JPH08315831A - Manganese dry battery - Google Patents

Manganese dry battery

Info

Publication number
JPH08315831A
JPH08315831A JP12224895A JP12224895A JPH08315831A JP H08315831 A JPH08315831 A JP H08315831A JP 12224895 A JP12224895 A JP 12224895A JP 12224895 A JP12224895 A JP 12224895A JP H08315831 A JPH08315831 A JP H08315831A
Authority
JP
Japan
Prior art keywords
silicon
dry battery
manganese dry
soluble polymer
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12224895A
Other languages
Japanese (ja)
Inventor
Hajime Murakami
村上  元
Ryohei Ashihara
良平 芦原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12224895A priority Critical patent/JPH08315831A/en
Publication of JPH08315831A publication Critical patent/JPH08315831A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PURPOSE: To provide a manganese dry battery to which no mercury is added with no sharp drop in discharge performance even in low rate discharge by using a neutral electrolyte containing a silicon-containing, water-soluble polymer in the manganese dry battery in which non-amalgamated zinc is used in a negative electrode active material. CONSTITUTION: In a manganese dry battery using non-amalgamated zinc in a negative electrode active material, a neutral electrolyte containing a silicon- containing, water-soluble polymer in an electrolyte whose main component is zinc chloride or ammonium chloride is used. The silicon-containing, water-soluble polymer has a chemical formula represented by the formula, and the content in the electrolyte is 0.0005-0.5wt%, preferably 0.005-0.01wt%. Low rate discharge performance equal to that of a manganese dry battery using amalgamated zinc is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水銀無添加の亜鉛を負
極活物質に用いたマンガン乾電池に関する。
TECHNICAL FIELD The present invention relates to a manganese dry battery using mercury-free zinc as a negative electrode active material.

【0002】[0002]

【従来の技術】従来からマンガン乾電池は、負極活物質
として使用している亜鉛の自己消耗防止のため、その表
面を汞化して使用してきた。しかしながら、環境保護が
叫ばれている昨今、この汞化のための水銀を全く使用し
ないマンガン乾電池が開発され、現在国内で生産販売さ
れている円筒型マンガン乾電池は、ほとんどが水銀無添
加である。
2. Description of the Related Art Conventionally, a manganese dry battery has been used with its surface being roughened to prevent self-depletion of zinc used as a negative electrode active material. However, in recent years, when environmental protection has been sought, manganese dry batteries that do not use mercury for this purpose have been developed, and most of the cylindrical manganese dry batteries that are currently produced and sold in Japan have no added mercury.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、無汞化
の負極缶を負極材料に使用してマンガン乾電池を構成す
ると、ある負荷抵抗で急激に放電性能が低下することが
ある。
However, when a manganese dry battery is constructed by using an unblended negative electrode can as a negative electrode material, the discharge performance may be drastically lowered by a certain load resistance.

【0004】この現象は、軽負荷放電時に発生しやす
く、この現象が起こった電池の内部を調査した結果、放
電反応生成物によって内部短絡を起こしていることがわ
かった。
This phenomenon is likely to occur during light load discharge, and as a result of investigating the inside of the battery in which this phenomenon occurred, it was found that an internal short circuit was caused by the discharge reaction product.

【0005】これは、特定の電流で放電された時、亜鉛
表面のある限られた部分で選択的に亜鉛の溶出が起こ
り、その部分で亜鉛化合物の針状結晶が生成し、該結晶
がセパレータを貫通して正極合剤と接触し、その結果短
絡現象を引き起こすのであろうと推測される。
This is because when discharged at a specific current, zinc is selectively eluted at a limited part of the zinc surface, and needle-like crystals of a zinc compound are generated at that part, and the crystals are separated by a separator. It is presumed that it may penetrate through and come into contact with the positive electrode mixture, resulting in a short circuit phenomenon.

【0006】従って、この対策としてセパレータの材質
を厚くしたり、セパレータ材料であるクラフト紙の叩解
度を上げて密度を増やす、あるいはセパレータの糊層を
厚くする等のことが容易に考えられるが、このような方
法で対処した場合には、極間距離が離れて電池の内部抵
抗が上昇し、放電性能を大幅に低下させてしまう。
Therefore, as a countermeasure against this, it is easily conceivable to thicken the material of the separator, increase the beating degree of the kraft paper as the separator material to increase the density, or thicken the glue layer of the separator. If such a method is taken, the distance between the electrodes is increased and the internal resistance of the battery is increased, which significantly reduces the discharge performance.

【0007】本発明は、上記問題を解決するためになさ
れたもので、軽負荷放電においても急速な放電性能の低
下を起こさない水銀無添加マンガン乾電池を提供するこ
とを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a mercury-free manganese dry battery that does not cause a rapid decrease in discharge performance even under light load discharge.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に、本発明の水銀無添加の亜鉛を用いたマンガン乾電池
は、負極活物質に、無汞化の亜鉛を用い、塩化亜鉛もし
くは塩化アンモニウムを主成分とする電解液中に、珪素
含有水溶性ポリマーを含む中性電解液を用いたことを特
徴とする。
In order to achieve this object, a manganese dry battery using mercury-free zinc according to the present invention uses zinc chloride or ammonium chloride by using undenatured zinc as a negative electrode active material. A neutral electrolytic solution containing a silicon-containing water-soluble polymer is used in the electrolytic solution containing as a main component.

【0009】この場合、電解液中の珪素含有水溶性ポリ
マーの含有量は、珪素の含有量として、0.0005〜
0.5重量%の範囲が好ましく、0.005〜0.01
重量%の範囲がより好ましい。
In this case, the content of the silicon-containing water-soluble polymer in the electrolytic solution is 0.0005 to 105 as the content of silicon.
The range of 0.5% by weight is preferable, and 0.005 to 0.01
A range of weight% is more preferable.

【0010】また、本発明の水銀無添加乾電池は、負極
活物質に、無汞化の亜鉛を用い、表面に糊層を有するセ
パレータの前記糊層の糊料中に珪素含有水溶性ポリマー
を含むセパレータを用いたことを特徴とする。
In addition, the mercury-free dry battery of the present invention uses unhydrogenated zinc as the negative electrode active material, and contains a silicon-containing water-soluble polymer in the sizing material of the sizing layer of the separator having a sizing layer on the surface. It is characterized by using a separator.

【0011】この場合、 糊料中の珪素含有水溶性ポリ
マーの含有量は、珪素の含有量として、0.0005〜
0.5重量%の範囲が好ましく、0.005〜0.01
重量%の範囲がより好ましい。
In this case, the content of the silicon-containing water-soluble polymer in the paste is 0.0005-0.5 as the content of silicon.
The range of 0.5% by weight is preferable, and 0.005 to 0.01
A range of weight% is more preferable.

【0012】尚、前記珪素含有水溶性ポリマーは、親水
性ポリマー中に珪素が化学結合したものであれば、特に
限定されるものではなく、例えば下記化学式I
The silicon-containing water-soluble polymer is not particularly limited as long as silicon is chemically bonded to the hydrophilic polymer. For example, the following chemical formula I

【0013】[0013]

【化2】 Embedded image

【0014】で示されるものが好ましい。Those represented by are preferred.

【0015】[0015]

【作用】このような珪素含有水溶性ポリマーの電池中へ
の添加によって、特定の負荷抵抗での放電性能の低下は
見られなくなった。この事実に対する作用は明らかでな
いが、珪素含有水溶性ポリマーの存在によって、正極活
物質と負極活物質との短絡が抑制されたと考えられる。
これは、放電により生成する亜鉛化合物の針状結晶が抑
えられ、セパレータ部分の貫通による内部短絡現象が無
くなるからであろうと推定される。
By adding such a silicon-containing water-soluble polymer to the battery, the deterioration of discharge performance at a specific load resistance is no longer observed. Although the action against this fact is not clear, it is considered that the presence of the silicon-containing water-soluble polymer suppressed the short circuit between the positive electrode active material and the negative electrode active material.
It is presumed that this is because the needle-like crystals of the zinc compound generated by the discharge are suppressed and the internal short-circuit phenomenon due to the penetration of the separator portion is eliminated.

【0016】[0016]

【実施例】以下、本発明の一実施例について説明する。EXAMPLES An example of the present invention will be described below.

【0017】塩化亜鉛30重量%、塩化アンモニウム
1.5重量%、水68.5重量%からなる中性電解液中
に、この電解液量に対して(表1)に示す珪素含有量で
前記化学式Iで示されるポリビニル系珪素含有ポリマー
(株式会社クラレ製 Rー2105)を添加し、攪拌、
調整した。この電解液を使用し、図1に示すR20サイ
ズの水銀無添加のマンガン乾電池を構成した。
In a neutral electrolytic solution consisting of 30% by weight of zinc chloride, 1.5% by weight of ammonium chloride and 68.5% by weight of water, the silicon content shown in (Table 1) was used for the amount of this electrolytic solution. The polyvinyl silicon-containing polymer represented by the chemical formula I (R-2105 manufactured by Kuraray Co., Ltd.) was added and stirred,
It was adjusted. Using this electrolyte, a R20 size mercury-free manganese dry battery shown in FIG. 1 was constructed.

【0018】また、糊化剤として架橋エーテル化コーン
スターチ45重量%、糊結着剤としてポリビニルアルコ
ール2重量%、水53重量%からなるマンガン乾電池用
セパレータ糊液中に、糊料に対してやはり(表1)に示
す量で前記のポリビニル系珪素含有ポリマー(株式会社
クラレ製 R−2105)を添加し、攪拌、調整した。
この糊料をセパレータ用クラフト紙の片面に塗布後、乾
燥して糊層を形成した乾電池用セパレータを使用して図
1に示すR20サイズの水銀無添加のマンガン乾電池を
構成した。
Further, in a manganese battery separator paste liquid comprising 45% by weight of cross-linked etherified corn starch as a gelatinizing agent, 2% by weight of polyvinyl alcohol as a binder and 53% by weight of water, the paste ( The polyvinyl silicon-containing polymer (R-2105 manufactured by Kuraray Co., Ltd.) was added in an amount shown in Table 1), and the mixture was stirred and adjusted.
The R20 size mercury-free manganese dry battery shown in FIG. 1 was constructed using the dry battery separator in which this paste was applied to one side of the separator kraft paper and dried to form a paste layer.

【0019】[0019]

【表1】 [Table 1]

【0020】図1において、1は正極合剤、2は片面に
糊層を有するセパレータ、3は負極亜鉛缶、4は底部絶
縁紙、5は正極の集電体である炭素棒、6は正極のキャ
ップ一体封口板、7は負極端子となす底板、8は外装缶
である。
In FIG. 1, 1 is a positive electrode mixture, 2 is a separator having a glue layer on one side, 3 is a negative electrode zinc can, 4 is bottom insulating paper, 5 is a carbon rod as a positive electrode current collector, and 6 is a positive electrode. Is a cap integrated sealing plate, 7 is a bottom plate serving as a negative electrode terminal, and 8 is an outer can.

【0021】この時の正極合剤1は、二酸化マンガンと
アセチレンブラックの混合重量比が、7対1の混合物
に、固形分に対して電解液を40重量%を加えたものを
使用した。
The positive electrode mixture 1 used at this time was a mixture of manganese dioxide and acetylene black in a mixing weight ratio of 7: 1 to which 40% by weight of the electrolytic solution was added to the solid content.

【0022】なお、比較例1として、従来から一般的に
使用されている電解液として塩化亜鉛30重量%、塩化
アンモニウム1.5重量%、水68.5重量%のものを
使用し、糊化剤として架橋エーテル化コーンスターチ4
5重量%、糊結着剤としてポリビニルアルコール2重量
%、水53重量%からなるマンガン乾電池用セパレータ
糊液を使用し、これを片面に塗布、乾燥したクラフト紙
からなるセパレータと、負極亜鉛缶とを用い、常法のペ
ーパーラインド式の水銀無添加のマンガン乾電池を構成
した。
In Comparative Example 1, as an electrolyte solution which has been generally used in the past, zinc chloride of 30% by weight, ammonium chloride of 1.5% by weight and water of 68.5% by weight were used and gelatinized. Cross-linked etherified cornstarch 4 as an agent
5% by weight, 2% by weight of polyvinyl alcohol as a binder and 53% by weight of water are used as a separator solution for a manganese dry battery, a separator made of kraft paper which is coated on one side and dried, and a negative electrode zinc can. Was used to construct a conventional paper-lined mercury-free manganese dry battery.

【0023】また、比較例2として、上記マンガン乾電
池セパレータ用糊液中に、糊料に対して甘汞2重量%を
添加したものを塗布、乾燥したセパレータを使用した以
外は比較例1と同様にしてマンガン乾電池を構成した。
Further, as Comparative Example 2, the same as Comparative Example 1 except that a paste obtained by adding 2% by weight of sweet syrup to a sizing agent was applied to the above manganese dry battery separator sizing liquid and dried. Then, a manganese dry battery was constructed.

【0024】これらのマンガン乾電池の50kΩ負荷で
の連続放電試験と2Ω負荷での連続放電試験を実施した
結果を(表2)に示す。
The results of the continuous discharge test under a load of 50 kΩ and the continuous discharge test under a load of 2 Ω for these manganese dry batteries are shown in Table 2.

【0025】また、50kΩ連続放電試験の放電曲線を
図2に示す。図中のAは、正常な放電曲線、Bは放電途
中で急激な電圧低下を起こした電池の放電曲線である。
The discharge curve of the 50 kΩ continuous discharge test is shown in FIG. In the figure, A is a normal discharge curve, and B is a discharge curve of a battery in which a sudden voltage drop occurred during discharging.

【0026】50kΩ負荷連続放電試験は、各n=50
で試験し、その時の放電途中で急激に電圧低下を起こし
た電池の個数xをx/50という形で表示した。
In the 50 kΩ load continuous discharge test, each n = 50
And the number x of batteries in which the voltage drastically dropped during discharge at that time was displayed in the form of x / 50.

【0027】2Ω負荷連続放電試験は、各n=10で試
験し、放電中の電池電圧が0.9Vになるまでの平均放
電持続時間(分)を示した。
A 2Ω load continuous discharge test was conducted at each n = 10, and the average discharge duration (minutes) until the battery voltage during discharge reached 0.9V was shown.

【0028】[0028]

【表2】 [Table 2]

【0029】この結果からわかるように、電解液中もし
くはセパレータ糊料中にポリビニル系珪素含有ポリマー
が存在すると、軽負荷放電における急激な放電性能の低
下を抑制する効果が認められる。
As can be seen from these results, the presence of the polyvinyl silicon-containing polymer in the electrolytic solution or the separator paste has the effect of suppressing a sharp drop in discharge performance during light load discharge.

【0030】また、その添加量が珪素の含有量で0.0
005重量%以上で、抑制効果は顕著になり、0.00
5重量%以上で、いっそう抑制効果が増すことがわか
る。
The amount of addition is 0.0 in terms of silicon content.
When it is 005% by weight or more, the suppression effect becomes remarkable, and 0.00
It can be seen that the suppression effect is further increased at 5% by weight or more.

【0031】添加量が、1.0重量%を越える場合、抑
制効果は認められるが、反面、2Ω連続放電性能の低下
をもたらす。従って、このポリビニル系珪素含有ポリマ
ーの添加量は、軽負荷での放電性能の低下を防止し、か
つ2Ω連続放電性能の低下がより少ない0.01重量%
以下の添加が望ましい。
When the amount added exceeds 1.0% by weight, the suppressing effect is recognized, but on the other hand, the 2Ω continuous discharge performance is deteriorated. Therefore, the addition amount of this polyvinyl-based silicon-containing polymer is 0.01% by weight, which prevents the deterioration of the discharge performance under a light load and has a smaller decrease in the 2Ω continuous discharge performance.
The following additions are desirable.

【0032】なお、前記実施例では、化学式Iで示した
株式会社クラレ製Rー2105を使用したが、他のポリ
ビニル系珪素含有ポリマーや、メチルセルロース系、カ
ルボキシメチルセルロース系、ポリオキシエチレン系の
珪素含有ポリマーにおいても、ほぼ同様の効果が得られ
た。
In the above examples, R-2105 manufactured by Kuraray Co., Ltd., which is represented by the chemical formula I, was used. However, other polyvinyl-based silicon-containing polymers, methylcellulose-based, carboxymethylcellulose-based, and polyoxyethylene-based silicon-containing polymers were used. Almost the same effect was obtained with the polymer.

【0033】また、前記実施例では、塩化亜鉛主体の中
性電解液を使用したが、塩化アンモニウム主体の電解液
を使用した場合でも同様の効果が得られた。
Further, in the above-mentioned embodiment, the neutral electrolyte mainly containing zinc chloride was used, but the same effect was obtained even when the electrolyte mainly containing ammonium chloride was used.

【0034】[0034]

【発明の効果】以上のように本発明によれば、無汞化の
亜鉛を負極活物質に用いるマンガン乾電池において、電
池内への珪素含有水溶性ポリマーの添加により、従来の
汞化した亜鉛を用いたマンガン乾電池と同等の軽負荷放
電性能を得ることができる。
As described above, according to the present invention, in a manganese dry battery using unhydrogenated zinc as a negative electrode active material, a conventional hydrous zinc is added by adding a silicon-containing water-soluble polymer into the battery. It is possible to obtain light load discharge performance equivalent to that of the manganese dry battery used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における円筒型マンガン乾電池の半截断
面図
FIG. 1 is a cross-sectional view of a cylindrical manganese dry battery according to the present invention.

【図2】本発明の効果を示す50KΩ負荷連続放電曲線
を示す図
FIG. 2 is a diagram showing a 50 KΩ load continuous discharge curve showing the effect of the present invention.

【符号の説明】[Explanation of symbols]

1 正極合剤 2 セパレータ 3 負極亜鉛缶 4 底部絶縁紙 5 炭素棒 6 キャップ一体封口板 7 負極端子底板 8 外装缶 DESCRIPTION OF SYMBOLS 1 Positive electrode mixture 2 Separator 3 Negative zinc can 4 Bottom insulating paper 5 Carbon rod 6 Cap integrated sealing plate 7 Negative electrode terminal bottom plate 8 Exterior can

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質に、無汞化の亜鉛を用いるマ
ンガン乾電池であって、塩化亜鉛もしくは塩化アンモニ
ウムを主成分とする電解液中に、珪素含有水溶性ポリマ
ーを含む中性電解液を用いたことを特徴とするマンガン
乾電池。
1. A manganese dry battery using unrestricted zinc as a negative electrode active material, wherein a neutral electrolytic solution containing a silicon-containing water-soluble polymer is added to an electrolytic solution containing zinc chloride or ammonium chloride as a main component. A manganese dry battery characterized by being used.
【請求項2】 電解液中の珪素含有水溶性ポリマーの含
有量が珪素の含有量として、0.0005〜0.5重量
%である請求項1記載のマンガン乾電池。
2. The manganese dry battery according to claim 1, wherein the content of the silicon-containing water-soluble polymer in the electrolytic solution is 0.0005 to 0.5% by weight as the content of silicon.
【請求項3】 電解液中の珪素含有水溶性ポリマーの含
有量が珪素の含有量として、0.005〜0.01重量
%である請求項1記載のマンガン乾電池。
3. The manganese dry battery according to claim 1, wherein the content of the silicon-containing water-soluble polymer in the electrolytic solution is 0.005 to 0.01% by weight as the content of silicon.
【請求項4】 負極活物質に、無汞化の亜鉛を用いるマ
ンガン乾電池であって、表面に糊層を有するセパレータ
の前記糊層の糊料中に、珪素含有水溶性ポリマーを含有
させたことを特徴とするマンガン乾電池。
4. A manganese dry battery in which unnegative zinc is used as a negative electrode active material, and a silicon-containing water-soluble polymer is contained in the paste material of the glue layer of a separator having a glue layer on the surface. Manganese dry battery characterized by.
【請求項5】 糊料中の珪素含有水溶性ポリマーの含有
量が珪素の含有量として、0.0005〜0.5重量%
である請求項4記載のマンガン乾電池。
5. The content of the silicon-containing water-soluble polymer in the paste is 0.0005 to 0.5% by weight as the content of silicon.
The manganese dry battery according to claim 4, which is
【請求項6】 糊料中の珪素含有水溶性ポリマーの含有
量が珪素の含有量として、0.005〜0.01重量%
である請求項4記載のマンガン乾電池。
6. The content of the silicon-containing water-soluble polymer in the paste is 0.005-0.01% by weight as the content of silicon.
The manganese dry battery according to claim 4, which is
【請求項7】 珪素含有水溶性ポリマーは、下記化学式
I 【化1】 で示されるものである請求項1乃至6の何れかに記載の
マンガン乾電池。
7. The silicon-containing water-soluble polymer has the following chemical formula I: The manganese dry battery according to any one of claims 1 to 6, which is represented by:
JP12224895A 1995-05-22 1995-05-22 Manganese dry battery Pending JPH08315831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12224895A JPH08315831A (en) 1995-05-22 1995-05-22 Manganese dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12224895A JPH08315831A (en) 1995-05-22 1995-05-22 Manganese dry battery

Publications (1)

Publication Number Publication Date
JPH08315831A true JPH08315831A (en) 1996-11-29

Family

ID=14831267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12224895A Pending JPH08315831A (en) 1995-05-22 1995-05-22 Manganese dry battery

Country Status (1)

Country Link
JP (1) JPH08315831A (en)

Similar Documents

Publication Publication Date Title
JP3370486B2 (en) Alkaline battery
KR930000426B1 (en) Secondary battery of lithium
JPH08315831A (en) Manganese dry battery
EP0945906B1 (en) Manganese dry batteries
US5017445A (en) Dry cell
EP0083059A1 (en) Active material for lead accumulator electrodes
JP3087536B2 (en) Manganese dry cell
JP2992781B2 (en) Manganese dry cell
JPH08273672A (en) Air electrode current collecting material for air cell and air cell having it
JP2964802B2 (en) Glue-type manganese dry battery
JP2002033092A (en) Manufacturing method for manganese dry battery and its separator
JP2006019090A (en) Manganese dry cell
JPH0454691Y2 (en)
WO2006001269A1 (en) Manganese dry cell
JPH0822829A (en) Mercury-free manganese dry battery
JPH0982337A (en) Manganese dry battery
JPH0536420A (en) Manganese dry battery
EP1892778A1 (en) Manganese dry cell
JP2002050348A (en) Manganese dry cell
JPH0822820A (en) Manganese battery with mercury unadded
JPH11185772A (en) Manganese dry battery
JPH06325771A (en) Manganese dry cell
JPH11339819A (en) Manganese dry battery
JPS61156633A (en) Air cell
JP2007048534A (en) Manganese dry cell