル等を記憶
するメモリである。そして、マニホールド部20には、
処理容器8内へ処理ガス等を導入するガス導入ノズル3
5が設けられ、処理容器8の外筒6の下部側壁には図示
しない真空排気系に接続される排気口36が設けられて
いる。
The measured value obtained by the radiation thermometer 54 is transmitted to the temperature control means 44 as shown in FIG. 3, and based on the measured value and the measured values from the main thermocouples 34, etc. The temperature control means 44 controls the heater driving section 72 to control the temperature of the wafer. FIG.
In the inside, the storage unit 76 is a memory that stores a table and the like described later. And, in the manifold part 20,
Gas introduction nozzle 3 for introducing processing gas into the processing container 8
5 is provided, and an exhaust port 36 connected to a vacuum exhaust system (not shown) is provided on the lower side wall of the outer cylinder 6 of the processing container 8.

【0020】次に、以上のように構成された装置を用い
て行なわれる本発明の温度制御方法について説明する。
まず、成膜処理の流れについて説明する。未処理のウエ
ハは、ウエハボート10を処理容器8からアンロードし
た状態でウエハボート10に多数枚保持され、この時、
一般的にはウエハボート10の上部及び下部には製品ウ
エハの特性等を評価する目的で、或いは製品ウエハ同士
の熱的条件をより均一化させる目的でモニタ用のダミー
被処理体、すなわちダミーウエハが適当枚数ずつ保持さ
れる。製品ウエハ及びダミーウエハのボートへの移載が
完了したならば、昇降機構26によりボートエレベータ
18を上昇させてウエハボート10を予め予熱されてい
る処理容器8内へロードし、マニホールド部20の下端
開口部をキャップ部22で密閉して処理容器8内を気密
状態にする。
Next, the temperature control method of the present invention, which is carried out by using the apparatus configured as described above, will be described.
First, the flow of the film forming process will be described. A large number of unprocessed wafers are held in the wafer boat 10 with the wafer boat 10 being unloaded from the processing container 8. At this time,
In general, a dummy processing object for monitoring, that is, a dummy wafer is provided on the upper and lower parts of the wafer boat 10 for the purpose of evaluating the characteristics of product wafers or the like or for making the thermal conditions between product wafers more uniform. Holds an appropriate number of sheets. When the transfer of the product wafers and the dummy wafers to the boat is completed, the boat elevator 18 is raised by the elevating mechanism 26 to load the wafer boat 10 into the preheated processing container 8, and the lower end opening of the manifold unit 20 is opened. The portion is sealed with the cap portion 22 to make the inside of the processing container 8 airtight.

【0021】そして、処理容器8内を所定のプロセス圧
力、例えば0.1〜1.0Torrまで真空引きしつつ
各抵抗加熱ヒータ28への給電力を増大させて処理容器
8内の温度をプロセス温度、例えば550℃〜900℃
程度まで加熱昇温し、これと同時にガス導入ノズル35
から処理容器8内に処理ガス、例えばシランと酸素を供
給し、熱処理、例えば成膜処理を行なう。ここで、成膜
処理中はヒータゾーンに対応した各主熱電対34からは
ゾーン毎にヒータ28の温度が測定されて測定値が温度
制御手段44へ入力される。また、ボート下部に保持し
た製品ウエハからその下方へ向かう放射光は、保温筒1
4や回転軸16等を貫通させて設けた光路56を通って
放射温度計54へ入射し、そのウエハ温度が測定され、
その測定値は同じく温度制御手段44へ入力される。そ
して、温度制御手段44は、これらの各測定値や記憶部
72に記憶されるテーブル(後述される)を参照してヒ
ータ駆動部72を駆動し、各ヒータの発熱量を制御す
る。
Then, while the processing container 8 is evacuated to a predetermined process pressure, for example, 0.1 to 1.0 Torr, the electric power supplied to each resistance heater 28 is increased to adjust the temperature inside the processing container 8 to the process temperature. , For example 550 ° C to 900 ° C
The temperature is raised to a certain degree, and at the same time, the gas introduction nozzle 35
Process gas, for example, silane and oxygen is supplied into the process container 8 from above, and heat treatment, for example, film forming process is performed. Here, during the film forming process, the temperature of the heater 28 is measured for each zone from each main thermocouple 34 corresponding to the heater zone, and the measured value is input to the temperature control means 44. In addition, the radiant light traveling downward from the product wafer held at the bottom of the boat
4, the rotary shaft 16 and the like are passed through and an incident light beam is incident on the radiation thermometer 54 through an optical path 56, and the wafer temperature is measured.
The measured value is also input to the temperature control means 44. Then, the temperature control unit 44 drives the heater driving unit 72 with reference to these measured values and a table (described later) stored in the storage unit 72, and controls the heat generation amount of each heater.

【0022】図4は製品ウエハ処理時におけるウエハW
と放射温度計54と主熱電対34との位置関係を模式的
に示しており、ここでは製品ウエハWの下部及び上部に
それぞれ2枚のダミーウエハDWを位置させた場合を示
している。この場合、下部の各ダミーウエハDWの中心
部には、最下端の製品ウエハW1の放射光を遮断するこ
となく放射温度計54に届かせるために光通過孔74が
形成されており、ダミーウエハDWの温度ではなく、最
下端の製品ウエハW1の温度を精度良く検出し得るよう
になっている。ダミーウエハDWの数は、処理条件等に
よって適宜変えられるが、その場合には最下端の製品ウ
エハW1の位置がボート高さ方向に移動するため、焦点
調整光学系62によりその焦点位置を移動させればよ
い。尚、ダミーウエハDWとしては、シリコンの他に、
SiCやSiO2等で形成することができる。
FIG. 4 shows a wafer W at the time of processing a product wafer.
2 schematically shows the positional relationship between the radiation thermometer 54 and the main thermocouple 34, and here shows a case where two dummy wafers DW are respectively positioned above and below the product wafer W. In this case, a light passage hole 74 is formed in the center of each lower dummy wafer DW so as to reach the radiation thermometer 54 without blocking the emitted light of the lowermost product wafer W1. Not the temperature but the temperature of the lowermost product wafer W1 can be accurately detected. The number of dummy wafers DW can be appropriately changed depending on the processing conditions and the like, but in that case, the position of the product wafer W1 at the lowermost end moves in the boat height direction, and therefore the focus position is moved by the focus adjustment optical system 62. Good. As the dummy wafer DW, in addition to silicon,
It can be formed of SiC or SiO 2 .

【0023】製品ウエハの熱処理は、上述のように行な
われるのであるが、本発明においては、上記したような
製品ウエハの処理に先立って、ダミーウエハを用いて主
熱電対34と放射温度計44の測定値の相関関係をテー
ブル化しておき、製品ウエハWの実際の処理時にはこの
テーブルを参照して温度制御を行なう。まず、図5に示
すようにすべてダミーウエハDWを用いて ボート高さ
方向における各ゾーン毎の主熱電対34と放射温度計5
4の測定値をテーブル化する。この時、放射温度計54
の測定値が、例えばプロセス温度になった時の主熱電対
の温度を図6(A)に示すようにテーブル化しておく。
テーブル作成時の処理条件は、熱的条件を実際の製品ウ
エハのプロセス時と同等に設定するのが好ましく、従っ
て、ボートにはダミーウエハDWが満載されており、ま
た、測定すべきゾーンよりも下方に位置するダミーウエ
ハDWには全て光通過孔74を設け、測定対象ダミーウ
エハDWからの放射光を放射温度計54に届かせるよう
になっている。この時、焦点調整用光学系62を調整し
て測定対象のダミーウエハDWに合焦させているのは勿
論である。
The heat treatment of the product wafer is performed as described above. However, in the present invention, prior to the above-described processing of the product wafer, a dummy wafer is used for the main thermocouple 34 and the radiation thermometer 44. The correlation of the measured values is made into a table, and the temperature is controlled by referring to this table when the product wafer W is actually processed. First, as shown in FIG. 5, all the dummy wafers DW are used and the main thermocouple 34 and the radiation thermometer 5 for each zone in the boat height direction are used.
The measured values of 4 are tabulated. At this time, the radiation thermometer 54
The temperature of the main thermocouple when the measured value of, for example, reaches the process temperature is tabulated as shown in FIG. 6 (A).
It is preferable that the processing conditions at the time of creating the table be the same as the thermal conditions at the time of processing the actual product wafer. Therefore, the boat is fully loaded with the dummy wafers DW, and the temperature is lower than the zone to be measured. All the dummy wafers DW located at are provided with light passage holes 74 so that the radiation light from the measurement target dummy wafer DW can reach the radiation thermometer 54. At this time, it goes without saying that the focus adjustment optical system 62 is adjusted to focus on the dummy wafer DW to be measured.

【0024】図5(A)〜図5(E)は、それぞれゾー
ン1〜ゾーン5のダミーウエハ温度の測定状態を示す。
図6(A)に示すようにここでは放射温度計の測定温度
を800℃に設定している。ここで放射温度計の測定温
度に対して各主熱電対の測定温度が高い理由は、ヒータ
熱がウエハに届くまでに熱損失が生ずるからであり、ま
た、上下端のゾーン、例えばゾーン1、5の主熱電対の
温度が中心部側のゾーン温度と比較して高い理由は、ボ
ートの上下端は中心側と比較して放熱量が多いためにそ
れを補償するために発熱量が多くなるからである。この
ようなテーブルは、放射温度計の測定値温度を種々変更
して多数のテーブルを予め設けておくのがよい。尚、こ
こで示す測定温度値は、一般的な温度傾向を示すもので
あり、実際の測定値とは異なるのは勿論である。
FIGS. 5 (A) to 5 (E) show the measurement states of the dummy wafer temperature in zone 1 to zone 5, respectively.
As shown in FIG. 6A, the measurement temperature of the radiation thermometer is set to 800 ° C. here. The reason why the measurement temperature of each main thermocouple is higher than the measurement temperature of the radiation thermometer is that heat loss occurs before the heater heat reaches the wafer, and the upper and lower zones, for example, zone 1, The reason why the temperature of the main thermocouple of No. 5 is higher than that of the zone temperature on the central side is that the upper and lower ends of the boat have a large amount of heat radiation compared to the central side, and the amount of heat generated is large to compensate for that. Because. For such a table, it is preferable to provide a large number of tables in advance by changing the temperature measured by the radiation thermometer. The measured temperature value shown here indicates a general temperature tendency, and it is of course different from the actual measured value.

【0025】次に、以上のようにしてテーブルの作成が
完了したならば、前述したような実際の製品ウエハの成
膜処理に入り、このような成膜処理は例えば次のクリー
ニング処理まで繰り返し行われる。図6(B)はその時
の温度プロフィールの一例を示すテーブルである。ここ
では、プロセス温度を800℃に設定した時の各主熱電
対34の目標温度を示している。すなわち、例えば処理
容器8のクリーニング直後に図6(A)に示すようなテ
ーブルをとることができたとしても、その後の繰り返し
処理により処理容器内壁等には熱効率低減の原因となる
不要な膜が付着するので、図6(B)に示すような温度
設定としなければならない。放射温度計54ではその光
路56の途中に放射光を遮る障害物は何も存在しないの
で処理回数に関係なく、常に最下端の製品ウエハWの温
度を精度良く検出できる。尚、光透過窓66には、成膜
は付着しないので製品ウエハの温度は正確に測定される
ことになり、問題は生じない。また、製品ウエハのプロ
セス時には放射温度計は最下端の製品ウエハ温度しか測
定できないことに注意されたい。最下端の製品ウエハ温
度を800℃に維持するには、ゾーン1の主熱電対に着
目すると、テーブル作成時と比較して熱損失が大きくな
っているので、20℃だけ高い850℃に設定しなけれ
ばならないことになる。
Next, when the creation of the table is completed as described above, the actual product wafer film forming process as described above is started, and such a film forming process is repeatedly performed until the next cleaning process, for example. Be seen. FIG. 6B is a table showing an example of the temperature profile at that time. Here, the target temperature of each main thermocouple 34 when the process temperature is set to 800 ° C. is shown. That is, even if the table as shown in FIG. 6A can be taken immediately after cleaning the processing container 8, for example, an unnecessary film that causes a reduction in thermal efficiency is formed on the inner wall of the processing container due to the subsequent repeated processing. Since it adheres, it is necessary to set the temperature as shown in FIG. 6 (B). In the radiation thermometer 54, since there is no obstacle that blocks the radiated light in the middle of the optical path 56, the temperature of the lowermost product wafer W can always be detected accurately regardless of the number of times of processing. Since no film is deposited on the light transmitting window 66, the temperature of the product wafer can be accurately measured and no problem occurs. Also note that the radiation thermometer can only measure the bottommost product wafer temperature during product wafer processing. In order to maintain the temperature of the product wafer at the lowest end at 800 ° C, focusing on the main thermocouple in zone 1, the heat loss is larger than when creating the table, so set it to 850 ° C, which is 20 ° C higher. It will have to be done.

【0026】そこで、他のゾーン2〜5における主熱電
対についてもテーブル作成時の温度よりもそれぞれ+2
0℃だけ多くなるようにヒータ温度を制御する。これに
より、全ての製品ウエハの温度をプロセス温度である8
00℃に略均一に設定維持することが可能となる。図7
は、ゾーン1における主熱電対と放射温度計の測定値の
関係を示すグラフであり、図7(A)はテーブル作成時
の両測定値の変化を示し、図7(B)は一定回数の成膜
プロセスを行なった時の両測定値の変化を示す。ここで
は、理解を容易にするために、他のゾーン2〜5におけ
る主熱電対の設定温度を一律に+20℃増加させるよう
にしたが、これに限定されず、実際には各ゾーンの熱的
条件や経験側を加味してその上昇幅をゾーン毎に変更さ
せることになるのは勿論である。また、ここでは図6
(A)に示すテーブル作成時には、各ゾーン毎にダミー
ウエハDWの温度を測定してより精度の高いテーブルを
作成したが、最下端のゾーン1のみのダミーウエハDW
の温度を測定し、他のゾーンに関しては図8に示した従
来の検査用熱電対管を用いてゾーン間の温度の相関関係
を決定するようにしてもよい。
Therefore, the main thermocouples in the other zones 2 to 5 are each +2 more than the temperature at the time of making the table.
The heater temperature is controlled so as to increase by 0 ° C. As a result, the temperature of all product wafers is set to the process temperature of 8
It becomes possible to set and maintain the temperature at 00 ° C. substantially uniformly. Figure 7
Is a graph showing the relationship between the measured values of the main thermocouple and the radiation thermometer in zone 1, FIG. 7 (A) shows the change in both measured values when the table is made, and FIG. The changes in both measured values during the film forming process are shown. Here, in order to facilitate understanding, the set temperature of the main thermocouples in the other zones 2 to 5 is uniformly increased by + 20 ° C. However, the setting temperature is not limited to this, and actually the thermal temperature of each zone is increased. It goes without saying that the range of increase will be changed for each zone, taking into consideration conditions and experience. In addition, here, in FIG.
At the time of creating the table shown in (A), the temperature of the dummy wafer DW was measured for each zone to create a table with higher accuracy.
The temperature may be measured, and for other zones, the temperature correlation between zones may be determined using the conventional thermocouple tube for inspection shown in FIG.

【0027】更には、放射温度計54を熱から保護する
ために、ここに冷却ジャケット等の冷却手段を併設する
ようにしてもよい。また、ここでは放射温度計54を処
理容器8の下方に設けるようにしたが、これに替えて処
理容器8の外筒6の上端から石英筒製の光路管を上方へ
延ばすなどしてこれに放射温度計54を設けるようにし
てもよい。また、本発明は、上記した縦型の成膜処理装
置に限定されず、他の熱処理装置、例えば酸化拡散装置
等にも適用できるのみならず、枚葉式の熱処理装置にも
適用し得るのは勿論である。
Furthermore, in order to protect the radiation thermometer 54 from heat, a cooling means such as a cooling jacket may be provided here. Further, here, the radiation thermometer 54 is provided below the processing container 8, but instead of this, the optical path tube made of a quartz tube is extended upward from the upper end of the outer cylinder 6 of the processing container 8. A radiation thermometer 54 may be provided. Further, the present invention is not limited to the above vertical type film forming processing apparatus, and can be applied not only to other heat treatment apparatuses such as an oxidation diffusion apparatus, but also to a single wafer type heat treatment apparatus. Of course.

【0028】[0028]

【発明の効果】以上説明したように、本発明の熱処理装
置とその温度計制御方法によれば、次のように優れた作
用効果を発揮することができる。請求項1に規定する発
明によれば、非接触型の温度測定手段を用いて被処理体
の温度を測定するようにしたもので、この温度を精度良
く測定することができる。請求項2に規定する発明によ
れば、非接触型の温度測定手段を用いて被処理体の温度
を測定するようにしたので、被処理体の温度を常に精度
良く求めることができる。従って、この測定値に基づい
て複数の被処理体の温度を制御することにより、複数の
被処理体間に亘って温度を略均一にでき、面内のみなら
ず面間温度の均一性を大幅に向上させることができる。
被処理体の温度をプロセスの回数に関係なく常に精度良
く検出することができることから、多数回のプロセスに
亘って被処理体への熱処理の均一性を向上させることが
できる。また、焦点調整用光学系を用いることにより、
高さ方向における任意の位置の被処理体に合焦させてこ
の正確な温度を測定することができる。請求項7に規定
する発明によれば、接触型の温度測定手段と非接触型の
温度測定手段の測定値の相関関係を予めとっておき、こ
の相関関係と前記各測定手段の測定値に基づいて実際の
被処理体の熱処理を行なうようにしたので、縦方向に配
列された各被処理体を略同一温度に維持することがで
き、被処理体の面内及び面間温度の均一性を大幅に向上
させることができる。
As described above, according to the heat treatment apparatus and the thermometer control method of the present invention, the following excellent operational effects can be exhibited. According to the invention defined in claim 1, the temperature of the object to be processed is measured by using the non-contact temperature measuring means, and this temperature can be measured with high accuracy. According to the invention defined in claim 2, since the temperature of the object to be processed is measured by using the non-contact type temperature measuring means, the temperature of the object to be processed can always be obtained with high accuracy. Therefore, by controlling the temperature of a plurality of objects to be processed based on this measured value, the temperature can be made substantially uniform between the plurality of objects to be processed, and the uniformity of not only the in-plane temperature but also the surface-to-surface temperature is significantly increased. Can be improved.
Since the temperature of the object to be processed can always be detected with high accuracy regardless of the number of processes, it is possible to improve the uniformity of the heat treatment on the object to be processed over a number of processes. Also, by using the focus adjustment optical system,
This accurate temperature can be measured by focusing on the object to be processed at an arbitrary position in the height direction. According to the invention defined in claim 7, the correlation between the measurement values of the contact-type temperature measuring means and the non-contact temperature measuring means is set in advance, and the correlation is actually calculated based on this correlation and the measurement values of the respective measuring means. Since the object to be processed is heat-treated, the objects arranged in the vertical direction can be maintained at substantially the same temperature, and the in-plane and inter-surface temperature uniformity of the object can be greatly improved. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る熱処理装置の一例を示す構成図で
ある。
FIG. 1 is a configuration diagram showing an example of a heat treatment apparatus according to the present invention.

【図2】本発明の主要部である非接触型の温度測定手段
の取り付け状態を示す拡大断面図である。
FIG. 2 is an enlarged cross-sectional view showing a mounting state of a non-contact type temperature measuring means which is a main part of the present invention.

【図3】本発明の熱処理装置の温度制御系を示すブロッ
ク図である。
FIG. 3 is a block diagram showing a temperature control system of the heat treatment apparatus of the present invention.

【図4】製品被処理体の処理時における被処理体と放射
温度計と熱電対との位置関係を示す模式図である。
FIG. 4 is a schematic diagram showing a positional relationship among an object to be processed, a radiation thermometer, and a thermocouple during processing of the object to be processed.

【図5】熱電対と放射温度計の測定値の相関関係を調べ
る時の方法を説明するための説明図である。
FIG. 5 is an explanatory diagram for explaining a method for examining a correlation between a thermocouple and a measurement value of a radiation thermometer.

【図6】熱電対と放射温度計の相関関係と被処理体の実
際の処理時の設定温度を示すテーブルである。
FIG. 6 is a table showing a correlation between a thermocouple and a radiation thermometer and a set temperature of an object to be processed during actual processing.

【図7】相関関係の作成時と被処理体の実際の処理時の
温度変化を示すグラフである。
FIG. 7 is a graph showing changes in temperature during the creation of the correlation and the actual processing of the object to be processed.

【図8】従来の縦型の熱処理装置を示す図である。FIG. 8 is a diagram showing a conventional vertical heat treatment apparatus.

【符号の説明】[Explanation of symbols]

2 成膜処理装置(熱処理装置) 4 内筒 6 外筒 8 処理容器 10 ウエハボート(載置台) 14 保温筒 16 回転軸 18 ボートエレベータ 28 抵抗加熱ヒータ(加熱手段) 34 主熱電対(接触型の温度測定手段) 44 温度制御手段 50 磁性流体シール 54 放射温度計(非接触型の温度測定手段) 56 光路 62 焦点調整用光学系 66 光透過窓 74 光通過孔 DW ダミーウエハ(ダミー被処理体) W 半導体ウエハ(被処理体) 2 film forming processing apparatus (heat treatment apparatus) 4 inner cylinder 6 outer cylinder 8 processing container 10 wafer boat (mounting table) 14 heat retaining cylinder 16 rotating shaft 18 boat elevator 28 resistance heater (heating means) 34 main thermocouple (contact type) Temperature measuring means) 44 Temperature control means 50 Magnetic fluid seal 54 Radiation thermometer (non-contact type temperature measuring means) 56 Optical path 62 Focusing optical system 66 Light transmitting window 74 Light passing hole DW Dummy wafer (dummy processed object) W Semiconductor wafer (processing target)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 処理容器内に載置した被処理体を加熱手
段により加熱して所定の熱処理を施すようにした熱処理
装置において、前記被処理体の温度を測定するために非
接触型の温度測定手段を設けるように構成したことを特
徴とする熱処理装置。
1. A heat treatment apparatus in which an object to be processed placed in a processing container is heated by a heating means to perform a predetermined heat treatment, and a non-contact type temperature for measuring the temperature of the object to be processed. A heat treatment apparatus comprising a measuring means.
【請求項2】 複数の被処理体を所定のピッチで載置す
る載置台を円筒体状の処理容器内に収容し、この処理容
器の外周に配置した加熱手段により前記被処理体を加熱
して所定の熱処理を施す熱処理装置において、前記処理
容器の上方或いは下方に前記被処理体の表面を臨むよう
に非接触型の温度測定手段を設け、前記加熱手段にこの
温度を測定するための接触型の温度測定手段を設け、前
記非接触型と接触型の温度測定手段の測定値に基づいて
前記加熱手段の発熱量を制御する温度制御手段とを備え
るように構成したことを特徴とする熱処理装置。
2. A mounting table for mounting a plurality of objects to be processed at a predetermined pitch is housed in a cylindrical processing container, and the objects to be processed are heated by heating means arranged on the outer periphery of the processing container. In a heat treatment apparatus for performing a predetermined heat treatment, a non-contact type temperature measuring means is provided above or below the processing container so as to face the surface of the object to be processed, and the heating means is provided with a contact for measuring the temperature. And a temperature control means for controlling the amount of heat generated by the heating means based on the measurement values of the non-contact type and contact type temperature measuring means. apparatus.
【請求項3】 前記載置台に、被処理体の他にモニタ用
のダミー被処理体を載置する場合には、このダミー被処
理体には、前記被処理体と前記非接触型の温度測定手段
との間の光路を形成するための光通過孔が形成されてい
ることを特徴とする請求項2記載の熱処理装置。
3. When the dummy processing object for monitoring is placed on the mounting table in addition to the processing object, the dummy processing object and the non-contact type temperature are set on the dummy processing object. The heat treatment apparatus according to claim 2, wherein a light passage hole for forming an optical path with the measuring means is formed.
【請求項4】 前記非接触型の温度測定手段は、放射温
度計であり、前記接触型の温度測定手段は熱電対である
ことを特徴とする請求項1乃至3記載の熱処理装置。
4. The heat treatment apparatus according to claim 1, wherein the non-contact type temperature measuring means is a radiation thermometer, and the contact type temperature measuring means is a thermocouple.
【請求項5】 前記放射温度計には、前記被処理体の表
面にその焦点位置を合わせる焦点調整用光学系が設けら
れていることを特徴とする請求項4記載の熱処理装置。
5. The heat treatment apparatus according to claim 4, wherein the radiation thermometer is provided with a focus adjusting optical system for adjusting the focus position on the surface of the object to be processed.
【請求項6】 処理容器内に載置した被処理体を加熱手
段により加熱して所定の熱処理を施す熱処理装置の温度
制御方法において、前記被処理体の温度を非接触型の温
度測定手段により測定し、この測定値に基づいて前記加
熱手段の発熱量を制御するように構成したことを特徴と
する熱処理装置の温度制御方法。
6. A temperature control method of a heat treatment apparatus for heating a target object placed in a processing container by a heating means to perform a predetermined heat treatment, wherein the temperature of the target object is measured by a non-contact type temperature measuring means. A temperature control method for a heat treatment apparatus, which is configured to measure and control the amount of heat generated by the heating means based on the measured value.
【請求項7】 請求項2乃至5に規定する熱処理装置の
温度制御方法において、前記載置台にダミー用被処理体
を載置して高さ方向に異なる位置の温度を前記非接触型
の温度測定手段により測定すると共にその時の前記接触
型の温度測定手段の温度を予め測定して両測定値の相関
関係をとる工程と、その後、前記載置台に被処理体を載
置して、この被処理体の温度を前記非接触型の温度測定
手段により測定しつつこの測定結果と、前記接触型の温
度測定手段の測定結果と、前記相関関係とに基づいて前
記加熱手段の発熱量を制御する工程とを有するように構
成したことを特徴とする熱処理装置の温度制御方法。
7. The temperature control method for a heat treatment apparatus as set forth in claim 2, wherein the dummy object is placed on the placing table and the temperature at different positions in the height direction is set to the non-contact temperature. A step of measuring the temperature of the contact-type temperature measuring means at that time by a measuring means and obtaining a correlation between both measured values, and thereafter placing the object to be processed on the mounting table, While controlling the temperature of the processing object by the non-contact type temperature measuring means, the calorific value of the heating means is controlled based on the measurement result, the measurement result of the contact type temperature measuring means, and the correlation. And a temperature control method for a heat treatment apparatus.
JP8095496A 1996-03-08 1996-03-08 Heat treatment equipment and its temperature control method Pending JPH09246261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8095496A JPH09246261A (en) 1996-03-08 1996-03-08 Heat treatment equipment and its temperature control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8095496A JPH09246261A (en) 1996-03-08 1996-03-08 Heat treatment equipment and its temperature control method

Publications (1)

Publication Number Publication Date
JPH09246261A true JPH09246261A (en) 1997-09-19

Family

ID=13732909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8095496A Pending JPH09246261A (en) 1996-03-08 1996-03-08 Heat treatment equipment and its temperature control method

Country Status (1)

Country Link
JP (1) JPH09246261A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170565A (en) * 2000-09-29 2010-08-05 Hitachi Kokusai Electric Inc Thermal treating apparatus, temperature controlling method, and methods of manufacturing semiconductor device and of obtaining correction value
JP4536214B2 (en) * 2000-06-01 2010-09-01 東京エレクトロン株式会社 Heat treatment apparatus and control method of heat treatment apparatus
KR20170002293A (en) * 2015-06-29 2017-01-06 도쿄엘렉트론가부시키가이샤 Heat treatment apparatus and temperature control method
CN112404713A (en) * 2019-08-23 2021-02-26 大族激光科技产业集团股份有限公司 OLED laser welding system and temperature control method
US11390948B2 (en) * 2015-08-21 2022-07-19 Tokyo Electron Limited Film forming apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536214B2 (en) * 2000-06-01 2010-09-01 東京エレクトロン株式会社 Heat treatment apparatus and control method of heat treatment apparatus
JP2010170565A (en) * 2000-09-29 2010-08-05 Hitachi Kokusai Electric Inc Thermal treating apparatus, temperature controlling method, and methods of manufacturing semiconductor device and of obtaining correction value
KR20170002293A (en) * 2015-06-29 2017-01-06 도쿄엘렉트론가부시키가이샤 Heat treatment apparatus and temperature control method
JP2017017104A (en) * 2015-06-29 2017-01-19 東京エレクトロン株式会社 Thermal treatment apparatus and temperature control method
US10533896B2 (en) 2015-06-29 2020-01-14 Tokyo Electron Limited Heat treatment apparatus and temperature control method
US11656126B2 (en) 2015-06-29 2023-05-23 Tokyo Electron Limited Heat treatment apparatus and temperature control method
US11390948B2 (en) * 2015-08-21 2022-07-19 Tokyo Electron Limited Film forming apparatus
CN112404713A (en) * 2019-08-23 2021-02-26 大族激光科技产业集团股份有限公司 OLED laser welding system and temperature control method

Similar Documents

Publication Publication Date Title
US5001327A (en) Apparatus and method for performing heat treatment on semiconductor wafers
US5252807A (en) Heated plate rapid thermal processor
US5060354A (en) Heated plate rapid thermal processor
KR102072525B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus and program
US5903711A (en) Heat treatment apparatus and heat treatment method
TW201140699A (en) Substrate processing device and substrate processing method thereof
JP2003282578A (en) Heat treatment device and manufacturing method for semiconductor
US20040060513A1 (en) Processing method and processing apparatus
JP3551609B2 (en) Heat treatment equipment
JPH09246261A (en) Heat treatment equipment and its temperature control method
JP2002261036A (en) Heat treatment device
TW202036199A (en) Temperature-controllable process chambers, electronic device processing systems, and manufacturing methods
KR20170002293A (en) Heat treatment apparatus and temperature control method
JP5021347B2 (en) Heat treatment equipment
KR102294007B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
US7141765B2 (en) Heat treating device
JP3421465B2 (en) Heat treatment apparatus and method
JP2002299257A (en) Heat treatment method and vertical heat treatment device
JP2001345321A (en) Oxidation treatment method and device
JPS6224630A (en) Formation of thermal oxidation film and device therefor
KR100239405B1 (en) Semiconductor fabricating system
JPH08316222A (en) Method and apparatus for heat treatment
JPH05299428A (en) Method and apparatus for heat-treatment of semiconductor wafer
US20220384206A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
JPH1025577A (en) Formed film treating device