JP2798947B2 - Alkaline battery separator - Google Patents

Alkaline battery separator

Info

Publication number
JP2798947B2
JP2798947B2 JP1011833A JP1183389A JP2798947B2 JP 2798947 B2 JP2798947 B2 JP 2798947B2 JP 1011833 A JP1011833 A JP 1011833A JP 1183389 A JP1183389 A JP 1183389A JP 2798947 B2 JP2798947 B2 JP 2798947B2
Authority
JP
Japan
Prior art keywords
separator
cellophane
alkaline battery
negative electrode
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1011833A
Other languages
Japanese (ja)
Other versions
JPH02195646A (en
Inventor
健一 篠田
廣彦 太田
清英 筒井
Original Assignee
富士電気化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電気化学株式会社 filed Critical 富士電気化学株式会社
Priority to JP1011833A priority Critical patent/JP2798947B2/en
Publication of JPH02195646A publication Critical patent/JPH02195646A/en
Application granted granted Critical
Publication of JP2798947B2 publication Critical patent/JP2798947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 《産業上の利用分野》 この発明は、鉛,アルミニウム,インジウムなどを含
む亜鉛合金粉末を負極活物質として用いた低水銀化アル
カリ電池に関し、特にこの負極活物質と正極合剤とを区
画するセパレータの改良に関する。
Description: TECHNICAL FIELD The present invention relates to a mercury-reduced alkaline battery using a zinc alloy powder containing lead, aluminum, indium or the like as a negative electrode active material, and more particularly to this negative electrode active material and a positive electrode. The present invention relates to improvement of a separator for partitioning a mixture.

《従来の技術》 亜鉛の汞化のための水銀は、一種の公害物質であると
ころから、現在では水銀の含有量を低下させるための亜
鉛合金の開発が種々なされている。
<< Conventional Technology >> Since mercury for mercurizing zinc is a kind of pollutant, various zinc alloys for reducing the content of mercury have been developed at present.

そのなかで、とりわけ鉛,アルミニウム,インジウム
などを含む亜鉛合金は、ガスの発生を抑制でき、低汞化
のための有力な材料であることが注目され、汞化度1.5
%以下の負極亜鉛として用いられている。
Among them, zinc alloys containing lead, aluminum, indium, etc. have been noticed as being a promising material for suppressing the generation of gas and reducing calories.
% Or less of the negative electrode zinc.

しかしながら、前記亜鉛合金を負極活物質として用い
た低水銀化アルカリ電池の場合には、ある負荷抵抗で急
速に放電性能が低下することが問題となっている。
However, in the case of a low-mercury alkaline battery using the zinc alloy as the negative electrode active material, there is a problem that the discharge performance is rapidly lowered at a certain load resistance.

この現象は、特に軽負荷放電時で特異的に発現してい
るが、これら放電性能の低下した電池の内部を分解して
調べた結果、放電生成物によって内部短絡を起こしてい
ることが判明した。
This phenomenon is particularly manifested during light load discharge, but as a result of disassembling and examining the inside of these batteries with reduced discharge performance, it was found that an internal short circuit was caused by discharge products. .

この原因として推定されることは、鉛,アルミニウ
ム,インジウムなどを含む低汞化亜鉛合金が、特定の電
流で放電されることによって導電性のある特異な酸化鉛
または水酸化鉛の結晶が成長し、該結晶がセパレータを
貫通し、その結果短絡現象を引き起こすのであろうと考
えられている。
The presumed cause of this is that a low-melting zinc alloy containing lead, aluminum, indium, etc., is discharged with a specific current, causing the growth of conductive and unique lead oxide or lead hydroxide crystals. It is believed that the crystals will penetrate the separator, resulting in a short circuit phenomenon.

従って、この対策としては、亜鉛合金の組成の変更
や、特異な結晶の成長に対して抑制効果のある添加剤の
添加などにより解決を図る方法と、物理的な方法、すな
わちセパレータを構成する繊維を密にすることによって
結晶の成長を押さえて内部短絡を封ずる方法がある。
Therefore, as a countermeasure, there is a method of solving the problem by changing the composition of the zinc alloy, adding an additive having an effect of suppressing the growth of a specific crystal, and a physical method, that is, a fiber forming the separator. There is a method of suppressing the growth of the crystal by closing the gap and sealing the internal short circuit.

この発明は後者のセパレータを工夫することによって
内部短絡現象を防止しようとするものである。
The present invention is intended to prevent the internal short circuit phenomenon by devising the latter separator.

しかし、不織布の繊維密度を高めるためには以下の問
題を解決する必要があった。
However, in order to increase the fiber density of the nonwoven fabric, it was necessary to solve the following problems.

《発明が解決しようとする問題点》 アルカリ電池のセパレータが必要とする電解液の保液
率、吸液速度などの諸特性を保持しつつ、繊維密度を必
要なだけ高めた不織布を安定して製造することは、技術
的及び経済的に困難な点が多く、未だ安全な形で実用化
はなされていない。
<< Problems to be Solved by the Invention >> While maintaining various characteristics such as electrolyte retention rate and liquid absorption rate required by an alkaline battery separator, a nonwoven fabric having a fiber density as high as possible is stably obtained. Manufacturing has many technical and economic difficulties and has not yet been put to practical use in a safe manner.

したがって、不織布の繊維密度を高めるのと同じ効果
を得ようとすると、従来に較べて、不織布の厚さを増す
か巻き重ね回数を多くしなければならず、その結果、セ
パレータの厚みが増してしまう。
Therefore, in order to obtain the same effect as increasing the fiber density of the nonwoven fabric, it is necessary to increase the thickness of the nonwoven fabric or increase the number of times of winding, as a result, and as a result, the thickness of the separator increases. I will.

そして、セパレータの厚みが増すと負極活物質及び正
極合剤の充填量が減ずるので、放電性能や貯蔵性などの
一般的性能を大幅に低下させることとなっていた。
When the thickness of the separator increases, the filling amount of the negative electrode active material and the positive electrode mixture decreases, so that general performances such as discharge performance and storability are largely reduced.

また、前記不織布に変わるセパレータ材料として、セ
ロハンを用いることが考えられているが、これ単体では
電解液の吸液速度が遅く、セパレータ内部に充填された
電解液が速やかに正極合剤中に吸収されないために、電
池組立直後の電流値が不安定になったり、セロハン自体
のイオン透過抵抗が大きいので、内部抵抗が増大して高
負荷連続放電特性が低下する欠点があり、用途が限定さ
れていた。
In addition, cellophane is considered to be used as a separator material instead of the nonwoven fabric. However, when used alone, the absorption rate of the electrolyte is slow, and the electrolyte filled in the separator is quickly absorbed into the positive electrode mixture. However, since the current value immediately after battery assembly becomes unstable or cellophane itself has a high ion permeation resistance, the internal resistance increases and the high-load continuous discharge characteristics deteriorate. Was.

さらには、前記不織布にセロハンを巻き重ねて用いる
ことも提案されていたが、両者を巻き重ねた状態で電解
液を注液する場合にはセロハンに皺が寄ってしまい、注
液用のシリンダの挿入がしにくかったり、両者間の保持
率及び吸液速度の違いによる問題が生じ、実用化にまで
は至っていないのが現状である。
Furthermore, it has also been proposed to use cellophane wound around the nonwoven fabric, but if the electrolyte is injected while both are wound, cellophane will be wrinkled, and the injection cylinder will be clogged. At present, it is difficult to insert, and there is a problem due to a difference in a retention rate and a liquid absorption rate between the two, and at present, it has not been put to practical use.

この発明は、不織布とセロハンを巻き重ねてセパレー
タを構成する場合における問題を解決し、結晶の貫通が
なく、しかもイオン浸透抵抗の小さいアルカリ電池用セ
パレータを提供することを目的とするものである。
An object of the present invention is to solve the problem of forming a separator by winding a nonwoven fabric and cellophane, and to provide an alkaline battery separator having no crystal penetration and low ion permeation resistance.

《問題点を解決するための手段》 前記目的を達成するため、この発明は、汞化度1.5%
以下の亜鉛合金粉末を負極活物質として用い、該負極活
物質と正極合剤とを筒形のセパレータを介して区画した
アルカリ電池において、前記セパレータは、セロハンと
不織布を重ね合せて巻き重ね、筒形に形成したものであ
って、前記セロハンの全面にはこれの表裏を貫通する長
さ10mm以下で1cm2で3点以上の点ないしミシン目状の切
れ目が形成されている点が要旨となっている。
<< Means for Solving the Problems >> In order to achieve the above object, the present invention provides a method for producing
In an alkaline battery in which the following zinc alloy powder is used as a negative electrode active material and the negative electrode active material and the positive electrode mixture are partitioned via a cylindrical separator, the separator is formed by stacking cellophane and a nonwoven fabric on top of each other, The point is that at least three points or perforated cuts are formed on the entire surface of the cellophane, penetrating the front and back of the cellophane, with a length of 10 mm or less and 1 cm 2 or less. ing.

そして、この発明に係るLR6形アルカリ電池は、第1
図に示す一般的構造となっている。
The LR6 type alkaline battery according to the present invention has a first
It has the general structure shown in the figure.

このアルカリ電池は、有底円筒型の電池ケース1の上
部開口の内周部を負極端子板2の周縁フランジ部に封口
ガスケット3を介して絞り加工、カール加工などによっ
てカシメ付け、電池内部を密封している。
In this alkaline battery, the inner peripheral portion of the upper opening of the bottomed cylindrical battery case 1 is crimped to the peripheral flange portion of the negative electrode terminal plate 2 via a sealing gasket 3 by a drawing process, a curling process, or the like, thereby sealing the inside of the battery. doing.

電池内部には、上端を前記封口ガスケット3の中心を
貫通して前記負極端子板2に電気的接続した集電棒4
と、該集電棒4の外周を取巻くようにしてゲル状亜鉛負
極5、及び二酸化マンガンを主体とする正極合剤6が同
心状に充填され、両者間を筒形のセパレータ7で区画し
た状態で発電要素を構成している。
Inside the battery, a current collecting rod 4 whose upper end penetrates the center of the sealing gasket 3 and is electrically connected to the negative electrode terminal plate 2.
And a gelled zinc negative electrode 5 and a positive electrode mixture 6 mainly composed of manganese dioxide are concentrically filled so as to surround the outer periphery of the current collecting rod 4, and the two are separated by a cylindrical separator 7. It constitutes a power generation element.

前記ゲル状亜鉛負極5は亜鉛合金粉末を汞化した負極
活物質を、ゲル状アルカリ電解液に混合分散したもの
で、より具体的には亜鉛に微量の鉛−アルミニウム−イ
ンジウムを添加したものであって、その汞化度は1.5%
である。
The gelled zinc negative electrode 5 is obtained by mixing and dispersing a negative electrode active material obtained by calcining a zinc alloy powder in a gelled alkaline electrolyte, and more specifically, adding a trace amount of lead-aluminum-indium to zinc. Yes, its degree of calcining is 1.5%
It is.

ゲル状電解質は、水酸化カリウム溶液とCMC等のゲル
化剤からなる組成であり、このゲル状電解質に前記汞化
亜鉛合金粉末を混合分散してある。
The gel electrolyte has a composition comprising a potassium hydroxide solution and a gelling agent such as CMC. The gelled electrolyte is obtained by mixing and dispersing the above-mentioned mercurized zinc alloy powder.

前記セパレータ7は、第2図に示すようにセロハン8
と、不織布9とを糊料を介して貼り合わせ、これを2〜
3重に巻き重ねて筒状に形成し、底部に蓋7aを貼り合わ
せたものである。
The separator 7 is made of cellophane 8 as shown in FIG.
And the non-woven fabric 9 are pasted together via a glue,
It is formed into a cylindrical shape by winding three times, and a lid 7a is attached to the bottom.

なお、単に両者を重ね合わせて筒状に形成してもよ
い。
It is to be noted that the two may be simply formed into a cylindrical shape by overlapping each other.

また、その層構造は、図示のごとくセロハン8と不織
布9の二重構造でも良いし、第3図のごとくセロハン8
の両側を不織布9でサンドイッチ状態に接着した三層構
造であってもよい。
Further, the layer structure may be a double structure of cellophane 8 and nonwoven fabric 9 as shown in the figure, or cellophane 8 as shown in FIG.
May have a three-layer structure in which both sides are bonded in a sandwich state with a nonwoven fabric 9.

前記不織布9は、ビニロンとバインダとからなるも
の、またはビニロン、およびセルロース系繊維にバイン
ダを加えたものが用いられる。
The non-woven fabric 9 is made of vinylon and a binder, or vinylon and a cellulosic fiber to which a binder is added.

そして、セロハン8は、ビスコース液を凝固浴中に流
下凝固させ、次いでセルロース再生浴中でセルロースを
再生した後脱硫し、水洗した後乾燥することによって得
られる。
The cellophane 8 is obtained by coagulating the viscose liquid in a coagulation bath under flow, regenerating the cellulose in a cellulose regeneration bath, desulfurizing, washing with water, and drying.

この厚みはビスコース液の濃度と流下量とによって定
まるが、その厚さが30μmを越えた場合には内部抵抗の
増大につながり、また15μm以下では製造技術的に安定
した生産が困難なので、その範囲を15〜30μmとするこ
ことが望ましい。
This thickness is determined by the concentration of the viscose liquid and the amount flowing down. If the thickness exceeds 30 μm, it leads to an increase in internal resistance, and if the thickness is 15 μm or less, stable production is difficult in terms of manufacturing technology. It is desirable that the range be 15 to 30 μm.

得られたセロハン8の全面には予めセロハン8の表裏
を貫通する切れ目が形成されている。
A cut that penetrates the front and back of cellophane 8 is formed on the entire surface of cellophane 8 thus obtained.

切れ目の形成方法は、セロハン8の原反を所定の長さ
および間隔で複数の刃を設けたロール間を通すことで、
長さ10mm以下で1cm2で3点以上の所定の長さおよび間隔
の切れ目が形成される。なお、ミシン目状の切れ目でな
く点であってもよい。
The cut is formed by passing the raw material of cellophane 8 between rolls provided with a plurality of blades at a predetermined length and interval.
Cuts of predetermined length and intervals of 3 or more points are formed at 1 cm 2 and 10 cm or less and 1 cm 2 . Note that a point may be used instead of a perforated cut.

切れ目の長さが長すぎると巻回状態で切れ目が開いた
り、重なったりするので、結晶成長の防止、電解液吸収
速度の向上、イオン通過抵抗の低減といった所期の目的
が達成されない。
If the length of the cuts is too long, the cuts will open or overlap in the wound state, and the desired objectives such as prevention of crystal growth, improvement in electrolyte absorption rate, and reduction in ion passage resistance will not be achieved.

また、形成密度が小さいと合剤中への電解液の吸収速
度が小さくなる。
In addition, when the formation density is low, the absorption rate of the electrolytic solution into the mixture becomes low.

したがって、その長さは10mm以下とし、切れ目が点の
場合には1cm2で3点以上あることが望ましい。
Therefore, it is desirable that the length be 10 mm or less, and if the cut is a point, 1 cm 2 and 3 or more.

前記不織布9はビニロン,およびパルプをポリビニー
ルアルコールバインダを介して混抄した厚さ80〜200μ
mの通常の不織布でよい。
The non-woven fabric 9 has a thickness of 80 to 200 μm obtained by mixing vinylon and pulp via a polyvinyl alcohol binder.
m non-woven fabric.

貼り合わせに用いる糊料としては例えばポリビニルア
ルコール水溶液、CMC、ポリアクリル酸ソーダ水溶液が
用いられる。
As a paste used for bonding, for example, an aqueous solution of polyvinyl alcohol, CMC, and an aqueous solution of sodium polyacrylate are used.

《作 用》 特異現象によって結晶が生成してもセロハンによる被
膜の介在によってセパレータに対する貫通現象は完全に
防止できる。
<< Effect >> Even if crystals are generated due to the peculiar phenomenon, the penetration phenomenon to the separator can be completely prevented by the interposition of the coating by cellophane.

セロハンに切れ目を形成することで、セパレータ内部
に充填された電解液は各切れ目を通じて正極合剤中に速
やかに吸収され、内部抵抗の増大や、高負荷放電特性に
対する影響が小さい。
By forming the cuts in the cellophane, the electrolytic solution filled in the separator is rapidly absorbed into the positive electrode mixture through each cut, and the increase in the internal resistance and the influence on the high-load discharge characteristics are small.

切れ目によって注液の際のセロハン自体の収縮による
皺の発生がない。
There is no wrinkle due to contraction of cellophane itself at the time of injection due to the cut.

《発明の効果》 以上のごとく、この発明に係るアルカリ電池用セパレ
ータを用いたアルカリ電池によれば、低汞化亜鉛合金粉
末を用いた場合での特殊放電条件下における放電異常を
防止できると同時に、高負荷放電性能の低下を防止でき
る。
<< Effect of the Invention >> As described above, according to the alkaline battery using the alkaline battery separator according to the present invention, it is possible to prevent a discharge abnormality under special discharge conditions when using a low-melting zinc alloy powder. In addition, a reduction in high-load discharge performance can be prevented.

またセロハンを用いた場合での製造上の欠点であった
皺よりによるシリンダ注入時の支障がなく、注入作業性
が向上する。
In addition, there is no hindrance at the time of cylinder injection due to wrinkles, which is a manufacturing defect when cellophane is used, and the injection workability is improved.

《実 施 例》 以下、この発明の実施例を図面を用いて詳細に説明す
る。但し、この発明は以下の各実施例にのみ限定される
ものではない。
<< Embodiment >> Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited only to the following embodiments.

以下の実施例1,実施例2.および比較例1〜3の構成の
LR6形電池をそれぞれ製作し、その性能を比較測定した
結果、以下の表1〜表4に示す結果を得られた。
Examples 1 and 2 below and configurations of Comparative Examples 1 to 3
LR6 type batteries were manufactured and their performances were compared and measured. As a result, the results shown in Tables 1 to 4 below were obtained.

実施例1. 厚さ20μmのセロハンに5mmの長さ、ピッチおよび幅
方向間隔で交互にずらした状態で、ミシン目加工を施
し、このセロハンを中に挾んだ状態でポリビニルアルコ
ール溶液を介して両側に不織布を貼り合わせ、この3層
構造のものを一重巻きにして筒形に形成してセパレータ
とし第1図のごとくLR6形アルカリ電池を組み立てた。
Example 1. A cellophane having a thickness of 20 μm was perforated while being alternately shifted by a length of 5 mm, a pitch and an interval in a width direction, and the cellophane was sandwiched therebetween through a polyvinyl alcohol solution. A non-woven fabric was stuck on both sides, and the three-layer structure was formed into a single roll and formed into a cylindrical shape, which was used as a separator to assemble an LR6 type alkaline battery as shown in FIG.

なお、不織布は、ビニロン65%,リンターパルプ20
%,ポリビニルアルコールバインダ15%の組成の厚さ14
0μmのものを用いた。
The non-woven fabric is made of 65% vinylon and 20 linter pulp.
%, Polyvinyl alcohol binder 15% composition thickness 14
The thing of 0 μm was used.

またセパレータ内部に充填されるゲル状亜鉛負極に用
いる亜鉛合金粉末は、汞化率1.0%の亜鉛合金粉末であ
って、その組成は、500ppm鉛,500ppmアルミニウム,200p
pmインジウム、残部亜鉛である。
The zinc alloy powder used for the gelled zinc negative electrode to be filled in the separator is a zinc alloy powder having a 1.0% calcining ratio, and has a composition of 500 ppm lead, 500 ppm aluminum, 200 p
pm indium, balance zinc.

実施例2. 厚さ20μmのセロハンに1cm2当り10点の直径0.05〜0.
1mmの点穴加工を施し、これに前記第1実施例と同一の
不織布を3層構造にサンドイッチ状態に貼り合わせ、こ
の3層構造のものを一重巻きしてセパレータとし、これ
を用いてLR6形アルカリ電池を組み立てた。
Example 2 Cellophane having a thickness of 20 μm has a diameter of 0.05 to 0 at 10 points per cm 2 .
The same non-woven fabric as in the first embodiment was bonded in a sandwich state to a three-layer structure, and the three-layer structure was single-wound to form a separator. The battery was assembled.

なお、その他の組成は前記第1実施例と同様である。 The other composition is the same as in the first embodiment.

比較例1. 前記セロハンに切れ目加工しない状態で不織布ととも
に3層構造とし、これを一重巻きしてセパレータとし、
これを用いてLR6形アルカリ電池を組み立てた。その他
の構成は前記第1,第2実施例と同様である。
Comparative Example 1. The cellophane had a three-layer structure together with the non-woven fabric in a state where the cellophane was not cut, and this was single-wound to form a separator,
Using this, an LR6 alkaline battery was assembled. Other configurations are the same as in the first and second embodiments.

比較例2. 通常用いられている不織布を3重に巻き重ねてセパレ
ータを構成し、これを用いてLR6形アルカリ電池を組み
立てた。
Comparative Example 2. A commonly used nonwoven fabric was wound three times to form a separator, and an LR6 type alkaline battery was assembled using the separator.

なお、負極内部に充填する亜鉛合金粉末は前記第1,第
2実施例と同様の汞化率1.0%亜鉛合金粉末を用いた。
The zinc alloy powder used to fill the inside of the negative electrode was the same as the first and second embodiments, that is, a zinc alloy powder having a 1.0% calorization ratio.

比較例3. 通常使用されているアルカリ電池であって、汞化率3.
0%の粉末亜鉛をゲル状亜鉛負極に用いた。
Comparative Example 3. A commonly used alkaline battery having a rate of calcining of 3.
0% powdered zinc was used for the gelled zinc negative electrode.

*なお、放電性能については、比較例3.の初度における
性能を100としその指数で表示した。
* The discharge performance was indicated by an index with the performance at the first time of Comparative Example 3 as 100.

以上の各表に示す結果からも明らかなように実施例1,
2のアルカリ電池では特殊放電条件下での放電異状がな
く、しかも高負荷放電性能の低下が少ない。
As is clear from the results shown in the above tables, Example 1,
In the alkaline battery of No. 2, there is no discharge abnormality under special discharge conditions, and the reduction in high-load discharge performance is small.

また組立直後での短絡電流値も十分にあり、内部の電
解液がセパレータを通じて速やかに正極合剤側に吸収さ
れること、および保存後の内部抵抗の増加が小さいこと
が示唆されている。
In addition, the short-circuit current value immediately after assembly is sufficient, suggesting that the internal electrolyte solution is quickly absorbed by the positive electrode mixture through the separator, and that the increase in internal resistance after storage is small.

これに対し、比較例1のアルカリ電池では、表2に示
すように組立直後での短絡電流値が充分に得られない。
また、比較例2のアルカリ電池では、表1に示すように
特殊放電条件下での放電異常が多く認められた。そし
て、比較例3のアルカリ電池では組立直後の短絡電流値
と組立1ヶ月後の短絡電流値は充分に得られ(表2、表
3参照)、かつ特殊放電条件下での放電異常も認められ
なかったが(表1参照)、表4に示すように初度の放電
特性に対する保存後の放電特性の低下度合いが大きく、
放電特性の繊維性能が充分でないという難点がある。
On the other hand, in the alkaline battery of Comparative Example 1, as shown in Table 2, a sufficient short-circuit current value immediately after assembly was not obtained.
Further, in the alkaline battery of Comparative Example 2, as shown in Table 1, many abnormal discharges were observed under the special discharge conditions. In the alkaline battery of Comparative Example 3, a short-circuit current value immediately after assembly and a short-circuit current value one month after assembly were sufficiently obtained (see Tables 2 and 3), and abnormal discharge was observed under special discharge conditions. However, as shown in Table 4, the degree of decrease in the discharge characteristics after storage with respect to the initial discharge characteristics was large, as shown in Table 4.
There is a disadvantage that the fiber performance of the discharge characteristics is not sufficient.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明に適用されるLR6形アルカリ電池の縦
断面図、第2図はセパレータの層構造を示す拡大断面
図、第3図はセパレータの他の層構造を示す拡大断面図
である。 5……ゲル状亜鉛負極 6……正極合剤 7……セパレータ 8……セロハン 9……不織布
FIG. 1 is a longitudinal sectional view of an LR6 type alkaline battery applied to the present invention, FIG. 2 is an enlarged sectional view showing a layer structure of a separator, and FIG. 3 is an enlarged sectional view showing another layer structure of a separator. . 5: Gelled zinc negative electrode 6: Positive electrode mixture 7: Separator 8: Cellophane 9: Non-woven fabric

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−4262(JP,A) 特開 昭59−14262(JP,A) 特開 昭51−142637(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 2/16,2/18,6/06──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-4262 (JP, A) JP-A-59-14262 (JP, A) JP-A-51-142637 (JP, A) (58) Field (Int.Cl. 6 , DB name) H01M 2 / 16,2 / 18,6 / 06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】汞化度1.5%以下の亜鉛合金粉末を負極活
物質として用い、該負極活物質と正極合剤とを筒形のセ
パレータを介して区画したアルカリ電池において、前記
セパレータは、セロハンと不織布を重ね合せて巻き重
ね、筒形に形成したものであって、前記セロハンの全面
にはこれの表裏を貫通する長さ10mm以下で1cm2で3点以
上の点ないしミシン目状の切れ目が形成されていること
を特徴とするアルカリ電池用セパレータ。
1. An alkaline battery in which a zinc alloy powder having a degree of calorification of 1.5% or less is used as a negative electrode active material and the negative electrode active material and the positive electrode mixture are separated via a cylindrical separator, wherein the separator is a cellophane. And a non-woven fabric are overlapped and wound to form a cylindrical shape, and three or more points or perforated cuts of 1 cm 2 or less with a length of 10 mm or less penetrating the front and back of the cellophane are formed on the entire surface of the cellophane. A separator for an alkaline battery, wherein a separator is formed.
JP1011833A 1989-01-23 1989-01-23 Alkaline battery separator Expired - Fee Related JP2798947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1011833A JP2798947B2 (en) 1989-01-23 1989-01-23 Alkaline battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1011833A JP2798947B2 (en) 1989-01-23 1989-01-23 Alkaline battery separator

Publications (2)

Publication Number Publication Date
JPH02195646A JPH02195646A (en) 1990-08-02
JP2798947B2 true JP2798947B2 (en) 1998-09-17

Family

ID=11788753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1011833A Expired - Fee Related JP2798947B2 (en) 1989-01-23 1989-01-23 Alkaline battery separator

Country Status (1)

Country Link
JP (1) JP2798947B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59604049D1 (en) * 1996-07-09 2000-02-03 Leclanche Sa Rechargeable alkaline-manganese battery and process for its manufacture

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142637A (en) * 1975-06-03 1976-12-08 Seiko Instr & Electronics Silver peroxide battery
JPS584262A (en) * 1981-06-29 1983-01-11 Hitachi Maxell Ltd Argentic-oxide battery
JPS5914262A (en) * 1982-07-15 1984-01-25 Kawaguchiko Seimitsu Kk Cell of button type

Also Published As

Publication number Publication date
JPH02195646A (en) 1990-08-02

Similar Documents

Publication Publication Date Title
DE967708C (en) Alkaline dry element
DE3787224T2 (en) Fast rechargeable sealed lead acid battery with extremely thin electrode plates.
US3669746A (en) Separators for secondary alkaline batteries having a zinc-containing electrode
DE3824101C2 (en) Electrochemical cell with a microporous separator
JP2938315B2 (en) Alkaline battery separator
US4041221A (en) Zinc electrodes and methods of making same
WO2017150439A1 (en) Alkaline battery separator and alkaline battery
JPH0927342A (en) Cylindrical battery
JP5419530B2 (en) Battery separator and battery
KR20010074765A (en) Cylindrical electrochemical cell with cup seal for separator
JP2798947B2 (en) Alkaline battery separator
USRE23883E (en) Cuprous chloride electrodes
JP2017157349A (en) Alkali battery separator and alkali battery
JPH0454691Y2 (en)
US3261715A (en) Negative electrode assembly for alkaline batteries
DE19504818B4 (en) Layered cell
CN214123912U (en) Novel pole piece structure of pole lug wrapped winding type small polymer lithium ion battery
JPH07326370A (en) Cylindrical alkaline battery
JP4270352B2 (en) Air zinc battery
CN207977418U (en) A kind of anti-breakdown Ni-MH battery of high security
JPS6276251A (en) Air-cell
JPH0318308B2 (en)
JP3374601B2 (en) Clad sealed lead-acid battery
JP2002279957A (en) Separator paper for alkaline battery
JPH02253573A (en) Air battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees