JPH11185772A - Manganese dry battery - Google Patents

Manganese dry battery

Info

Publication number
JPH11185772A
JPH11185772A JP34890297A JP34890297A JPH11185772A JP H11185772 A JPH11185772 A JP H11185772A JP 34890297 A JP34890297 A JP 34890297A JP 34890297 A JP34890297 A JP 34890297A JP H11185772 A JPH11185772 A JP H11185772A
Authority
JP
Japan
Prior art keywords
positive electrode
manganese
dry battery
manganese dioxide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34890297A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takahashi
浩之 高橋
Hiroko Suzuki
宏子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP34890297A priority Critical patent/JPH11185772A/en
Publication of JPH11185772A publication Critical patent/JPH11185772A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a low load discharge characteristic and a pulse discharge characteristic in the time of the low load discharging of a manganese dry battery. SOLUTION: The discharge characteristic can be improved by adding and mixing a titanate in at least one of a positive electrode mixture 1 of a manganese dry battery and glue of a separator 4. Preferably, the titanate is alkaline- earth metal salt, and the additive quantity is set to be 0.2-0.6 pts.wt. to electrolytic manganese dioxide or powdered synthetic manganese dioxide 100 pts.wt. that are a positive electrode active material, or to the glue 100 pts.wt. of the separator 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マンガン乾電池の
軽負荷・中負荷放電時のパルス放電特性の改善に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in pulse discharge characteristics of a manganese dry battery at light load and medium load discharge.

【0002】[0002]

【従来の技術】マンガン乾電池では、二酸化マンガンを
正極作用物質、亜鉛合金を負極作用物質、塩化亜鉛含有
液を電解液として用いているが、軽負荷・中負荷で放電
を行った場合、放電中に電池の内部抵抗が上昇し、パル
ス放電を重畳するパルス放電特性が悪化するという問題
があった。このことは、乾電池の無公害化のために水銀
を添加しない電池では特に顕著となる。このような軽負
荷・中負荷放電時のパルス特性の悪化は、ポケットベル
のような用途に使用する場合非常に不利になっていた。
2. Description of the Related Art In a manganese dry battery, manganese dioxide is used as a positive electrode active material, a zinc alloy is used as a negative electrode active material, and a zinc chloride-containing solution is used as an electrolytic solution. In addition, there has been a problem that the internal resistance of the battery rises and the pulse discharge characteristics in which pulse discharge is superimposed deteriorate. This is particularly remarkable in batteries in which mercury is not added for the purpose of eliminating pollution from dry batteries. Such deterioration in pulse characteristics during light load / medium load discharge has been extremely disadvantageous when used for applications such as pagers.

【0003】この問題を解決するために、従来は正極合
剤中の電解液の量を多くしたり、導電剤である黒鉛の配
合を増加したり、あるいはセパレータの糊剤の種類を変
更したりしていた。
[0003] In order to solve this problem, conventionally, the amount of electrolyte in the positive electrode mixture has been increased, the amount of graphite as a conductive agent has been increased, or the type of paste for the separator has been changed. Was.

【0004】また、正極作用物質の二酸化マンガンとし
て、ナトリウム塩またはアンモニウム塩のアルカリ性水
溶液を用いて中和処理を行って所定のpHに調整した電
解二酸化マンガンまたは化学合成二酸化マンガン粉末が
用いられている。この電解二酸化マンガンまたは化学合
成二酸化マンガン粉末に導電材としてアセチレンブラッ
クを加え、さらに電解液を加えて撹拌混合することによ
って正極合剤を調製していた。
[0004] As manganese dioxide as a positive electrode active substance, electrolytic manganese dioxide or chemically synthesized manganese dioxide powder adjusted to a predetermined pH by neutralization using an alkaline aqueous solution of a sodium salt or ammonium salt is used. . Acetylene black was added as a conductive material to the electrolytic manganese dioxide or the chemically synthesized manganese dioxide powder, and an electrolytic solution was further added, followed by stirring and mixing to prepare a positive electrode mixture.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、電解液
の配合量を増加させたり導電剤を増加させることは、正
極合剤中の二酸化マンガンの配合量を減少させることに
なり、結果として放電容量の低下につながる。また、セ
パレータの糊剤を変えた場合も、軽負荷・中負荷放電中
の内部抵抗の上昇は抑制できても重負荷放電等の特性が
低下してしまうという欠点があった。
However, increasing the amount of the electrolytic solution or the amount of the conductive agent decreases the amount of the manganese dioxide in the positive electrode mixture, resulting in a decrease in the discharge capacity. Leads to a decline. In addition, when the glue of the separator is changed, there is a disadvantage that characteristics such as heavy load discharge are deteriorated even if increase in internal resistance during light load / medium load discharge can be suppressed.

【0006】また、上記電解二酸化マンガンまたは化学
合成二酸化マンガン粉末を用いた場合は、pHの差異に
より電池電圧への影響があり、これを少なくするため
に、正極合剤配合時に少量の酸化亜鉛を添加している。
しかしながら、酸化亜鉛を添加すると、電池電圧の制御
にはある程度の効果はあるが、添加量が適量を超えると
放電中の電池電圧の降下、電池内部抵抗の上昇等、電池
性能に悪影響を及ぼすことがあり、電解二酸化マンガン
または化学合成二酸化マンガンのpHに対応する酸化亜
鉛の添加量の管理が難しい。特に無水銀マンガン乾電池
において、軽負荷から中負荷にかけての放電中にパルス
放電を重畳するような用途に使用した場合、放電中期か
らの内部抵抗の上昇が大きくなるという問題があった。
When the above electrolytic manganese dioxide or chemically synthesized manganese dioxide powder is used, the difference in pH affects the battery voltage, and in order to reduce this, a small amount of zinc oxide is added at the time of mixing the positive electrode mixture. Has been added.
However, the addition of zinc oxide has some effect on battery voltage control.However, if the added amount exceeds an appropriate amount, the battery performance will be adversely affected, such as a drop in battery voltage during discharge and an increase in battery internal resistance. Therefore, it is difficult to control the addition amount of zinc oxide corresponding to the pH of electrolytic manganese dioxide or chemically synthesized manganese dioxide. In particular, in the case of a dry mercury manganese dry battery, when it is used in an application in which pulse discharge is superimposed during a discharge from a light load to a medium load, there is a problem that the internal resistance increases from the middle of the discharge.

【0007】本発明はこのような従来の問題を解決する
ためになされたもので、軽負荷・中負荷放電中の内部抵
抗の上昇を抑制し、パルス放電特性の低下が少ないマン
ガン乾電池、特に水銀無添加のマンガン乾電池を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a conventional problem. A manganese dry battery which suppresses an increase in internal resistance during light load / medium load discharge and has a small decrease in pulse discharge characteristics, especially mercury An object is to provide a manganese dry battery without any additives.

【0008】[0008]

【課題を解決するための手段】すなわち本発明は、二酸
化マンガンを正極活物質とした正極合剤と、亜鉛負極
と、糊層を塗布したクラフト紙からなるセパレータと、
を用いたマンガン乾電池において、上記正極合剤および
糊層の少なくとも一方にチタン酸塩が含有されているこ
とを特徴とする。
That is, the present invention provides a positive electrode mixture using manganese dioxide as a positive electrode active material, a zinc negative electrode, and a separator made of kraft paper coated with an adhesive layer.
In a manganese dry battery using the invention, at least one of the positive electrode mixture and the paste layer contains a titanate.

【0009】チタン酸塩としては、マグネシウム塩、カ
ルシウム塩、バリウム塩、ストロンチウム塩等のアルカ
リ土類金属塩が好ましい。また、チタン酸塩の添加量
は、電解二酸化マンガンまたは化学合成二酸化マンガン
粉末100重量部または糊剤100重量部に対してチタ
ン酸塩粉末0.2〜0.6重量部が好ましい。
As the titanate, an alkaline earth metal salt such as a magnesium salt, a calcium salt, a barium salt and a strontium salt is preferable. The addition amount of titanate is preferably 0.2 to 0.6 parts by weight with respect to 100 parts by weight of electrolytic manganese dioxide or chemically synthesized manganese dioxide powder or 100 parts by weight of paste.

【0010】[0010]

【発明の実施の形態】本発明の実施例を図面を参照して
説明する。 [実施例1〜5] (正極合剤の調製)電解二酸化マンガンまたは化学合成
二酸化マンガン粉末を水洗後、炭酸ナトリウム水溶液で
中和処理を行った。この二酸化マンガン粉末のpHはJ
IS K1467に従って測定したところ4.2であっ
た。この二酸化マンガン粉末100重量部に対して、チ
タン酸マグネシウム粉末を0.1重量部,0.2重量
部,0.4重量部,0.6重量部および0.7重量部加
え、それぞれを均一に分散するように撹拌混合した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. [Examples 1 to 5] (Preparation of positive electrode mixture) Electrolytic manganese dioxide or chemically synthesized manganese dioxide powder was washed with water and then neutralized with an aqueous solution of sodium carbonate. The pH of this manganese dioxide powder is J
It was 4.2 when measured according to IS K1467. To 100 parts by weight of this manganese dioxide powder, 0.1 parts by weight, 0.2 parts by weight, 0.4 parts by weight, 0.6 parts by weight and 0.7 parts by weight of magnesium titanate powder were added, and each was uniformly mixed. The mixture was stirred and mixed so as to be dispersed.

【0011】これらの混合物を正極活物質とし、亜鉛缶
を負極活物質とし、塩化亜鉛系電解液を用いて図1に示
すR6タイプの無水銀マンガン乾電池を製造した。図
中、1は正極合剤,2は正極集電体である炭素棒,3は
亜鉛缶,4はセパレータ,5は封口板,6はシール剤,
7は金属製外装筒である。正極合剤1は上記混合物とア
セチレンブラックと電解液(ZnCl2 :26wt%,
NH4 Cl:1.5wt%を含有する)と酸化亜鉛とを
55:8:36:0.4の重量比で混合したものであ
る。
Using these mixtures as a positive electrode active material, a zinc can as a negative electrode active material, and a zinc chloride-based electrolyte, an R6 type anhydrous silver manganese dry battery shown in FIG. 1 was produced. In the figure, 1 is a positive electrode mixture, 2 is a carbon rod as a positive electrode current collector, 3 is a zinc can, 4 is a separator, 5 is a sealing plate, 6 is a sealing agent,
7 is a metal outer cylinder. The positive electrode mixture 1 is composed of the above mixture, acetylene black, and an electrolytic solution (ZnCl 2 : 26 wt%,
NH 4 Cl: 1.5 wt%) and zinc oxide in a weight ratio of 55: 8: 36: 0.4.

【0012】[比較例1]上記チタン酸マグネシウム粉
末の代わりに、チタン酸マグネシウムと同様の効果が期
待できるアルミニウム酸マグネシウム(MgAl
2 4 )を、二酸化マンガン粉末100重量部に対して
0.4重量部混合した以外は、実施例1〜5と同様にし
てR6タイプの無水銀マンガン乾電池を製造した。
Comparative Example 1 Instead of the above magnesium titanate powder, magnesium aluminate (MgAl
R6 type anhydrous silver manganese dry battery was manufactured in the same manner as in Examples 1 to 5, except that 2 O 4 ) was mixed in an amount of 0.4 part by weight with respect to 100 parts by weight of the manganese dioxide powder.

【0013】[比較例2]チタン酸マグネシウム粉末を
混合しない二酸化マンガン粉末を用いた以外は実施例1
〜5と同様にしてR6タイプの無水銀マンガン乾電池を
製造した。
Comparative Example 2 Example 1 was repeated except that manganese dioxide powder not mixed with magnesium titanate powder was used.
In the same manner as in Nos. To 5, R6 type anhydrous silver manganese dry batteries were produced.

【0014】以上のように製造したR6タイプの各電池
について、軽負荷放電特性および軽負荷放電時のパルス
放電特性を調べ、その結果を表1および表2に示した。
軽負荷放電特性は、それぞれの電池20個について、温
度20℃雰囲気中で1.2kΩ負荷抵抗の連続放電を行
い、終止電圧0.9Vまでの持続時間および端子電圧
1.5V,1.3V,1.1V並びに0.9Vでの電池
内部抵抗を測定したものである。その各平均値を表1に
示した。
With respect to each of the R6 type batteries manufactured as described above, light load discharge characteristics and pulse discharge characteristics during light load discharge were examined. The results are shown in Tables 1 and 2.
The light load discharge characteristics are as follows. For each of the 20 batteries, a continuous discharge of 1.2 kΩ load resistance is performed in an atmosphere of a temperature of 20 ° C., a duration up to a final voltage of 0.9 V, and a terminal voltage of 1.5 V, 1.3 V, The internal resistance of the battery was measured at 1.1 V and 0.9 V. Table 1 shows the average values.

【0015】また、軽負荷放電時のパルス放電特性は、
それぞれの電池20個について、温度20℃雰囲気中で
1.2kΩ負荷抵抗の連続放電を行い、その放電中に1
日1回5Ω60秒間のパルス放電を重畳させて、終止電
圧0.9Vまでの持続時間および端子電圧1.5V,
1.3V,1.1V並びに0.9Vでの電池内部抵抗を
測定したものである。その各平均値を表2に示した。
The pulse discharge characteristics during light load discharge are as follows:
A continuous discharge of 1.2 kΩ load resistance was performed for each of the 20 batteries in an atmosphere at a temperature of 20 ° C.
A pulse discharge of 5 Ω for 60 seconds is superimposed once a day, and a duration up to a final voltage of 0.9 V and a terminal voltage of 1.5 V,
The internal resistance of the battery at 1.3 V, 1.1 V and 0.9 V was measured. The average values are shown in Table 2.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】表1および表2から明らかなように、本発
明の実施例の電池は放電中期(1.3V)からの内部抵
抗の上昇はほとんど見られない。これは端子電圧の降下
が少ないことを意味する。さらに5Ωのパルス放電を重
畳した場合での放電中期(1.3V)からの内部抵抗の
上昇は、比較例の電池に比べて極めて少ないことがわか
る。
As is clear from Tables 1 and 2, the batteries of the examples of the present invention show almost no increase in internal resistance from the middle stage of discharge (1.3 V). This means that the terminal voltage drop is small. Further, it can be seen that the increase in internal resistance from the middle stage of discharge (1.3 V) when a 5Ω pulse discharge is superimposed is extremely small as compared with the battery of the comparative example.

【0019】なお、上記実施例のうち、実施例4および
5では上記本発明の効果が他の実施例に比べて少なく、
したがってチタン酸マグネシウムの添加量は、二酸化マ
ンガン粉末100重量部に対して0.2〜0.6重量部
が好ましいことがわかる。
Among the above embodiments, the effects of the present invention are smaller in the fourth and fifth embodiments than in the other embodiments.
Therefore, it is understood that the addition amount of magnesium titanate is preferably 0.2 to 0.6 parts by weight based on 100 parts by weight of the manganese dioxide powder.

【0020】また、上記実施例ではR6タイプの電池に
対して1.2kΩ放電という軽負荷放電についての例を
示したが、これより負荷抵抗の少ない重負荷放電につい
ても、本発明の電池は従来電池に比べて優れた放電性能
を示すことが分かった。
Further, in the above embodiment, an example of light load discharge of 1.2 kΩ discharge for an R6 type battery was shown. However, the battery of the present invention is also applicable to heavy load discharge having a lower load resistance. It was found that the battery exhibited better discharge performance than the battery.

【0021】[実施例6〜12] (正極合剤の調製)上記実施例1〜5と同様にして、電
解二酸化マンガンまたは化学合成二酸化マンガン100
重量部に対してチタン酸マグネシウム0.0重量部、
0.2重量部および0.3重量部を含む正極合剤を調製
した。
[Examples 6 to 12] (Preparation of positive electrode mixture) In the same manner as in Examples 1 to 5, electrolytic manganese dioxide or chemically synthesized manganese dioxide 100 was prepared.
0.0 parts by weight of magnesium titanate based on parts by weight,
A positive electrode mixture containing 0.2 parts by weight and 0.3 parts by weight was prepared.

【0022】(セパレータの調製)セパレータは、糊剤
100重量部(コーンスターチ澱粉およびポリビニルア
ルコールからなる。重量比10:1)と水116重量部
とのペーストに、チタン酸マグネシウム粉末0.0重量
部、0.1重量部,0.2重量部,0.3重量部,0.
4重量部,0.6重量部,0.7重量部をそれぞれ添加
して混合撹拌し、これをクラフト紙の片面に糊剤として
22g/m2 になるように塗布し、乾燥して調製した。
(Preparation of Separator) A separator consisting of 100 parts by weight of a paste (composed of corn starch starch and polyvinyl alcohol; weight ratio of 10: 1) and 116 parts by weight of water was mixed with 0.0 part by weight of magnesium titanate powder. 0.1 part by weight, 0.2 part by weight, 0.3 part by weight, 0.1 part by weight.
4 parts by weight, 0.6 parts by weight, and 0.7 parts by weight were added and mixed and stirred. The mixture was applied to one surface of kraft paper so as to have an adhesive of 22 g / m 2 and dried. .

【0023】(電池の作製)図1に示すR6タイプの無
水銀マンガン乾電池を、上記の正極合剤及びセパレータ
を用いて、表3に示す実施例6〜12並びに比較例3の
電池を作製した。
(Production of Battery) Using the R6 type anhydrous silver manganese dry battery shown in FIG. 1 and the above-mentioned positive electrode mixture and separator, batteries of Examples 6 to 12 and Comparative Example 3 shown in Table 3 were produced. .

【0024】また、上記チタン酸マグネシウム粉末の代
わりに、チタン酸マグネシウムと同様の効果が期待でき
るアルミニウム酸マグネシウム(MgAl2 4 )を、
セパレータに含有させ、表3に示す比較例4のR6タイ
プの無水銀マンガン乾電池を作製した。
In place of the above magnesium titanate powder, magnesium aluminate (MgAl 2 O 4 ) which can be expected to have the same effect as magnesium titanate is used.
The R6 type anhydrous silver manganese dry battery of Comparative Example 4 shown in Table 3 was produced by incorporating the composition in a separator.

【0025】(電池の評価)以上のように製造したR6
電池について、軽負荷放電特性及び軽負荷放電時のパル
ス放電特性を調べ、その結果を表4並びに表5に示し
た。軽負荷放電特性は、それぞれの電池20個につい
て、温度20℃雰囲気中で1.2kΩ負荷抵抗の連続放
電を行い、終始電圧0.9Vまでの持続時間及び端子電
圧1.5V、1.3V、1.1V並びに0.9Vでの電
池内部抵抗を測定したものである。その平均値を表4に
示した。また、軽負荷放電時のパルス放電特性は、それ
ぞれの電池20個について、温度20℃雰囲気中で1.
2kΩ負荷抵抗の連続放電を行い、その放電中に1日1
回5Ω60秒間のパルス放電を重畳させて、終止電圧
0.9Vまでの持続時間及び端子電圧1.5V、1.3
V、1.1V並びに0.9Vでの電池内部抵抗を測定し
たものである。その平均値を表5に示した。
(Evaluation of Battery) R6 manufactured as described above
With respect to the battery, light load discharge characteristics and pulse discharge characteristics during light load discharge were examined, and the results are shown in Tables 4 and 5. The light load discharge characteristics are as follows. For each of the 20 batteries, a continuous discharge of a 1.2 kΩ load resistance is performed in an atmosphere at a temperature of 20 ° C., a duration up to a voltage of 0.9 V throughout and a terminal voltage of 1.5 V, 1.3 V, The internal resistance of the battery was measured at 1.1 V and 0.9 V. The average value is shown in Table 4. The pulse discharge characteristics at the time of light load discharge were as follows.
Perform a continuous discharge of 2kΩ load resistance,
A pulse discharge of 5Ω for 60 seconds is superimposed, and a duration up to a final voltage of 0.9 V and a terminal voltage of 1.5 V, 1.3 V are applied.
V, 1.1 V and 0.9 V were measured for battery internal resistance. The average value is shown in Table 5.

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】表4及び表5から明らかなように、本発明
の実施例の電池では放電中期(1.3V)からの内部抵
抗の上昇はほとんど見られず、端子電圧の降下が少ない
ことを意味する。さらに5Ωのパルス放電を重畳した場
合での放電中期(1.3V)からの内部抵抗の上昇は、
比較電池に比べて極めて少ないことがわかる。このよう
に本発明のように正極合剤及びセパレーターの糊層の少
なくとも一方にチタン酸塩を含有させることにより、従
来電池に比べて極めて優れた放電性能を得ることができ
る。
As is clear from Tables 4 and 5, in the batteries of the examples of the present invention, the internal resistance hardly increased from the middle stage of discharge (1.3 V), which means that the terminal voltage decreased little. I do. Further, when a 5Ω pulse discharge is superimposed, the rise of the internal resistance from the middle stage of the discharge (1.3V) is as follows.
It turns out that it is extremely small compared with the comparative battery. As described above, by including a titanate in at least one of the positive electrode mixture and the paste layer of the separator as in the present invention, it is possible to obtain extremely excellent discharge performance as compared with a conventional battery.

【0030】なお、上記ではR6タイプの電池に対して
1.2kΩ放電という軽負荷放電についての例を示した
が、これより負荷抵抗の少ない重負荷放電についても本
発明の電池は従来電池に比べて放電性能を示すことがわ
かった。
Although an example of light load discharge of 1.2 kΩ discharge for an R6 type battery has been described above, the battery of the present invention is also superior to a conventional battery for heavy load discharge with a lower load resistance. It showed that it showed discharge performance.

【0031】また、上記実施例では、チタン酸塩として
チタン酸マグネシウム(MgTiO3 )を使用したが、
チタン酸カルシウム(CaTiO3 ),チタン酸バリウ
ム(BaTiO3 ),チタン酸ストロンチウム(SrT
iO3 )等も同様に効果がある。
In the above embodiment, magnesium titanate (MgTiO 3 ) was used as the titanate.
Calcium titanate (CaTiO 3 ), barium titanate (BaTiO 3 ), strontium titanate (SrT
iO 3 ) is also effective.

【0032】[0032]

【発明の効果】以上説明したように、本発明は、マンガ
ン乾電池の正極合剤およびセパレータの糊剤の少なくと
も一方にチタン酸塩を添加したものを使用したことによ
って、軽負荷放電特性および軽負荷放電時のパルス放電
特性を改善することができ、優れた放電特性を有するマ
ンガン乾電池を提供することができた。
As described above, the present invention provides a light-load discharge characteristic and a light-load discharge property by using at least one of a positive electrode mixture of a manganese dry battery and a paste of a separator to which titanate is added. The pulse discharge characteristics at the time of discharge could be improved, and a manganese dry battery having excellent discharge characteristics could be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例であるR6形マンガン乾電池の
断面図。
FIG. 1 is a sectional view of an R6-type manganese dry battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…正極合剤、2…炭素棒、3…亜鉛缶、4…セパレー
タ、5…封口板、6…シール剤、7…金属外装筒。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode mixture, 2 ... Carbon rod, 3 ... Zinc can, 4 ... Separator, 5 ... Sealing plate, 6 ... Sealing agent, 7 ... Metal outer cylinder.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 二酸化マンガンを正極活物質とした正極
合剤と、亜鉛負極と、糊層を塗布したクラフト紙からな
るセパレータと、を用いたマンガン乾電池において、上
記正極合剤および糊層の少なくとも一方にチタン酸塩が
含有されていることを特徴とするマンガン乾電池。
In a manganese dry battery using a positive electrode mixture using manganese dioxide as a positive electrode active material, a zinc negative electrode, and a kraft paper separator coated with a paste layer, at least one of the positive electrode mixture and the paste layer is provided. A manganese dry battery characterized in that it contains titanate.
【請求項2】 チタン酸塩がアルカリ土類金属塩粉末で
ある請求項1記載のマンガン乾電池。
2. The manganese dry battery according to claim 1, wherein the titanate is an alkaline earth metal salt powder.
【請求項3】 二酸化マンガンがアルカリ性水溶液で中
和処理した電解二酸化マンガンまたは化学合成二酸化マ
ンガンである請求項1記載のマンガン乾電池。
3. The manganese dry battery according to claim 1, wherein the manganese dioxide is electrolytic manganese dioxide neutralized with an alkaline aqueous solution or chemically synthesized manganese dioxide.
【請求項4】 正極合剤に含有されるチタン酸塩の量
が、正極合剤中の二酸化マンガン粉末100重量部に対
して0.2〜0.6重量部である請求項1記載のマンガ
ン乾電池。
4. The manganese according to claim 1, wherein the amount of titanate contained in the positive electrode mixture is 0.2 to 0.6 parts by weight based on 100 parts by weight of the manganese dioxide powder in the positive electrode mixture. Dry batteries.
【請求項5】 糊層に含有されるチタン酸塩の量が、糊
剤100重量部に対して0.2〜0.6重量部である請
求項1記載のマンガン乾電池。
5. The manganese dry battery according to claim 1, wherein the amount of titanate contained in the paste layer is 0.2 to 0.6 parts by weight based on 100 parts by weight of the paste.
JP34890297A 1997-12-18 1997-12-18 Manganese dry battery Pending JPH11185772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34890297A JPH11185772A (en) 1997-12-18 1997-12-18 Manganese dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34890297A JPH11185772A (en) 1997-12-18 1997-12-18 Manganese dry battery

Publications (1)

Publication Number Publication Date
JPH11185772A true JPH11185772A (en) 1999-07-09

Family

ID=18400163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34890297A Pending JPH11185772A (en) 1997-12-18 1997-12-18 Manganese dry battery

Country Status (1)

Country Link
JP (1) JPH11185772A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528865A (en) * 1998-10-21 2002-09-03 デュラセル インコーポレイテッド Titanium additive for electrochemical cells with manganese dioxide cathode
JP2007234502A (en) * 2006-03-03 2007-09-13 Toshiba Battery Co Ltd Negative electrode material for manganese dry battery and manganese dry battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528865A (en) * 1998-10-21 2002-09-03 デュラセル インコーポレイテッド Titanium additive for electrochemical cells with manganese dioxide cathode
JP2007234502A (en) * 2006-03-03 2007-09-13 Toshiba Battery Co Ltd Negative electrode material for manganese dry battery and manganese dry battery

Similar Documents

Publication Publication Date Title
JPH0574461A (en) Secondary battery negative electrode
DE2558550A1 (en) METHOD OF MANUFACTURING A PRIMARY ELECTRIC ELECTRIC POWER GENERATING DRY CELL WITH A (CF DEEP X) DEEP N CATHOD AND AN AQUATIC ALKALINE ELECTROLYTE
JPS6012742B2 (en) Anode for alkaline storage batteries containing nickel hydroxide as an active material and method for producing the same
JPH056791B2 (en)
US5532085A (en) Additives for alkaline electrochemical cells having manganese dioxide cathodes
JPH11185772A (en) Manganese dry battery
US3996068A (en) Primary dry cell
GB2146835A (en) Cell solvent
JPH0222984B2 (en)
JP3414039B2 (en) Battery electrode
US5017445A (en) Dry cell
KR100322140B1 (en) Manganese dry batteries
JPH09180736A (en) Alkaline manganese battery
JP2004200155A (en) Electrochemical element or battery, and its negative electrode
JP2000048827A (en) Alkaline battery
JPH0458149B2 (en)
JP2775829B2 (en) Zinc alkaline battery
JP2992781B2 (en) Manganese dry cell
JPH06325771A (en) Manganese dry cell
JPH0737570A (en) Mercury cadmium non-additive manganese dry battery
JP2563108B2 (en) Alkaline battery
JP2563107B2 (en) Alkaline battery
JPH06231744A (en) Manganese dry battery
JPH0724215B2 (en) Dry cell
JP3086313B2 (en) Manganese dry cell