JPH02195646A - Separator for alkaline cell - Google Patents

Separator for alkaline cell

Info

Publication number
JPH02195646A
JPH02195646A JP1011833A JP1183389A JPH02195646A JP H02195646 A JPH02195646 A JP H02195646A JP 1011833 A JP1011833 A JP 1011833A JP 1183389 A JP1183389 A JP 1183389A JP H02195646 A JPH02195646 A JP H02195646A
Authority
JP
Japan
Prior art keywords
cellophane
separator
cuttings
nonwoven fabric
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1011833A
Other languages
Japanese (ja)
Other versions
JP2798947B2 (en
Inventor
Kenichi Shinoda
健一 篠田
Hirohiko Ota
太田 廣彦
Kiyohide Tsutsui
清英 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP1011833A priority Critical patent/JP2798947B2/en
Publication of JPH02195646A publication Critical patent/JPH02195646A/en
Application granted granted Critical
Publication of JP2798947B2 publication Critical patent/JP2798947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To prevent a discharge abnormality and the deterioration of the high load discharge capacity by superposing and winding a cellophane and a nonwoven fabric, making them into a cylindrical form, and forming dots or perforation cuttings to penetrate from the front side to the rear side of the whole surface of the cellophane. CONSTITUTION:A gel-form zinc negative electrode 5 and a positive electrode composite 6 mainly of manganese dioxide are filled concentrically surrounding the periphery of a collector rod 4, and a generator element is composed under the condition to partition both electrodes by a cylindrical separator 7. The separator 7 is composed by labelling a cellophane 8 and a nonwoven fabric 9 through a paste material, superposing them two or three folds to form in a cylindrical form, and labelling a lid 7a at the bottom. On the whole surface of the cellophane 8, cuttings to penetrate from the front side to the rear side of the cellophane 8 are formed beforehand. As a result, a penetrating phenomenon to the separator 7 can be perfectly prevented by the presence of the membrane of the cellophane 8 even though crystals are generated by an abnormal condition. By forming the cuttings to the cellophane 8, the electrolyte filled inside the separator 7 is absorbed to the inside of the positive electrode composite rapidly through the cuttings, and the increase of the inner resistance and the influence to the high load discharge capacity are restricted.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、鉛、アルミニウム、インジウムなどを含む
亜鉛合金粉末を負極活物質として用いた低水銀化アルカ
リ電池に関し、特にこの負極活物質と正極合剤とを区画
するセパレータの改良に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a low mercury alkaline battery using a zinc alloy powder containing lead, aluminum, indium, etc. as a negative electrode active material, and particularly relates to a low mercury alkaline battery using a zinc alloy powder containing lead, aluminum, indium, etc. The present invention relates to an improvement in a separator that separates a mixture from a mixture.

(従来の技術) 亜鉛の氷化のための水銀は、一種の公害物質であるとこ
ろから、現在では水銀の含有量を低下させるための亜鉛
合金の開発が種々なされている。
(Prior Art) Since mercury, which causes zinc to freeze, is a type of pollutant, various zinc alloys are currently being developed to reduce the mercury content.

そのなかで、とりわけ鉛、アルミニウム、インジウムな
どを含む亜鉛合金は、ガスの発生を抑制でき、低氷化の
ための有力な材料であることが注目され、氷化度1.5
%以下の負極亜鉛として用いられている。
Among them, zinc alloys containing lead, aluminum, indium, etc. are attracting attention because they can suppress gas generation and are effective materials for reducing freezing, with a degree of freezing of 1.5
% or less is used as negative electrode zinc.

しかしながら、前記亜鉛合金を負極活物質として用いた
低水銀化アルカリ電池の場合には、ある負荷抵抗で急速
に放電性能が低下することが問題となっている。
However, in the case of a low mercury alkaline battery using the zinc alloy as a negative electrode active material, there is a problem in that the discharge performance rapidly deteriorates at a certain load resistance.

この現象は、特に軽負荷放電時で特異的に発現している
が、これら放電性能の低下した電池の内部を分解して調
べた結果、放電生成物によって内部短絡を起こしている
ことが判明した。
This phenomenon occurs specifically during light load discharge, but after disassembling and examining the inside of these batteries with degraded discharge performance, it was found that internal short circuits were caused by discharge products. .

この原因として推定されることは、鉛、アルミニウム、
インジウムなどを含む低汞化亜鉛合金が、特定の電流で
放電されることによって導電性のある特異な酸化鉛また
は水酸化鉛の結晶が成長し、該結晶がセパレータを貫通
し、その結果短絡現象を引き起こすのであろうと考えら
れている。
The causes are thought to be lead, aluminum,
When a low-fragility zinc alloy containing indium etc. is discharged with a specific current, a unique conductive lead oxide or lead hydroxide crystal grows, which penetrates the separator, resulting in a short circuit phenomenon. It is thought that it may cause

従って、この対策としては、亜鉛合金の組成の変更や、
特異な結晶の成長に対して抑制効果のある添加剤の添加
などにより解決を図る方法と、物理的な方法、すなわち
セパレータを構成する繊維を密にすることによって結晶
の成長を押さえて内部短絡を封する方法がある。
Therefore, as a countermeasure, changing the composition of the zinc alloy,
There are two methods to solve the problem, such as adding additives that have the effect of suppressing the growth of peculiar crystals, and a physical method, which suppresses crystal growth and prevents internal short circuits by making the fibers that make up the separator denser. There is a way to seal it.

この発明は後者のセパレータを工夫することによって内
部短絡現象を防止しようとするものである。
This invention attempts to prevent the internal short circuit phenomenon by devising the latter separator.

しかし、不織布の繊維密度を高めるためには以下の問題
を解決する必要があった。
However, in order to increase the fiber density of nonwoven fabrics, it was necessary to solve the following problems.

(発明が解決しようとする問題点) アルカリ電池のセパレータが必要とする電解液の保液率
、吸液速度などの諸特性を保持しつつ、繊維密度を必要
なだけ高めた不織布を安定して製造することは、技術的
及び経済的に困難な点が多く、未だ完全な形で実用化は
なされていない。
(Problem to be solved by the invention) It is possible to stably produce a nonwoven fabric with a fiber density as high as necessary while maintaining various properties such as electrolyte retention rate and liquid absorption rate required by alkaline battery separators. There are many technical and economical difficulties in manufacturing it, and it has not yet been fully put into practical use.

したがって、不織布の繊維密度を高めるのと同じ効果を
得ようとすると、従来に較べて、不織布の厚さを増すか
巻き重ね回数を多くしなければならず、その結果、セパ
レータの厚みが増してしまう。
Therefore, in order to obtain the same effect as increasing the fiber density of a nonwoven fabric, it is necessary to increase the thickness of the nonwoven fabric or increase the number of times it is wrapped, which results in an increase in the thickness of the separator. Put it away.

そして、セパレータの厚みが増すと負極活物質及び正極
合剤の充填量が減するので、放電性能や貯蔵性などの一
般的性能を大幅に低下させることとなっていた。
Furthermore, as the thickness of the separator increases, the amount of negative electrode active material and positive electrode mixture to be filled decreases, resulting in a significant reduction in general performance such as discharge performance and storability.

また、前記不織布に変わるセパレータ材料として、セロ
ハンを用いることが考えられているが、これ単体では電
解液の吸液速度が遅く、セパレータ内部に充填された電
解液が速やかに正極合剤中に吸収されないために、電池
組立直後の電流値が不安定になったり、セロハン自体の
イオン透過抵抗が大きいので、内部抵抗が増大して高負
荷連続放電特性が低下する欠点があり、用途が限定され
ていた。
In addition, cellophane has been considered as a separator material instead of the nonwoven fabric, but cellophane alone has a slow electrolyte absorption rate, and the electrolyte filled inside the separator is quickly absorbed into the positive electrode mixture. As a result, the current value immediately after battery assembly becomes unstable, and cellophane itself has a high ion permeation resistance, which increases internal resistance and reduces high-load continuous discharge characteristics, which limits its use. Ta.

さらには、前記不織布にセロハンを巻き重ねて用いるこ
とも提案されていたが、両者を巻き重ねた状態で電解液
を注液する場合にはセロハンに皺が寄ってしまい、注液
用のシリンダの挿入がしにくかったり、両者間の保液率
及び吸液速度の違いによる問題が生じ、実用化にまでは
至っていないのが現状である。
Furthermore, it has been proposed to use cellophane wrapped around the non-woven fabric, but when injecting electrolyte with both layers wrapped, the cellophane gets wrinkled and the injection cylinder is At present, it has not been put into practical use because it is difficult to insert and problems arise due to differences in liquid retention rate and liquid absorption rate between the two.

この発明は、不織布とセロハンを巻き重ねてセパレータ
を構成する場合における問題を解決し、結晶の貫通がな
く、しかもイオン浸透抵抗の小さいアルカリ電池用セパ
レータを提供することを目的とするものである。
The object of the present invention is to solve the problems encountered when constructing a separator by wrapping nonwoven fabric and cellophane, and to provide a separator for alkaline batteries that does not have crystal penetration and has low ion penetration resistance.

(問題点を解決するための手段) 前記目的を達成するため、この発明は、氷化度1.5%
以下の亜鉛合金粉末を負極活物質として用い、該負極活
物質と正極合剤とを筒形のセパレータを介して区画した
アルカリ電池において、前記セパレータは、セロハンと
不織布を重ね合せて巻き重ね、筒形に形成したものであ
って、前記セロハンの全面にはこれの表裏を貫通する点
ないしミシン目状の切れ目が形成されている点が要旨と
なっている。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides
In an alkaline battery in which the following zinc alloy powder is used as a negative electrode active material, and the negative electrode active material and the positive electrode mixture are separated through a cylindrical separator, the separator is formed by wrapping cellophane and nonwoven fabric in a cylindrical shape. The gist is that the entire surface of the cellophane has dots or perforation-like cuts that pass through the front and back sides of the cellophane.

そして、この発明に係るLR6形アルカリ電池は、第1
図に示す一般的構造となっている。
The LR6 type alkaline battery according to the present invention has a first
The general structure is shown in the figure.

このアルカリ電池は、有底円筒型の電池ケース1の上部
開口の内周部を負極端子板2の周縁フランジ部に封口ガ
スケット3を介して絞り加工、カール加工などによって
カシメ付け、電池内部を密封している。
This alkaline battery is manufactured by caulking the inner periphery of the upper opening of a bottomed cylindrical battery case 1 to the peripheral flange of a negative electrode terminal plate 2 via a sealing gasket 3 by drawing or curling, thereby sealing the inside of the battery. are doing.

電池内部には、上端を前記封口ガスケット3の中心を貫
通して前記負極端子板2に電気的接続した集電棒4と、
該集電棒4の外周を取巻くようにしてゲル状亜鉛負極5
、及び二酸化マンガンを主体とする正極合剤6が同心状
に充填され、両者間を筒形のセパレータ7で区画した状
態で発電要素を構成している。
Inside the battery is a current collector rod 4 whose upper end passes through the center of the sealing gasket 3 and is electrically connected to the negative terminal plate 2;
A gelled zinc negative electrode 5 is arranged around the outer periphery of the current collector rod 4.
, and a positive electrode mixture 6 mainly composed of manganese dioxide are filled concentrically and separated by a cylindrical separator 7 to constitute a power generation element.

前記ゲル状亜鉛負極5は亜鉛合金粉末を末代した負極活
物質を、ゲル状アルカリ電解液に混合分散したもので、
より具体的には亜鉛に微量の鉛−アルミニウム−インジ
ウムを添加したものであって、その氷化度は1.5%で
ある。
The gelled zinc negative electrode 5 is made by mixing and dispersing a negative electrode active material containing zinc alloy powder in a gelled alkaline electrolyte,
More specifically, it is made by adding a trace amount of lead-aluminum-indium to zinc, and its degree of freezing is 1.5%.

ゲル状電解質は、水酸化カリウム溶液とCMC等のゲル
化剤からなる組成であり、このゲル状電解質に前記氷化
亜鉛合金粉末を混合分散しである。
The gel electrolyte has a composition consisting of a potassium hydroxide solution and a gelling agent such as CMC, and the frozen zinc alloy powder is mixed and dispersed in this gel electrolyte.

前記セパレータ7は、第2図に示すようにセロハン8と
、不織布9とを糊料を介して貼り合わせ、これを2〜3
重に巻き重ねて筒状に形成し、底部に蓋7aを貼り合わ
せたものである。
As shown in FIG. 2, the separator 7 is made by pasting together cellophane 8 and a nonwoven fabric 9 through a paste, and
It is formed into a cylindrical shape by being rolled up in layers, and a lid 7a is attached to the bottom.

なお、単に両者を重ね合わせて筒状に形成してもよい。Note that the two may be simply overlapped to form a cylindrical shape.

また、その層構造は、図示のごとくセロハン8と不織布
9の二層構造でも良いし、第3図のごとくセロハン8の
両側を不織布9でサンドイッチ状態に接着した三層構造
であってもよい。
The layered structure may be a two-layered structure of cellophane 8 and a nonwoven fabric 9 as shown in the figure, or a three-layered structure in which both sides of cellophane 8 are sandwiched with nonwoven fabric 9 as shown in FIG.

前記不織布9は、ビニロンとバインダとからなるもの、
またはビニロン、およびセルロース系繊維にバインダを
加えたものが用いられる。
The nonwoven fabric 9 is made of vinylon and a binder,
Alternatively, vinylon and cellulose fibers with a binder added are used.

そして、セロハン8は、ビスコース液を凝固洛中に流下
凝固させ、次いでセルロース再生浴中でセルロースを再
生した後脱硫し、水洗した後乾燥することによって得ら
れる。
Cellophane 8 is obtained by coagulating the viscose liquid in a coagulation tank, then regenerating cellulose in a cellulose regeneration bath, desulfurizing it, washing it with water, and drying it.

この厚みはビスコース液の濃度と流下量とによって定ま
るが、その厚さが30μmを越えた場合には内部抵抗の
増大につながり、また15μm以下では製造技術的に安
定した生産が困難なので、その範囲を15〜30μmと
するこことが望ましい。
This thickness is determined by the concentration and flow rate of the viscose liquid, but if the thickness exceeds 30 μm, it will lead to an increase in internal resistance, and if the thickness is less than 15 μm, stable production is difficult due to the manufacturing technology. It is desirable that the range is 15 to 30 μm.

得られたセロハン8の全面には予めセロハン8の表裏を
貫通する切れ目が形成されている。
Cuts passing through the front and back of the cellophane 8 are previously formed on the entire surface of the obtained cellophane 8.

切れ目の形成方法は、セロハン8の原反を所定の長さお
よび間隔で複数の刃を設けたロール間を通すことで、所
定の長さおよび間隔の切れ目が形成される。なお、ミシ
ン目状の切れ目でなく点であってもよい。
The cut is formed by passing the original cellophane 8 between rolls provided with a plurality of blades at a predetermined length and interval, thereby forming cuts of a predetermined length and interval. Note that the cut may be a point instead of a perforation.

切れ目の長さが長すぎると巻回状態で切れ目が開いたり
、重なったりするので、結晶成長の防止、電解液吸収速
度の向上、イオン透過抵抗の低減といった所期の目的が
達成されない。
If the length of the cuts is too long, the cuts will open or overlap in the wound state, making it impossible to achieve the intended objectives of preventing crystal growth, improving the electrolyte absorption rate, and reducing ion permeation resistance.

また、形成密度が小さいと合剤中への電解液の吸収速度
が小さくなる。
Furthermore, if the formation density is low, the rate of absorption of the electrolyte into the mixture will be low.

したがって、その長さは10關以下とし、切れ目が点の
場合には1c−で3点以上あることが望ましい。
Therefore, the length should be 10 degrees or less, and if the cut is a point, it is desirable that there be 3 or more points in 1c-.

前記不織布9はビニロン、およびパルプをポリビニルア
ルコールバインダを介して混抄した厚さ80〜200μ
mの通常の不織布でよい。
The nonwoven fabric 9 is made by mixing vinylon and pulp with a polyvinyl alcohol binder and has a thickness of 80 to 200 μm.
A normal non-woven fabric of m may be used.

貼り合わせに用いる糊料としては例えばポリビニールア
ルコール水溶液、CMC,ポリアクリル酸ソーダ水溶液
が用いられる。
As the glue used for bonding, for example, a polyvinyl alcohol aqueous solution, CMC, and a polysodium acrylate aqueous solution are used.

(作 用) 特異現象によって結晶が生成してもセロハンによる被膜
の介在によってセパレータに対する貫通現象は完全に防
止できる。
(Function) Even if crystals are formed due to a peculiar phenomenon, penetration into the separator can be completely prevented by the interposition of the cellophane film.

セロハンに切れ目を形成することで、セパレータ内部に
充填された電解液は各切れ目を通じて正極合剤中に速や
かに吸収され、内部抵抗の増大や、高負荷放電特性に対
する影響が小さい。
By forming cuts in the cellophane, the electrolytic solution filled inside the separator is quickly absorbed into the positive electrode mixture through each cut, thereby minimizing the increase in internal resistance and the effect on high-load discharge characteristics.

切れ目によって注液の際のセロハン自体の収縮による皺
の発生がない。
Due to the cut, there is no wrinkles caused by the shrinkage of the cellophane itself during injection.

(発明の効果) 以上のごとく、この発明に係るアルカリ電池用セパレー
タを用いたアルカリ電池によれば、低汞化亜鉛合金粉末
を用いた場合での特殊放電条件下における放電異常を防
止できると同時に、高負荷放電性能の低下を防止できる
(Effects of the Invention) As described above, according to the alkaline battery using the alkaline battery separator according to the present invention, it is possible to prevent discharge abnormalities under special discharge conditions when using low flux zinc alloy powder, and at the same time , it is possible to prevent deterioration of high load discharge performance.

またセロハンを用いた場合での製造上の欠点であった皺
よりによるシリンダ注入時の支障がなく、注入作業性が
向上する。
Further, there is no problem during injection into the cylinder due to wrinkles, which was a manufacturing defect when cellophane is used, and injection workability is improved.

(実 施 例) 以下、この発明の実施例を図面を用いて詳細に説明する
。但し、この発明は以下の各実施例にのみ限定されるも
のではない。
(Example) Hereinafter, an example of the present invention will be described in detail using the drawings. However, this invention is not limited only to the following examples.

以下の実施例1.実施例2.および比較例1〜3の構成
のLR6形電池をそれぞれ製作し、その性能を比較測定
した結果、以下の表1〜表4に示す結果を得られた。
Example 1 below. Example 2. LR6 type batteries having the configurations of Comparative Examples 1 to 3 were manufactured respectively, and their performance was comparatively measured. As a result, the results shown in Tables 1 to 4 below were obtained.

実施例1゜ 厚さ20μmのセロハンに5龍の長さ、ピッチおよび幅
方向間隔で交互にずらした状態で、ミシン目加工を施し
、このセロハンを中に挾んだ状態でポリビニルアルコー
ル溶液を介して両側に不織布を貼り合わせ、この3層構
造のものを一重巻きにじ−て筒形に形成してセパレータ
とし第1図のごと< LR6形アルカリ電池を組み立て
た。
Example 1 A piece of cellophane with a thickness of 20 μm was perforated with alternating lengths, pitches, and intervals in the width direction. A nonwoven fabric was pasted on both sides, and this three-layer structure was rolled in a single layer to form a cylindrical shape and used as a separator to assemble an LR6 type alkaline battery as shown in FIG.

なお、不織布は、ビニロン65%、リンターパルプ20
%、ポリビニルアルコールバインダ15%の組成の厚さ
140μmのものを用いた。
The nonwoven fabric is 65% vinylon and 20% linter pulp.
% and a polyvinyl alcohol binder of 15% and a thickness of 140 μm.

またセパレータ内部に充填されるゲル状亜鉛負極に用い
る亜鉛合金粉末は、氷化率1.0%の亜鉛合金粉末であ
って、その組成は、5001)9重鉛。
The zinc alloy powder used for the gelled zinc negative electrode filled inside the separator is a zinc alloy powder with a freezing rate of 1.0%, and its composition is 5001)9 heavy lead.

500pp量アルミニウム、200pp■インジウム、
残部亜鉛である。
500pp aluminum, 200pp indium,
The balance is zinc.

実施例2゜ 厚さ20μmのセロハンに1 cd当り10点の直径0
.05〜0.1mmの点大加工を施し、これに前記第1
実施例と同一の不織布を3層構造にサンドイッチ状態に
貼り合わせ、この3層構造のものを一重巻きしてセパレ
ータとし、これを用いてLR6形アルカリ電池を組み立
てた。
Example 2: 10 points per CD on 20 μm thick cellophane with a diameter of 0
.. A dot size process of 0.05 to 0.1 mm is performed, and the above-mentioned first
The same nonwoven fabric as in the example was laminated in a three-layer structure in a sandwich state, and the three-layer structure was wrapped in a single layer to form a separator, and an LR6 type alkaline battery was assembled using this.

なお、その他の構成は前記第1実施例と同様である。Note that the other configurations are the same as those of the first embodiment.

比較例1゜ 前記セロハンに切れ目加工しない状態で不織布とともに
3層構造とし、これを−重巻きしてセパレータとし、こ
れを用いてLR6形アルカリ電池を組み立てた。その他
の構成は前記第1.第2実施例と同様である。
Comparative Example 1 The above-mentioned cellophane was made into a three-layer structure together with a non-woven fabric without cutting, and this was wrapped in layers to form a separator, and an LR6 type alkaline battery was assembled using this. Other configurations are as described in 1. This is the same as the second embodiment.

比較例2゜ 通常用いられている不織布を3重に巻き重ねてセパレー
タを構成し、これを用いてLR6形アルカリ電池を組み
立てた。
Comparative Example 2 A separator was constructed by wrapping a commonly used nonwoven fabric in three layers, and an LR6 type alkaline battery was assembled using the separator.

なお、負極内部に充填する亜鉛合金粉末は前記第1.第
2実施例と同様の汞化率1.0%亜鉛合金粉末を用いた
Incidentally, the zinc alloy powder to be filled inside the negative electrode is the same as the above-mentioned No. 1. The same zinc alloy powder as in the second example with a viscosity of 1.0% was used.

比較例3゜ 通常使用されているアルカリ電池であって、氷化率3゜
0%の粉末亜鉛をゲル状亜鉛負極に用いた。
Comparative Example 3 In a commonly used alkaline battery, powdered zinc with a freezing rate of 3.0% was used as a gelled zinc negative electrode.

表1 (3,9重5M/D放電時の異状発生個数)表3゜ (組立1ケ月後の短絡電流) 表2 (組立30分後の短絡電流) 表4゜ (1Ω連続放電時の放電特性) *なお、放電性能については、比較例3.の初度におけ
る性能を100としその指数で表示した。
Table 1 (Number of abnormalities occurring during 3,9-fold 5M/D discharge) Table 3゜ (Short circuit current after 1 month of assembly) Table 2 (Short circuit current after 30 minutes of assembly) Table 4゜ (Discharge during 1Ω continuous discharge) Characteristics) *For discharge performance, Comparative Example 3. The initial performance was set as 100 and expressed as an index.

以上の3表に示す結果からも明らかなように実施例1,
2のアルカリ電池では特殊放電条件下での放電異状がな
く、しかも高負荷放電性能の低下が少ない。
As is clear from the results shown in the three tables above, Example 1,
In the alkaline battery No. 2, there is no discharge abnormality under special discharge conditions, and there is little deterioration in high-load discharge performance.

また組立直後での短絡電流値も十分にあり、内部の電解
液がセパレータを通じて速やかに正極合剤側に吸収され
ること、および保存後の内部抵抗の増加が小さいことが
示唆されている。
In addition, the short circuit current value immediately after assembly was sufficient, suggesting that the internal electrolyte was quickly absorbed into the positive electrode mixture through the separator and that the increase in internal resistance after storage was small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に適用されるLR6形アルカリ電池の
縦断面図、第2図はセパレータの層構造を示す拡大断面
図、第3図はセパレータの他の層構造を示す拡大断面図
である。 5・・・ゲル状亜鉛負極 6・・・正極合剤 7・・・セパレータ 8・・・セロハン 9・・・不織布
FIG. 1 is a longitudinal sectional view of an LR6 type alkaline battery applied to the present invention, FIG. 2 is an enlarged sectional view showing the layer structure of the separator, and FIG. 3 is an enlarged sectional view showing another layer structure of the separator. . 5... Gel-like zinc negative electrode 6... Positive electrode mixture 7... Separator 8... Cellophane 9... Nonwoven fabric

Claims (1)

【特許請求の範囲】[Claims] (1)汞化度1.5%以下の亜鉛合金粉末を負極活物質
として用い、該負極活物質と正極合剤とを筒形のセパレ
ータを介して区画したアルカリ電池において、前記セパ
レータは、セロハンと不織布を重ね合せて巻き重ね、筒
形に形成したものであって、前記セロハンの全面にはこ
れの表裏を貫通する点ないしミシン目状の切れ目が形成
されていることを特徴とするアルカリ電池用セパレータ
(1) In an alkaline battery in which a zinc alloy powder with a degree of viscosity of 1.5% or less is used as a negative electrode active material, and the negative electrode active material and the positive electrode mixture are separated through a cylindrical separator, the separator is made of cellophane. an alkaline battery, which is formed into a cylindrical shape by overlapping and rolling a nonwoven fabric, and wherein the entire surface of the cellophane is formed with dots or perforation-like cuts that pass through the front and back sides of the cellophane. separator.
JP1011833A 1989-01-23 1989-01-23 Alkaline battery separator Expired - Fee Related JP2798947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1011833A JP2798947B2 (en) 1989-01-23 1989-01-23 Alkaline battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1011833A JP2798947B2 (en) 1989-01-23 1989-01-23 Alkaline battery separator

Publications (2)

Publication Number Publication Date
JPH02195646A true JPH02195646A (en) 1990-08-02
JP2798947B2 JP2798947B2 (en) 1998-09-17

Family

ID=11788753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1011833A Expired - Fee Related JP2798947B2 (en) 1989-01-23 1989-01-23 Alkaline battery separator

Country Status (1)

Country Link
JP (1) JP2798947B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0818837A1 (en) * 1996-07-09 1998-01-14 Leclanché S.A. Rechargeable alkaline manganese oxyde battery and process for its manufacturing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142637A (en) * 1975-06-03 1976-12-08 Seiko Instr & Electronics Silver peroxide battery
JPS584262A (en) * 1981-06-29 1983-01-11 Hitachi Maxell Ltd Argentic-oxide battery
JPS5914262A (en) * 1982-07-15 1984-01-25 Kawaguchiko Seimitsu Kk Cell of button type

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142637A (en) * 1975-06-03 1976-12-08 Seiko Instr & Electronics Silver peroxide battery
JPS584262A (en) * 1981-06-29 1983-01-11 Hitachi Maxell Ltd Argentic-oxide battery
JPS5914262A (en) * 1982-07-15 1984-01-25 Kawaguchiko Seimitsu Kk Cell of button type

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0818837A1 (en) * 1996-07-09 1998-01-14 Leclanché S.A. Rechargeable alkaline manganese oxyde battery and process for its manufacturing

Also Published As

Publication number Publication date
JP2798947B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
JP6099328B2 (en) Alkaline battery separator and alkaline battery
US3669746A (en) Separators for secondary alkaline batteries having a zinc-containing electrode
DE3824101C2 (en) Electrochemical cell with a microporous separator
US11217784B2 (en) Positive electrode structure for secondary battery
WO2017150439A1 (en) Alkaline battery separator and alkaline battery
CN201345383Y (en) Lithium ion secondary battery
US6099987A (en) Cylindrical electrochemical cell with cup seal for separator
JPH0279363A (en) Separator for metal-air type electrochemical battery having alkaline electrolyte
US11158858B2 (en) Positive electrode structure for secondary cell
CA2916200C (en) Non-aqueous electrolyte secondary battery and method for producing same
JPH02195646A (en) Separator for alkaline cell
JP2017157349A (en) Alkali battery separator and alkali battery
US3261715A (en) Negative electrode assembly for alkaline batteries
JPH0454691Y2 (en)
CN214123912U (en) Novel pole piece structure of pole lug wrapped winding type small polymer lithium ion battery
CA2422652A1 (en) Improvements to ni-zn battery
JP2010251151A (en) Laminate battery
JPH08111214A (en) Organic electrolytic battery
CN220556604U (en) Rolling core structure, battery and nickel-hydrogen battery
JPH0353446A (en) Cylindrical alkaline battery
JPS58133761A (en) Sealed alkaline battery
JP2021192361A (en) Negative electrode for secondary battery and secondary battery
JPS6276251A (en) Air-cell
JPH02253573A (en) Air battery
JP3374601B2 (en) Clad sealed lead-acid battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees