JPH08315819A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH08315819A
JPH08315819A JP7123622A JP12362295A JPH08315819A JP H08315819 A JPH08315819 A JP H08315819A JP 7123622 A JP7123622 A JP 7123622A JP 12362295 A JP12362295 A JP 12362295A JP H08315819 A JPH08315819 A JP H08315819A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
battery
lithium
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7123622A
Other languages
Japanese (ja)
Other versions
JP3536947B2 (en
Inventor
Tokuo Inamasu
徳雄 稲益
Kazuya Kuriyama
和哉 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP12362295A priority Critical patent/JP3536947B2/en
Publication of JPH08315819A publication Critical patent/JPH08315819A/en
Application granted granted Critical
Publication of JP3536947B2 publication Critical patent/JP3536947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a lithium secondary battery with high energy density and excellent rate characteristics by replacing part of nickel atoms in a positive electrode active material with B, Al, In, and Sn, and adding Co, Mn, and Fe. CONSTITUTION: A positive electrode active material of a lithium secondary battery is formed with a compound oxide having layer structure represented by Lia Nib M<1> c M<2> d M<3> c O2 . M<1> is at least one element selected from Co, Mn, and Fe. M<2> is at least one element selected from B, Al, In, and Sn. M<3> is at least one element selected from Mg and Zn. A positive electrode 1 using this positive electrode active material is pressed against a positive can 4 through a positive electrode current collector 6. A lithium foil of a negative electrode is pressed against a negative can 5 through a negative electrode current collector 7. The positive electrode can 4 is fit to the negative electrode can 5 through a separator 3 to assemble a coin type lithium battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池に関す
るもので、さらに詳しくはその正極活物質に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a positive electrode active material thereof.

【0002】[0002]

【従来の技術】近年、高エネルギー密度化のために作動
電圧が4V前後を示す活物質や長寿命化のために負極に
炭素材料を用いる電池などが注目を集めている。長寿命
化のため負極に炭素材料を用いる場合であっても、正極
の作動電圧が高いものでなければ高エネルギー密度電池
が得られにくいということからLiCoO2 やLiNi
2 等の、LiMO2 で示される層状構造を有する化合
物またはLiMn2 4 等の、LiM2 4 で示される
スピネル構造を有する化合物が提案され、すでに一部実
用化されている。
2. Description of the Related Art In recent years, an active material having an operating voltage of about 4 V for high energy density, a battery using a carbon material for a negative electrode for a long life, and the like have been attracting attention. Even when a carbon material is used for the negative electrode to prolong the life, it is difficult to obtain a high energy density battery unless the positive electrode has a high operating voltage. Therefore, LiCoO 2 or LiNi
Such as O 2, such as a compound or LiMn 2 O 4 having a layered structure represented by LiMO 2, a compound having a spinel structure represented by LiM 2 O 4 have been proposed and already partially commercialized.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、LiC
oO2 はコバルトが資源的に少なく価格が高いこと、及
び容量が小さく不十分である。また資源的に安定なニッ
ケルを用いたLiNiO2 は、LiCoO2 に比べて容
量が大きい反面サイクルに伴う容量の劣化が大きいこ
と、及びLiCoO2 に比べて量産規模での安定化した
合成が難しいことにより実用化するには問題があった。
However, LiC
As for oO 2 , cobalt is a scarce resource, and the price is high, and the capacity is small and insufficient. Also, LiNiO 2 using nickel, which is resource-stable, has a larger capacity than LiCoO 2 , but has a large capacity deterioration due to the cycle, and it is difficult to perform stable synthesis on a mass production scale as compared with LiCoO 2. There was a problem in putting it to practical use.

【0004】これらの問題を解決するために、LiNi
2 のNiの一部を置換し複合化する研究開発も盛んに
行われている。例えば、特開昭62−264560号、
特開昭63−114063号、特開昭63−21156
5号、特開昭63−299056号、特開平1−120
765号、特開平2−40861号、特開平5−325
966号ではLiNix Co1-x 2 で示される複合酸
化物を正極に用いることが提案されているが、LiNi
2 に比べ初期容量が低下している。
In order to solve these problems, LiNi
Research and development for substituting a part of Ni in O 2 to form a composite are also actively conducted. For example, JP-A-62-264560,
JP-A-63-114063, JP-A-63-21156
5, JP-A-63-299056, JP-A-1-120
765, JP-A-2-40861, and JP-A-5-325.
No. 966 proposes using a composite oxide represented by LiNi x Co 1 -x O 2 as a positive electrode.
The initial capacity is lower than that of O 2 .

【0005】また、特開昭62−256371号、特開
平5−101827号、特開平5−198301号、特
開平5−283076号、特開平5−299092号、
特開平6−96768号等は、LiNiO2 中のNiの
一部をCo,V,Cr,Fe,Cu,Mg,Ti,Mn
等の各種遷移金属で置換することが提案されているが、
サイクル特性の改善が不十分である。
Further, JP-A-62-256371, JP-A-5-101827, JP-A-5-198301, JP-A-5-283076, JP-A-5-299092,
Japanese Unexamined Patent Publication No. 6-96768 discloses that in NiNiO 2 , a part of Ni is Co, V, Cr, Fe, Cu, Mg, Ti, Mn.
It has been proposed to substitute various transition metals such as
Insufficient improvement in cycle characteristics.

【0006】一方、特開平4−253162号ではLi
CoO2 のCoの一部をPb,Bi,Bで置換する事が
提案され、また特公平4−24831号では一般式Ax
yz 2 のNi等遷移金属元素Mに、Al,In,
Snの中の少なくとも1種の元素Nで置換する事が提案
されている。さらに特開平5−54889号では、一般
式Lix y z 2 の、Ni等の遷移金属元素Mに、
周期律表IIIB、IVB、及びVB族の非金属元素及
び半金属元素、アルカリ土類金属元素及びZn,Cu,
Ti等の金属元素の中から選ばれた1種または2種以上
の元素Lで置換する事が提案されている。
On the other hand, in JP-A-4-253162, Li
It has been proposed to replace a part of Co of CoO 2 with Pb, Bi, B, and in Japanese Examined Patent Publication No. 4-24831, the general formula A x
The transition metal element M such as Ni of M y N z O 2 contains Al, In,
Substitution with at least one element N in Sn has been proposed. In yet JP 5-54889, the formula Li x M y L z O 2 , the transition metal element M such as Ni,
Non-metal elements and metalloid elements of Group IIIB, IVB and VB of the Periodic Table, alkaline earth metal elements and Zn, Cu,
Substitution with one or more elements L selected from metal elements such as Ti has been proposed.

【0007】しかし、LiCoO2 ではCoの一部を元
素Lでの置換が容易であったのに対し、LiNiO2
Niの一部を元素Lで置換した活物質の合成は困難であ
り、元素Lが構造中に取り込まれず、活物質中に不純物
として残存し充放電効率の低下や自己放電の増大といっ
た電池性能に悪影響を与えることが分かった。理由は断
定できないが、LiNiO2 の場合LiCoO2 に比べ
層状構造をとり難く、元素Lは結晶成長段階でC軸方向
への成長を阻害させ、元素Lの置換が起こり難く、不純
物として残存したと考えられる。
However, in LiCoO 2 , it was easy to replace a part of Co with the element L, whereas it is difficult to synthesize an active material in which a part of Ni of LiNiO 2 is replaced with the element L. It was found that L was not incorporated into the structure and remained as an impurity in the active material, which adversely affects the battery performance such as a decrease in charge / discharge efficiency and an increase in self-discharge. Although the reason cannot be determined, in the case of LiNiO 2 , it is more difficult to form a layered structure than in LiCoO 2 , and the element L hinders the growth in the C-axis direction at the crystal growth stage, the substitution of the element L is difficult to occur, and it remains as an impurity. Conceivable.

【0008】更に、LiNiO2 のNiの一部を元素L
で置換した活物質は、サイクル特性は向上するものの、
活物質自身の抵抗が高くなり、レート特性に問題があっ
た。理由は断定できないものの、LiNiO2 のNiの
一部を元素Lで置換した活物質は、置換元素によりイオ
ン拡散が抑制され、活物質自身の抵抗が高くなり、レー
ト特性が低下したと考えられる。
Further, a part of Ni of LiNiO 2 is replaced with the element L.
Although the active material substituted with is improved in cycle characteristics,
The resistance of the active material itself was increased, and there was a problem in rate characteristics. Although the reason cannot be determined, it is considered that in the active material obtained by substituting a part of Ni of LiNiO 2 with the element L, ion substitution is suppressed by the substituting element, the resistance of the active material itself is increased, and the rate characteristic is deteriorated.

【0009】本発明は上記問題点に鑑みてなされたもの
であって、その目的とするところは、エネルギー密度の
大きいレート特性の優れた長寿命リチウム二次電池を提
供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a long-life lithium secondary battery having a large energy density and excellent rate characteristics.

【0010】[0010]

【課題を解決するための手段】上記課題について鋭意検
討した結果、LiNiO2 においてはNiの一部をB,
Al,In,Sn等の元素で置換する場合、Co,M
n,Feを加えることにより非常に容易になることが分
かった。この理由は断定できないが、Co,Mn,Fe
はNiと同じLiMO2 型の層状構造をとり易く、C
o,Mn,Feを加えることでC軸方向への成長を阻害
する事なく置換される。このことによりLiNiO2
で、B,Al,In,Sn等とCo,Mn,Feの両元
素が容易に置換し層状構造をとる事ができる。したがっ
て、LiNiO2 中のNiは、Co,Mn,Feと同時
にB,Al,In,Sn等の元素を加えることによりは
じめてC軸方向への成長を阻害する事なく均一に置換す
ることができたものと考えられる。
As a result of diligent study on the above problems, in NiNiO 2 , a part of Ni was
When substituting with an element such as Al, In, Sn, Co, M
It has been found that the addition of n and Fe makes it very easy. The reason cannot be determined, but Co, Mn, Fe
Is likely to have the same LiMO 2 type layered structure as Ni, and C
By adding o, Mn, and Fe, substitution is performed without inhibiting growth in the C-axis direction. As a result, both elements B, Al, In, Sn, etc. and Co, Mn, Fe can be easily replaced in LiNiO 2 to form a layered structure. Therefore, Ni in LiNiO 2 could be replaced uniformly without inhibiting growth in the C-axis direction by adding elements such as B, Al, In and Sn at the same time as Co, Mn and Fe. It is considered to be a thing.

【0011】また、LiNiO2 中のNiの一部をB,
Al,In,Sn等の元素で置換することを選択した理
由を以下に示す。
Further, a part of Ni in LiNiO 2 is
The reason why the substitution with the elements such as Al, In, and Sn is selected is shown below.

【0012】B,Al,Inは3価を、Snは4価をと
る事が知られているが、このような元素は電池反応に寄
与しない。
It is known that B, Al and In have trivalence and Sn has tetravalence, but such elements do not contribute to the battery reaction.

【0013】3価の元素B,Al,Inで置換された部
分では、リチウムが固定された形で存在する。この部分
がLi層の柱的な役割を果たし、充電末状態で酸素層間
の反発を抑え、結晶構造の変化を抑制する。さらに検討
したところ、これらの元素B,Al,InがCo,M
n,Feの存在により一様に結晶内に存在し、その効果
を発揮する事が分かった。その結果酸素層間に残存する
リチウムも一様に分散し、その効果を高めている。
In the portion substituted with the trivalent elements B, Al and In, lithium exists in a fixed form. This portion plays a pillar role of the Li layer, and suppresses repulsion between oxygen layers in a charged state and suppresses a change in crystal structure. Further examination revealed that these elements B, Al, and In were Co and M.
It was found that the presence of n and Fe uniformly existed in the crystal and exhibited its effect. As a result, the lithium remaining between the oxygen layers is evenly dispersed, enhancing its effect.

【0014】また、4価の元素Snで置換された部分
は、酸素と強く結合しているために、充電末状態で酸素
層間の反発を抑え、結晶構造の変化を抑制する。さらに
検討したところ、Sn元素がCo,Mn,Feの存在に
より一様に結晶内に存在し、その効果を発揮することが
分かった。その結果、酸素層間で全体的に反発が抑制さ
れ、その効果を高めている。
Further, since the portion substituted with the tetravalent element Sn is strongly bound to oxygen, it suppresses the repulsion between the oxygen layers in the charged state and suppresses the change of the crystal structure. As a result of further study, it was found that the Sn element was uniformly present in the crystal due to the presence of Co, Mn, and Fe, and exhibited its effect. As a result, the repulsion is suppressed between the oxygen layers as a whole, which enhances the effect.

【0015】よって、以上の効果により本発明の活物質
は、従来のLiNiO2 に比べより深い充放電が可能で
あるので、容量が増大し、サイクル経過後の容量低下が
小さいものと思われる。
Therefore, the active material of the present invention can be charged and discharged deeper than the conventional LiNiO 2 by the above effects, so that the capacity is increased, and it is considered that the capacity decrease after the lapse of cycles is small.

【0016】さらに、上記のような置換を行ったLiN
iO2 のNiの一部を、さらにMg,Znで置換するこ
とで、活物質自身の抵抗が低減し、レート特性が改善さ
れた原因としては以下のように考えられる。Co,M
n,Feの存在下、B,Al,In,Sn等の元素で置
換することで結晶構造中で動かないLi元素が充電時の
結晶安定に寄与するが、この充放電に関与しないLiは
B,Al,In,Sn等の置換元素と強く結び付き、そ
のリチウムは結晶中でのリチウムの拡散を阻害し、その
結果活物質自身の抵抗が増大しレート特性が悪くなった
と考えられる。このような結晶中にMgやZnが添加さ
れることにより、B,Al,In,Sn等の置換元素と
リチウムの結び付きが緩和される。その結果、層間のリ
チウム拡散が促進され、活物質自身の抵抗が低減し、レ
ート特性が改善されたと考えられる。
Further, LiN which has been substituted as described above
The reason why the resistance of the active material itself is reduced and the rate characteristics are improved by substituting a part of Ni of iO 2 with Mg and Zn is considered as follows. Co, M
By substituting elements such as B, Al, In, and Sn in the presence of n and Fe, a Li element that does not move in the crystal structure contributes to crystal stability during charging, but Li that is not involved in this charge / discharge is B , Al, In, Sn, etc., are strongly bound to each other, and the lithium inhibits the diffusion of lithium in the crystal, resulting in an increase in the resistance of the active material itself and a deterioration in the rate characteristic. By adding Mg or Zn to such a crystal, the bond between the substitutional element such as B, Al, In and Sn and lithium is relaxed. As a result, it is considered that the diffusion of lithium between the layers was promoted, the resistance of the active material itself was reduced, and the rate characteristics were improved.

【0017】[0017]

【作用】LiNiO2 にCo,Mn,Feの存在下、
B,Al,In,Sn等の元素で置換すると容量の増加
及びサイクル特性が向上し、さらにMg,Znで置換す
ることでレート特性が向上する理由は以下のように考え
る。
Function: In the presence of Co, Mn and Fe in LiNiO 2 ,
The reason why the capacity is increased and the cycle characteristics are improved by substituting with elements such as B, Al, In and Sn, and the rate characteristics are improved by substituting with Mg and Zn is considered as follows.

【0018】一般的に、LiNiO2 を深い深度で充電
すると、結晶構造の変化を起こし、さらには結晶構造の
崩壊を起こす。層状構造中のLiが抜けることにより、
酸素層間の反発が起こりより安定な結晶構造に変化した
り、反発に耐えきれず結晶が崩壊する。
Generally, when LiNiO 2 is charged at a deep depth, the crystal structure changes, and further the crystal structure collapses. By removing Li in the layered structure,
Repulsion between the oxygen layers occurs and changes to a more stable crystal structure, or the crystal cannot collapse due to the inability to withstand the repulsion.

【0019】これに対し、LiNiO2 中のNiの一部
をCo,Mn,Feの存在下、B,Al,In,Snの
様な元素で置換することにより、層状構造中にLiの動
かない部分を作ることや酸素間の反発力を抑えることが
できるので、結晶構造の変化や崩壊を防ぐことができ
る。よって、従来のLiNiO2 に比べ、深い充放電を
行っても優れたサイクル安定性を示すものと思われる。
On the other hand, by substituting a part of Ni in LiNiO 2 with an element such as B, Al, In and Sn in the presence of Co, Mn and Fe, Li does not move in the layered structure. Since it is possible to suppress the repulsive force between oxygen and the formation of the portion, it is possible to prevent the change and collapse of the crystal structure. Therefore, as compared with the conventional LiNiO 2 , it seems that even if deep charge / discharge is performed, excellent cycle stability is exhibited.

【0020】ここで、B,Al,In,Snの様な元素
と結び付いた充放電に関与しないリチウムは結晶中でリ
チウムの拡散を阻害し、その結果活物質自身の抵抗が増
大し、レート特性が悪くなったと考えられる。このよう
な結晶中にMgやZnが添加されることにより、B,A
l,In,Sn等の置換元素とリチウムの結び付きが緩
和される。その結果、層間のリチウム拡散が促進され、
活物質自身の抵抗が低減し、レート特性が改善されたと
考えられる。
Here, lithium that is not associated with charge / discharge, which is associated with elements such as B, Al, In, and Sn, inhibits diffusion of lithium in the crystal, and as a result, the resistance of the active material itself increases, resulting in rate characteristics. Is believed to have deteriorated. By adding Mg or Zn to such a crystal, B, A
The bond between the substitutional element such as l, In and Sn and lithium is relaxed. As a result, diffusion of lithium between layers is promoted,
It is considered that the resistance of the active material itself was reduced and the rate characteristics were improved.

【実施例】以下、本発明の実施例について以下に説明す
る。
EXAMPLES Examples of the present invention will be described below.

【0021】(実施例1)層状構造を有するリチウム複
合酸化物の調製にあたっては、LiOH・H2 0、Ni
2 CO3 、CoCO3 、B2 3 、MgOを用い、L
i:Ni:Co:B:Mgのモル比が1.03:0.8
8:0.10:0.01:0.01となるように秤量、
混合し、酸素中、750℃で20時間焼成した。焼成後
乾燥空気中で冷却し、乾燥雰囲気で粉砕した物を正極活
物質とした。
[0021] In the preparation of (Example 1) lithium composite oxide having a layered structure, LiOH · H 2 0, Ni
2 CO 3 , CoCO 3 , B 2 O 3 , MgO, L
The molar ratio of i: Ni: Co: B: Mg is 1.03: 0.8.
Weighed to be 8: 0.10: 0.01: 0.01,
The mixture was mixed and calcined in oxygen at 750 ° C. for 20 hours. After firing, the product was cooled in dry air and ground in a dry atmosphere to obtain a positive electrode active material.

【0022】得られた正極活物質のX線回折パターンを
より、結晶が単一相で得られていることが分かった。
From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase.

【0023】この活物質を用いて次のようにしてコイン
型リチウム二次電池を試作した。活物質とアセチレンブ
ラック及びポリテトラフルオロエチレン粉末とを重量比
85:10:5で混合し、トルエンを加えて十分混練し
た。これをローラープレスにより厚み0.8mmのシー
ト状に成形した。次にこれを直径16mmの円形に打ち
抜き減圧下200℃で15時間熱処理し正極1を得た。
正極1は正極集電体6の付いた正極缶4に圧着して用い
た。負極2は、厚み0.3mmのリチウム箔を直径15
mmの円形に打ち抜き、負極集電体7を介して負極缶5
に圧着して用いた。エチレンカーボネートとジエチルカ
ーボネートとの体積比1:1の混合溶剤にLiPF6
1mol/l溶解した電解液を用い、セパレータ3には
ポリプロピレン製微多孔膜を用いた。上記正極、負極、
電解液及びセパレータを用いて直径20mm厚さ1.6
mmのコイン型リチウム電池を作製した。この電池をA
1とする。
Using this active material, a coin-type lithium secondary battery was prototyped as follows. The active material was mixed with acetylene black and polytetrafluoroethylene powder at a weight ratio of 85: 10: 5, toluene was added, and the mixture was sufficiently kneaded. This was formed into a 0.8 mm thick sheet by a roller press. Next, this was punched into a circle having a diameter of 16 mm and heat-treated at 200 ° C. for 15 hours under reduced pressure to obtain a positive electrode 1.
The positive electrode 1 was used by pressure bonding to a positive electrode can 4 having a positive electrode current collector 6. The negative electrode 2 is made of a lithium foil having a thickness of 0.3 mm and a diameter of 15 mm.
punched into a circular shape of mm, and the negative electrode can 5 via the negative electrode current collector 7.
It was used by pressure bonding to. An electrolytic solution in which 1 mol / l of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 was used, and a polypropylene microporous film was used as the separator 3. The positive electrode, the negative electrode,
Diameter 20mm and thickness 1.6 using electrolyte and separator
mm coin type lithium battery was prepared. This battery is A
Set to 1.

【0024】(実施例2)B2 3 の代わりにAl(N
3 3 ・9H2 Oを用い、Li:Ni:Co:Al:
Mgのモル比が1.03:0.88:0.10:0.0
1:0.01となるように秤量すること以外は上記実施
例1と同様にして電池を作製した。得られた正極活物質
のX線回折パターンより、結晶が単一相で得られている
ことが分かった。この電池をA2とする。
Example 2 Instead of B 2 O 3 , Al (N
O 3) using the 3 · 9H 2 O, Li: Ni: Co: Al:
The molar ratio of Mg is 1.03: 0.88: 0.10: 0.0.
A battery was produced in the same manner as in Example 1 except that the weight was adjusted to 1: 0.01. From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase. This battery is designated as A2.

【0025】(実施例3)B2 3 の代わりにIn(N
3 3 ・xH2 Oを用い、Li:Ni:Co:In:
Mgのモル比が1.03:0.88:0.10:0.0
1:0.01となるように秤量すること以外は上記実施
例1と同様にして電池を作製した。得られた正極活物質
のX線回折パターンより、結晶が単一相で得られている
ことが分かった。この電池をA3とする。
Example 3 Instead of B 2 O 3 , In (N
O 3) 3 · xH with 2 O, Li: Ni: Co : In:
The molar ratio of Mg is 1.03: 0.88: 0.10: 0.0.
A battery was produced in the same manner as in Example 1 except that the weight was adjusted to 1: 0.01. From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase. This battery is designated as A3.

【0026】(実施例4)B2 3 の代わりにSnOを
用い、Li:Ni:Co:Sn:Mgのモル比が1.0
3:0.88:0.10:0.01:0.01となるよ
うに秤量すること以外は上記実施例1と同様にして電池
を作製した。得られた正極活物質のX線回折パターンよ
り、結晶が単一相で得られていることが分かった。この
電池をA4とする。
Example 4 SnO was used instead of B 2 O 3 , and the molar ratio of Li: Ni: Co: Sn: Mg was 1.0.
A battery was made in the same manner as in Example 1 except that the weight was adjusted to 3: 0.88: 0.10: 0.01: 0.01. From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase. This battery is designated as A4.

【0027】(実施例4)MgOの代わりにZnOを用
い、Li:Ni:Co:B:Znのモル比が1.03:
0.88:0.10:0.01:0.01となるように
秤量すること以外は上記実施例1と同様にして電池を作
製した。得られた正極活物質のX線回折パターンより、
結晶が単一相で得られていることが分かった。この電池
をA5とする。
Example 4 ZnO was used instead of MgO, and the molar ratio of Li: Ni: Co: B: Zn was 1.03:
A battery was produced in the same manner as in Example 1 except that the weight was adjusted to 0.88: 0.10: 0.01: 0.01. From the X-ray diffraction pattern of the obtained positive electrode active material,
It was found that the crystals were obtained in a single phase. This battery is designated as A5.

【0028】(比較例1)LiOH・H2 O、NiCO
3 を用い、Li:Niのモル比が1.03:1.00と
なるように秤量することの他は上記実施例1と同様にし
て電池を作製した。得られた正極活物質のX線回折パタ
ーンより、結晶が単一相で得られていることが分かっ
た。この電池をB1とする。
(Comparative Example 1) LiOH.H 2 O, NiCO
A battery was produced in the same manner as in Example 1 except that 3 was used and weighed so that the molar ratio of Li: Ni was 1.03: 1.00. From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase. This battery is designated as B1.

【0029】(比較例2)LiOH・H2 0、NiCO
3 、CoCO3 を用い、Li:Ni:Coのモル比が
1.03:0.90:0.10となるように秤量するこ
との他は上記実施例1と同様にして電池を作製した。得
られた正極活物質のX線回折パターンから、結晶が単一
相で得られていることが分かった。この電池をB2とす
る。
[0029] (Comparative Example 2) LiOH · H 2 0, NiCO
A battery was prepared in the same manner as in Example 1 above, except that 3 and CoCO 3 were used and weighed so that the molar ratio of Li: Ni: Co was 1.03: 0.90: 0.10. From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase. This battery is designated as B2.

【0030】(比較例3)LiOH・H2 0、NiCO
3 、B2 3 を用い、Li:Ni:Bのモル比が1.0
3:0.90:0.10となるように秤量することの他
は上記実施例1と同様にして電池を作製した。得られた
正極活物質のX線回折パターンから、LiNiO2 の層
状結晶成長が悪く、十分に特定できない化合物の混合物
であることが確認された。さらに、得られた正極活物質
の化学分析を行なったところ、2価のNiが残存してお
り、Niの十分な酸化が起こらなかったことが推察され
る。この電池をB3とする。
[0030] (Comparative Example 3) LiOH · H 2 0, NiCO
3 , B 2 O 3, and the molar ratio of Li: Ni: B is 1.0.
A battery was produced in the same manner as in Example 1 except that the weight was adjusted to 3: 0.90: 0.10. From the X-ray diffraction pattern of the obtained positive electrode active material, it was confirmed that the layered crystal growth of LiNiO 2 was poor and the mixture was a compound that could not be sufficiently specified. Furthermore, when the obtained positive electrode active material was chemically analyzed, it was inferred that divalent Ni remained and that sufficient oxidation of Ni did not occur. This battery is designated as B3.

【0031】(比較例4)LiOH・H2 0、NiCO
3 、CoCO3 、B2 3 を用い、Li:Ni:CoB
のモル比が1.03:0.89:0.10:0.01と
なるように秤量することの他は上記実施例1と同様にし
て電池を作製した。得られた正極活物質のX線回折パタ
ーンから、結晶が単一相で得られていることが分かっ
た。この電池をB4とする。
[0031] (Comparative Example 4) LiOH · H 2 0, NiCO
3 , CoCO 3 and B 2 O 3 are used, and Li: Ni: CoB is used.
A battery was prepared in the same manner as in Example 1 except that the weight ratio was 1.03: 0.89: 0.10: 0.01. From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase. This battery is designated as B4.

【0032】このようにして作製した電池A1,A2,
A3,A4,A5,B1,B2,B3,B4を用いて充
放電サイクル試験を行った。試験条件は、充電電流3m
A、充電終止電圧4.2V、放電電流3mA、10m
A、放電終止電圧3.0Vとした。
Batteries A1, A2 thus produced
A charge / discharge cycle test was performed using A3, A4, A5, B1, B2, B3 and B4. Test condition is charging current 3m
A, end-of-charge voltage 4.2V, discharge current 3mA, 10m
A, discharge end voltage was 3.0V.

【0033】これら作製した電池の充放電試験の結果を
表1に示す。
Table 1 shows the results of the charge / discharge test of the batteries thus manufactured.

【0034】[0034]

【表1】 [Table 1]

【0035】表1から分かるように本発明による電池A
1,A2,A3,A4,A5は比較電池B1、B2,B
3に比べて初期充放電容量が大きく、10サイクル後の
容量の減少が小さかった。さらに、本発明による電池A
1,A2,A3,A4,A5は比較電池B4に比べて、
レート特性が改善されていることが分かった。
As can be seen from Table 1, Battery A according to the invention
1, A2, A3, A4, A5 are comparative batteries B1, B2, B
The initial charge / discharge capacity was large as compared with 3, and the decrease in capacity after 10 cycles was small. Furthermore, the battery A according to the invention
1, A2, A3, A4, A5, compared to the comparative battery B4,
It was found that the rate characteristic was improved.

【0036】このようにしてLiNiO2 のNiをC
o,Mn,FeとB,Al,In,Snの共存下置換
し、さらにMgやZnで置換することにより初めてレー
ト特性の改善とサイクルの安定性が実現できる。
In this way, Ni of LiNiO 2 is converted into C
Only when O, Mn, and Fe are replaced with B, Al, In, and Sn in the coexistence, and further replaced with Mg or Zn, the rate characteristics can be improved and the cycle stability can be realized.

【0037】なお、本発明は上記実施例に記載された活
物質の出発原料、製造方法、正極、負極、電解質、セパ
レータ及び電池形状などに限定されるものではない。ま
た、負極に炭素材料を用いるものや、電解質、セパレー
タの代わりに固体電解質を用いるものなどにも適用可能
である。
The present invention is not limited to the starting materials of the active material, the manufacturing method, the positive electrode, the negative electrode, the electrolyte, the separator, the shape of the battery, etc. described in the above embodiments. Further, it is also applicable to those using a carbon material for the negative electrode, those using a solid electrolyte instead of the electrolyte or separator, and the like.

【0038】[0038]

【発明の効果】本発明は上述の如く構成されているの
で、放電容量の大きい可逆性に優れた長寿命のリチウム
二次電池を提供できる。
As described above, the present invention can provide a long-life lithium secondary battery having a large discharge capacity and excellent reversibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係るコイン型リチウム二次
電池の断面図である。
FIG. 1 is a sectional view of a coin-type lithium secondary battery according to a first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極缶 5 負極缶 6 正極集電体 7 負極集電体 8 絶縁パッキング 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode can 5 Negative electrode can 6 Positive electrode current collector 7 Negative electrode current collector 8 Insulation packing

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質がLia Nib 1 c 2 d
3 e 2 で示される層状構造を有する複合酸化物から
なり、M1 は少なくともCo,Mn,Feから選ばれた
1種以上の元素であり、M2 は少なくともB,Al,I
n,Snから選ばれた1種以上の元素であり、M3 は少
なくともMg,Znから選ばれた1種以上の元素である
ことを特徴とする二次電池。
1. The positive electrode active material is Li a Ni b M 1 c M 2 d.
It is composed of a composite oxide having a layered structure represented by M 3 e O 2 , M 1 is at least one element selected from Co, Mn and Fe, and M 2 is at least B, Al and I.
A secondary battery comprising at least one element selected from n and Sn, and M 3 at least one element selected from Mg and Zn.
JP12362295A 1995-05-23 1995-05-23 Lithium secondary battery Expired - Fee Related JP3536947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12362295A JP3536947B2 (en) 1995-05-23 1995-05-23 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12362295A JP3536947B2 (en) 1995-05-23 1995-05-23 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH08315819A true JPH08315819A (en) 1996-11-29
JP3536947B2 JP3536947B2 (en) 2004-06-14

Family

ID=14865151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12362295A Expired - Fee Related JP3536947B2 (en) 1995-05-23 1995-05-23 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3536947B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199525A (en) * 1997-01-16 1998-07-31 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2000090933A (en) * 1998-07-13 2000-03-31 Ngk Insulators Ltd Lithium secondary battery
WO2000023380A1 (en) * 1998-10-16 2000-04-27 Pacific Lithium Limited Lithium manganese oxide and methods of manufacture
WO2003041193A1 (en) * 2001-11-09 2003-05-15 Sony Corporation Positive plate material and cell comprising it
WO2002103823A3 (en) * 2001-06-15 2004-01-15 Kureha Chemical Ind Co Ltd Cathode material for lithium rechargeable batteries
US6921609B2 (en) 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
US7078128B2 (en) 2001-04-27 2006-07-18 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US20120164533A1 (en) * 2010-12-28 2012-06-28 Sony Corporation Lithium ion secondary battery, positive electrode active material, positive electrode, electric tool, electric vehicle, and power storage system
US10305095B2 (en) 2013-11-12 2019-05-28 Nichia Corporation Method of producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10483541B2 (en) 2016-05-09 2019-11-19 Nichia Corporation Method of producing nickel-cobalt composite hydroxide and method of producing positive electrode active material for non-aqueous electrolyte secondary battery
US10490810B2 (en) 2013-12-13 2019-11-26 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199525A (en) * 1997-01-16 1998-07-31 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2000090933A (en) * 1998-07-13 2000-03-31 Ngk Insulators Ltd Lithium secondary battery
US6368750B1 (en) 1998-07-13 2002-04-09 Ngk Insulators, Ltd. Lithium secondary battery
WO2000023380A1 (en) * 1998-10-16 2000-04-27 Pacific Lithium Limited Lithium manganese oxide and methods of manufacture
US7078128B2 (en) 2001-04-27 2006-07-18 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US6921609B2 (en) 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
WO2002103823A3 (en) * 2001-06-15 2004-01-15 Kureha Chemical Ind Co Ltd Cathode material for lithium rechargeable batteries
US6855461B2 (en) 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
WO2003041193A1 (en) * 2001-11-09 2003-05-15 Sony Corporation Positive plate material and cell comprising it
JP2003151548A (en) * 2001-11-09 2003-05-23 Sony Corp Positive electrode material and battery using it
US9054378B2 (en) 2001-11-09 2015-06-09 Sony Corporation Positive plate material and cell comprising it
US20120164533A1 (en) * 2010-12-28 2012-06-28 Sony Corporation Lithium ion secondary battery, positive electrode active material, positive electrode, electric tool, electric vehicle, and power storage system
US9077036B2 (en) * 2010-12-28 2015-07-07 Sony Corporation Lithium ion secondary battery, positive electrode active material, positive electrode, electric tool, electric vehicle, and power storage system
US10305095B2 (en) 2013-11-12 2019-05-28 Nichia Corporation Method of producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10490810B2 (en) 2013-12-13 2019-11-26 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same
US10483541B2 (en) 2016-05-09 2019-11-19 Nichia Corporation Method of producing nickel-cobalt composite hydroxide and method of producing positive electrode active material for non-aqueous electrolyte secondary battery
US10903492B2 (en) 2016-05-09 2021-01-26 Nichia Corporation Method of producing nickel-cobalt composite hydroxide and method of producing positive electrode active material for non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3536947B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
JP7113300B2 (en) Positive electrode active material and battery
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
JP4954481B2 (en) Lithium secondary battery
JP2000277116A (en) Lithium secondary battery
JP4318002B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH04267053A (en) Lithium secondary battery
JP2006236830A (en) Lithium secondary battery
JPH08273665A (en) Positive electrode material for lithium secondary battery and its manufacture and lithium secondary battery using it
JP2021536098A (en) A method for manufacturing a positive electrode material for a lithium secondary battery, and a positive electrode material for a lithium secondary battery manufactured by this method.
JP3536947B2 (en) Lithium secondary battery
JP4519220B2 (en) Lithium secondary battery
JP2004265749A (en) Lithium secondary battery
JPH0878006A (en) Lithium secondary battery
JP3670864B2 (en) Lithium secondary battery
JP3625679B2 (en) Lithium secondary battery
JPH1173958A (en) Manufacture of positive electrode active material
JP3422440B2 (en) Lithium secondary battery
JP2010199077A (en) Non-aqueous electrolyte secondary battery and method of charging the same
US20120258364A1 (en) C2/M-Structured Cathode Material for Lithium-Ion Battery
JP5141356B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JPH0878009A (en) Lithium secondary battery
JP3422441B2 (en) Lithium secondary battery
JP3429328B2 (en) Lithium secondary battery and method of manufacturing the same
JP4530844B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees