JPH0454691Y2 - - Google Patents
Info
- Publication number
- JPH0454691Y2 JPH0454691Y2 JP1988033663U JP3366388U JPH0454691Y2 JP H0454691 Y2 JPH0454691 Y2 JP H0454691Y2 JP 1988033663 U JP1988033663 U JP 1988033663U JP 3366388 U JP3366388 U JP 3366388U JP H0454691 Y2 JPH0454691 Y2 JP H0454691Y2
- Authority
- JP
- Japan
- Prior art keywords
- separator
- nonwoven fabric
- negative electrode
- air permeability
- alkaline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004745 nonwoven fabric Substances 0.000 claims description 34
- 230000035699 permeability Effects 0.000 claims description 13
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 12
- 229920000297 Rayon Polymers 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 8
- 239000007773 negative electrode material Substances 0.000 claims description 8
- 238000004804 winding Methods 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 5
- 239000010410 layer Substances 0.000 claims 1
- 239000002356 single layer Substances 0.000 claims 1
- 239000000047 product Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 7
- 239000011701 zinc Substances 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- 239000000835 fiber Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 4
- 229920002978 Vinylon Polymers 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 230000010220 ion permeability Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000011245 gel electrolyte Substances 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- 235000005074 zinc chloride Nutrition 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical group [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y02E60/12—
Landscapes
- Cell Separators (AREA)
- Primary Cells (AREA)
Description
《産業上の利用分野》
この考案は、低水銀化のためにAを含む亜鉛
合金粉末を負極活物質として用いたアルカリ電池
に関し、特にこの負極活物質と、正極合剤とを区
画するセパレータの改良に関する。
《従来の技術》
亜鉛の汞化のための水銀は、一種の公害物質で
あるところから、現在では水銀の含有量を低下さ
せるための亜鉛合金の開発が種々なされている。
そのなかで、とりわけアルミニウムを含む亜鉛
合金は、アルカリ電解液中でのガス発生が抑制で
き、低汞化のための有力な材料であることが注目
されている。
また、アルミニウムに加えて鉛、インジウムを
亜鉛に微量添加した亜鉛合金は水素ガス発生抑制
効果がさらに大きく、例えば、汞化度1.5%とい
つた低汞化用亜鉛合金として実用化されている。
しかしながら、前記アルミニウムを含有する亜
鉛合金を負極活物質として用いた低汞化アルカリ
電池においては、ある負荷抵抗で急速に放電性能
が低下することが問題となつている。
この現象は、特に軽負荷放電時で特異的に発現
しているが、これら放電性能の低下した電池の内
部を分解して調べた結果、放電生成物によつて内
部短絡を起こしていることが判明した。
この原因としては、アルミニウムを含む亜鉛合
金が、特定の電流で放電されることによつて導電
性をもつた特異な反応生成物の結晶が析出し、該
結晶が生長してセパレータを貫通し、その結果短
絡現象を引き起こすのであろうと考えられてい
る。
従つて、この対策として、亜鉛合金の組成の変
更や、特異な結晶の析出に対して抑制効果のある
添加剤の添加などにより解決を図る方法と、物理
的な方法、すなわちセパレータを構成する不織布
の繊維を密にして結晶の生長を妨げることによつ
て内部短絡を封ずる方法がある。
この考案は後者のセパレータを工夫することに
よつて内部短絡現象を防止しようとするものであ
る。
《考案が解決しようとする問題点》
しかし、不織布の繊維密度を高めるためには以
下の問題を解決する必要があつた。
アルカリ電池のセパレータが必要とする電解液
の保液率、吸液速度等の諸特性を保持しつつ、繊
維密度を必要なだけ高めた不織布を安定して製造
することは、技術的および経済的に困難な点が多
く、未だ、完全な形での実用化はなされていな
い。
従つて、不織布布の繊維密度を高めるのと同じ
効果を得ようとすると、従来に較べて、不繊布の
厚さを増すか、巻き重ね回数を多くしなければな
らず、その結果、セパレータの厚みを増してしま
う。
そして、セパレータの厚みが増すと負極活物質
及び正極合剤の充填量が減ずるので、放電性能や
貯蔵性などの一般的性能を大幅に低下させること
となる。
また、前記繊維密度を高める替りに、不織布に
おける繊維と繊維の間隙を対アルカリ性物質によ
つて埋める方法、すなわちビスコース加工した不
織布を用いることも考えられるが、これの単体を
使用した場合、電解液保液率及び吸液速度が低下
し、電池の放電に必要な電解液を充分に保持出来
ず、放電性能が低下する欠点が生じていた。
この考案は以上の問題点に鑑みてなされたもの
で、その目的とするところは、セパレータの厚み
を増すことなく、放電性能の低下を防止でき、電
池性能上問題なく水銀量を低減できるアルカリ電
池用セパレータを提供するものである。
《問題点を解決するための手段》
前記目的を達成するため、この考案は、Aを
含む亜鉛合金粉末を負極活物質として用い、電池
内部で前記負極活物質と正極合剤とを筒形のセパ
レータを介して区画したアルカリ電池において、
前記セパレータは、透気度が0.1〜.10Sec/100
mlのビスコース加工された不織布と透気度が
0.1Sec/100ml以下の不織布からなり、前者が外
側になるようにして一重ないし多重に巻き重ね、
筒形に形成したことを要旨とする。
《作用》
巻回形成され、筒形となつたセパレータは必要
とする保液性を満足し、イオン透過性が良好な層
を内側とし、放電生成物が貫通しにくい層を外周
としているので、亜鉛負極内部に生じた生成物の
透過を放電性能の低下なしに構造的に防止でき
る。
《実施例》
以下、この考案の実施例を図面を参照して詳細
に説明する。
まず、この考案の実施に用いたLR6形アルカリ
電池の構造は、第1図に示す一般的構造となつて
いる。
このアルカリ電池は、有底円筒型の電池ケース
1の上部開口の内周部を負極端子板2の周縁フラ
ンジ部に封口ガスケツト3を介して絞り加工、カ
ール加工などによつてカシメ付け、電池内部を密
封している。
電池内部には、上端を前記封口ガスケツト3の
中心を貫通して前記負極端子板2に電気的接続し
た集電棒4と、該集電棒4の外周を取巻くように
してゲル状亜鉛負極5、及び二酸化マンガンを主
体とする正極合剤6が同心状に充填され、両者間
を筒形のセパレータ7で区画した状態で発電要素
を構成している。
前記ゲル状亜鉛負極5はAを含む亜鉛合金粉
末を汞化した負極活物質を、ゲル状アルカリ電解
液に混合分散したものである。
ゲル状電解液は、水酸化カリウム溶液とCMC
等のゲル化剤からなる組成であり、このゲル状電
解質に前記汞化亜鉛合金粉末を混合分散してあ
る。
前記セパレータ7は、ビスコース加工された第
一の不織布8と、第二の不織布9とからなつてい
る。
第一のビスコース加工した不織布8は、ビニロ
ンとバインダとからなるもの、またはビニロンに
セルロース系繊維とバインダを加えて抄紙した不
織布に、常法によつて調製されたビスコース液を
ロールコータでコーテイングした後、凝固浴中で
処理し、次いでセルロース再生浴中でセルロース
を再生した後脱硫し、水洗した後乾燥することに
よつて得られる。
以上において、透気度は、前記ビスコース液の
濃度および前記ロールコータの運転条件の設定に
よつて任意の値に調整することができ、その透気
度を0.1〜1.0Sec/100mlに設定した。
つまり透気度が0.1Sec/100ml以下では通常の
不織布と同様であり、また.10Sec/100ml以上
の場合には保液率、吸液率が低下し、イオンの移
動を妨げ放電性能を低下させるので、前記範囲内
に限定される。
また、第二の不織布9は、ビスコース加工され
ていない通常の不織布であつて、その透気度は、
比較的イオン透過性の良好な0.1Sec/100ml以下
に設定されている。
そして、この実施例では、第2図a〜cに示す
ように、前記第一、第二の不織布8,9同士を隣
接し、その接合縁10同士をPVA接着剤を介し
て接ぎ合わせ、一枚に繋ぎ、第一の不織布8が外
周側に、第二の不織布9が内側にくるように2重
に巻き重ね、底部側に蓋11を貼合せることによ
つて、有底円筒形のセパレータ7を完成したもの
である。
したがつて、セパレータ7の完成状態では、そ
の内側は比較的透気度の小さい第二の不織布9が
位置し、また外周側は比較的透気度の大きな第一
の不織布8が位置した状態の二重構造となり、内
側の層で放電反応に必要な十分な電解液を保持
し、外周側の層で特異な放電生成物の正極合剤6
側への貫通を防止する。
次に第3図a,bはこの考案の第二実施例を示
すもので、前記第一、第二の不織布8,9を二枚
重ねに積層し第一の不織布8が外周に位置すべく
一重に巻回し、筒形のセパレータ7を形成してい
る。
この実施例であつても前記第一実施例と同様の
効果を得ることができる。
次に以上の構成のセパレータ7を用いた本考案
のアルカリ電池と従来の不織布のセパレータを用
いたアルカリ電池とで、最も異状が発生しやすい
軽負荷放電特性である75Ωでの放電持続時間及び
その他の特性である10Ωでの放電持続時間を比較
測定した結果、以下の表1,2に示す測定値を得
た。
なお、本考案の第二の不織布9および従来品
1,従来品2のセパレータに使用した不織布は、
いずれもビニロン70%、リンダーパルプ15%、ポ
リビニルアルコールバインダー15%の組成でも、
透気度0.05Sec/100ml、厚さ140μの同一のもので
ある。また巻回数はいずれも二重である。
さらに、第一のビスコース加工した不織布8の
透気度は0.06〜2.0まで変えた7種類を容易し、
本考案の範囲内にあるものとそうでないものの比
較も行つた。
次に、負極亜鉛としては、本案及び従来品1は
汞化度1%、500ppm−Pb,600ppm−A,
200ppm−Inの汞化亜鉛合金を用い、従来品2は
汞化度3%,500ppm−Pb,200ppm−Inの汞化
亜鉛合金を用いた。
<Industrial Application Field> This invention relates to alkaline batteries that use zinc alloy powder containing A as a negative electrode active material in order to reduce mercury. Regarding improvements. <<Prior Art>> Since mercury used in the conversion of zinc into hydrogen is a kind of polluting substance, various zinc alloys are currently being developed to reduce the mercury content. Among these, zinc alloys containing aluminum are particularly attracting attention because they can suppress gas generation in alkaline electrolytes and are effective materials for reducing flux. Furthermore, zinc alloys in which small amounts of lead and indium are added to zinc in addition to aluminum have an even greater effect of suppressing hydrogen gas generation, and have been put into practical use as low-fragility zinc alloys, for example, with a 1.5% filtration degree. However, in a low flux alkaline battery using the aluminum-containing zinc alloy as a negative electrode active material, there is a problem in that the discharge performance rapidly deteriorates at a certain load resistance. This phenomenon occurs specifically during light load discharge, but as a result of disassembling and examining the inside of these batteries with degraded discharge performance, it was found that internal short circuits were caused by discharge products. found. The cause of this is that when a zinc alloy containing aluminum is discharged with a specific current, crystals of a unique reaction product with conductivity are precipitated, and the crystals grow and penetrate the separator. It is thought that this results in a short circuit phenomenon. Therefore, as a countermeasure, there are two methods to solve this problem, such as changing the composition of the zinc alloy and adding additives that have the effect of suppressing the precipitation of specific crystals, and two physical methods, i.e., using the nonwoven fabric that makes up the separator. There is a method of sealing internal short circuits by making the fibers denser and preventing crystal growth. This invention attempts to prevent the internal short circuit phenomenon by devising the latter separator. <<Problems to be solved by the invention>> However, in order to increase the fiber density of the nonwoven fabric, it was necessary to solve the following problems. It is technically and economically possible to stably produce a nonwoven fabric with the required fiber density while maintaining the electrolyte retention rate, liquid absorption rate, and other properties required by alkaline battery separators. There are many difficulties, and it has not yet been fully put into practical use. Therefore, in order to obtain the same effect as increasing the fiber density of a nonwoven fabric, it is necessary to increase the thickness of the nonwoven fabric or increase the number of times it is wound, compared to the conventional method. It will increase the thickness. As the thickness of the separator increases, the filling amount of the negative electrode active material and the positive electrode mixture decreases, resulting in a significant reduction in general performance such as discharge performance and storage performance. In addition, instead of increasing the fiber density, it is possible to fill the gaps between the fibers in the nonwoven fabric with an anti-alkaline substance, that is, use a viscose-treated nonwoven fabric, but when using this alone, electrolytic The liquid retention rate and liquid absorption rate were reduced, and the electrolyte necessary for discharging the battery could not be sufficiently retained, resulting in a reduction in discharge performance. This idea was devised in view of the above problems, and its purpose is to prevent deterioration in discharge performance without increasing the thickness of the separator, and to reduce the amount of mercury in alkaline batteries without affecting battery performance. The present invention provides separators for use in <Means for Solving the Problems> In order to achieve the above object, this invention uses a zinc alloy powder containing A as a negative electrode active material, and forms the negative electrode active material and positive electrode mixture into a cylindrical shape inside a battery. In an alkaline battery divided through a separator,
The separator has an air permeability of 0.1 to . 10Sec/100
ml viscose processed non-woven fabric and air permeability
It is made of nonwoven fabric of 0.1 Sec/100 ml or less, and is wrapped in one or multiple layers with the former facing outward.
The gist is that it is formed into a cylindrical shape. <<Function>> The separator, which is formed by winding and has a cylindrical shape, satisfies the required liquid retention property and has a layer with good ion permeability on the inside, and a layer on the outside that is difficult for discharge products to penetrate. Permeation of products generated inside the zinc negative electrode can be structurally prevented without deteriorating discharge performance. <<Example>> Hereinafter, an example of this invention will be described in detail with reference to the drawings. First, the structure of the LR6 type alkaline battery used to implement this idea has the general structure shown in Figure 1. This alkaline battery is manufactured by caulking the inner periphery of the upper opening of a bottomed cylindrical battery case 1 to the peripheral flange of a negative electrode terminal plate 2 through a sealing gasket 3 by drawing, curling, etc. is sealed. Inside the battery are a current collector rod 4 whose upper end passes through the center of the sealing gasket 3 and is electrically connected to the negative electrode terminal plate 2, a gelled zinc negative electrode 5 surrounding the outer periphery of the current collector rod 4, and A positive electrode mixture 6 mainly composed of manganese dioxide is filled concentrically and separated by a cylindrical separator 7 to constitute a power generation element. The gelled zinc negative electrode 5 is obtained by mixing and dispersing a negative electrode active material obtained by aqueous zinc alloy powder containing A in a gelled alkaline electrolyte. Gel electrolyte is potassium hydroxide solution and CMC
The zinc chloride alloy powder is mixed and dispersed in this gel electrolyte. The separator 7 is made up of a first nonwoven fabric 8 and a second nonwoven fabric 9 processed with viscose. The first viscose-treated nonwoven fabric 8 is made of vinylon and a binder, or a nonwoven fabric made by adding cellulose fibers and a binder to vinylon, and a viscose liquid prepared by a conventional method is coated with a roll coater. After coating, it is treated in a coagulation bath, then cellulose is regenerated in a cellulose regeneration bath, desulfurized, washed with water, and then dried. In the above, the air permeability can be adjusted to any value by setting the concentration of the viscose liquid and the operating conditions of the roll coater, and the air permeability was set to 0.1 to 1.0 Sec/100ml. . In other words, if the air permeability is 0.1Sec/100ml or less, it is the same as a normal nonwoven fabric, and... If it is more than 10 Sec/100 ml, the liquid retention rate and liquid absorption rate will decrease, hindering the movement of ions and reducing the discharge performance, so it is limited within the above range. Further, the second nonwoven fabric 9 is a normal nonwoven fabric that is not processed with viscose, and its air permeability is as follows:
It is set at 0.1Sec/100ml or less, which has relatively good ion permeability. In this embodiment, as shown in FIGS. 2a to 2c, the first and second nonwoven fabrics 8 and 9 are placed adjacent to each other, and their joining edges 10 are joined together using a PVA adhesive. The separator is formed into a cylindrical separator with a bottom by connecting two sheets, wrapping them in double layers so that the first nonwoven fabric 8 is on the outer circumferential side and the second nonwoven fabric 9 is on the inside, and pasting the lid 11 on the bottom side. 7 has been completed. Therefore, in the completed state of the separator 7, the second nonwoven fabric 9 with relatively low air permeability is located on the inside, and the first nonwoven fabric 8 with relatively high air permeability is located on the outer peripheral side. It has a double structure, with the inner layer holding sufficient electrolyte necessary for the discharge reaction, and the outer layer holding the positive electrode mixture 6, which is a unique discharge product.
Prevent penetration to the side. Next, FIGS. 3a and 3b show a second embodiment of this invention, in which the first and second nonwoven fabrics 8 and 9 are laminated in two layers so that the first nonwoven fabric 8 is located on the outer periphery. It is wound to form a cylindrical separator 7. Even in this embodiment, the same effects as in the first embodiment can be obtained. Next, we will discuss the discharge duration at 75Ω, which is the light load discharge characteristic where abnormalities are most likely to occur, and other characteristics between the alkaline battery of the present invention using the separator 7 with the above configuration and the alkaline battery using a conventional non-woven fabric separator. As a result of comparative measurements of the discharge duration at 10Ω, which is a characteristic of In addition, the nonwoven fabrics used for the separators of the second nonwoven fabric 9 of the present invention and the conventional products 1 and 2 are as follows:
Both have a composition of 70% vinylon, 15% linder pulp, and 15% polyvinyl alcohol binder.
They are the same with an air permeability of 0.05Sec/100ml and a thickness of 140μ. Moreover, the number of windings is double in each case. Furthermore, the air permeability of the first viscose-treated nonwoven fabric 8 was varied from 0.06 to 2.0, and seven types were prepared.
Comparisons were also made between those that were within the scope of the present invention and those that were not. Next, as negative electrode zinc, the present invention and conventional product 1 have a degree of oxidation of 1%, 500ppm-Pb, 600ppm-A,
A 200 ppm-In zinc chloride alloy was used, and for conventional product 2, a phosphorized zinc alloy with a phosphorization degree of 3%, 500 ppm-Pb, and 200 ppm-In was used.
【表】【table】
【表】【table】
【表】
以上の表に示す測定値から、汞化度を低減して
も本考案の範囲にある透気度のものはいずれも
75Ω負荷放電時の放電性能が従来の3%汞化品と
同等であり、放電容量の低下を完全に防止でき
る。また、その他の負荷放電時では従来と同等性
能となつている。
《効果》
以上の説明によつて明らかなように、本考案に
係るセパレータを用いた低汞化アルカリ電池で
は、筒形となつたセパレータが巻き重ね方向でイ
オン透過性が良好な層を内側とし、放電時の放電
生成物が貫通しにくい層を外周としている。した
がつて、この考案では前記表1に示すように初度
及び長期保存後であつても特定負荷条件での放電
持続時間が従来の汞化度3%と同等の性能を維持
し、かつ問題なく水銀量を低減することができ
る。[Table] From the measured values shown in the table above, even if the degree of filtration is reduced, the air permeability is within the range of this invention.
The discharge performance when discharging into a 75Ω load is equivalent to that of the conventional 3% filtration product, and a decrease in discharge capacity can be completely prevented. Furthermore, during other load discharges, the performance is equivalent to the conventional one. <<Effect>> As is clear from the above explanation, in the low flux alkaline battery using the separator according to the present invention, the cylindrical separator has a layer with good ion permeability inside in the winding direction. , the outer periphery is a layer that is difficult for discharge products to penetrate during discharge. Therefore, with this invention, as shown in Table 1 above, even after initial and long-term storage, the discharge duration under specific load conditions maintains the same performance as the conventional 3% degree of oxidation, and there are no problems. The amount of mercury can be reduced.
第1図は本考案に係るアルカリ電池の断面図、
第2図a〜cはセパレータの形成順序を示す説明
図、第3図はこの考案の他の実施例を示す説明図
である。
1……正極缶、2……負極端子板、3……封口
ガスケツト、4……集電棒、5……ゲル状亜鉛負
極、6……正極合剤、6……セパレータ、8……
第一の不織布(ビスコース加工不織布)、9……
第二の不織布、10……接着剤。
FIG. 1 is a cross-sectional view of an alkaline battery according to the present invention.
FIGS. 2a to 2c are explanatory diagrams showing the order of forming separators, and FIG. 3 is an explanatory diagram showing another embodiment of this invention. DESCRIPTION OF SYMBOLS 1... Positive electrode can, 2... Negative electrode terminal plate, 3... Sealing gasket, 4... Current collector rod, 5... Gel-like zinc negative electrode, 6... Positive electrode mixture, 6... Separator, 8...
First nonwoven fabric (viscose processed nonwoven fabric), 9...
Second nonwoven fabric, 10...Adhesive.
Claims (1)
用い、電池内部で前記負極活物質と正極合剤と
を筒形のセパレータを介して区画したアルカリ
電池において、前記セパレータは、透気度が
0.1〜1.0Sec/100mlのビスコース加工された不
織布と、透気度が0.1Sec/100ml以下の不織布
からなり、前者が外側になるようにして一重な
いし多重に巻き重ね、筒形に形成したことを特
徴とするアルカリ電池用セパレータ。 (2) 前記セパレータは、両不織布を巻き重ね方向
に接ぎ合わせ、円筒状に巻回形成するようにし
た実用新案登録請求の範囲第1項に記載のアル
カリ電池用セパレータ。 (3) 前記セパレータは、両不織布を二重に重ねた
状態で巻き重ね、円筒状に巻回形成するように
した実用新案登録請求の範囲第1項に記載のア
ルカリ電池用セパレータ。[Claims for Utility Model Registration] (1) In an alkaline battery in which a zinc alloy powder containing A is used as a negative electrode active material, and the negative electrode active material and the positive electrode mixture are separated within the battery through a cylindrical separator, The separator has an air permeability of
Consisting of a viscose-treated nonwoven fabric with a thickness of 0.1 to 1.0Sec/100ml and a nonwoven fabric with an air permeability of 0.1Sec/100ml or less, it is formed into a cylindrical shape by wrapping it in single or multiple layers with the former facing outward. A separator for alkaline batteries featuring: (2) The separator for an alkaline battery according to claim 1, which is a utility model, wherein the separator is formed by joining both nonwoven fabrics in a winding and overlapping direction and winding them into a cylindrical shape. (3) The separator for an alkaline battery according to claim 1, wherein the separator is formed by winding both nonwoven fabrics in a double layer to form a cylindrical shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1988033663U JPH0454691Y2 (en) | 1988-03-16 | 1988-03-16 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1988033663U JPH0454691Y2 (en) | 1988-03-16 | 1988-03-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01139355U JPH01139355U (en) | 1989-09-22 |
JPH0454691Y2 true JPH0454691Y2 (en) | 1992-12-22 |
Family
ID=31260354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1988033663U Expired JPH0454691Y2 (en) | 1988-03-16 | 1988-03-16 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0454691Y2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001155707A (en) * | 1999-11-24 | 2001-06-08 | Toshiba Battery Co Ltd | Alkaline battery |
JP7489184B2 (en) * | 2019-11-20 | 2024-05-23 | エナジーウィズ株式会社 | Zinc battery |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6261269A (en) * | 1985-09-12 | 1987-03-17 | Fukui Kagaku Kogyo Kk | Separator for alkaline battery |
-
1988
- 1988-03-16 JP JP1988033663U patent/JPH0454691Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6261269A (en) * | 1985-09-12 | 1987-03-17 | Fukui Kagaku Kogyo Kk | Separator for alkaline battery |
Also Published As
Publication number | Publication date |
---|---|
JPH01139355U (en) | 1989-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120171535A1 (en) | Nickel-zinc battery and manufacturing method thereof | |
JP6099328B2 (en) | Alkaline battery separator and alkaline battery | |
JP7102348B2 (en) | Positive electrode for non-aqueous electrolyte secondary battery containing liquid electrolyte and non-aqueous electrolyte secondary battery containing liquid electrolyte | |
JPH0454691Y2 (en) | ||
JP2001167798A (en) | Solid electrolyte cell | |
JP2004047321A (en) | Alkaline battery and its manufacturing method | |
WO2021220627A1 (en) | Nickel-zinc secondary battery | |
WO2021106829A1 (en) | Alkaline battery positive electrode, alkaline battery, and production method therefor | |
JP2798947B2 (en) | Alkaline battery separator | |
JPH11111256A (en) | Zinc alkaline battery | |
JPH01307176A (en) | Cylindrical lithium secondary battery | |
JP2004139909A (en) | Sealed nickel-zinc primary battery | |
WO2022196445A1 (en) | Non-aqueous electrolyte secondary battery | |
US5248571A (en) | Cadmium electrode and cell having anti-agglomeration characteristics | |
JPH0318308B2 (en) | ||
JP2001052676A (en) | Lithium ion conductor for nonaqueous battery and noaqueous battery | |
US20220115671A1 (en) | Positive electrode and secondary battery | |
JPH01311560A (en) | Separator for alkaline cell | |
JPH02253573A (en) | Air battery | |
JPH0244105B2 (en) | HISUIYOBAIDENCHI | |
JP2019212391A (en) | Alkaline secondary battery | |
JP2968813B2 (en) | Method for producing cadmium negative electrode for alkaline storage battery | |
JPH11233094A (en) | Air-zinc battery | |
JPS59194363A (en) | Cylindrical nonaqueous electrolyte battery | |
JP2000260412A (en) | Alkaline dry battery |