JPH0831455B2 - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH0831455B2
JPH0831455B2 JP2014208A JP1420890A JPH0831455B2 JP H0831455 B2 JPH0831455 B2 JP H0831455B2 JP 2014208 A JP2014208 A JP 2014208A JP 1420890 A JP1420890 A JP 1420890A JP H0831455 B2 JPH0831455 B2 JP H0831455B2
Authority
JP
Japan
Prior art keywords
wiring
wirings
line width
integrated circuit
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014208A
Other languages
Japanese (ja)
Other versions
JPH03218022A (en
Inventor
和之 三ツ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2014208A priority Critical patent/JPH0831455B2/en
Publication of JPH03218022A publication Critical patent/JPH03218022A/en
Publication of JPH0831455B2 publication Critical patent/JPH0831455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は層間短絡による不良発生を防止した半導体集
積回路に関する。
The present invention relates to a semiconductor integrated circuit which prevents the occurrence of defects due to interlayer short circuits.

(ロ)従来の技術 半導体集積回路において、高速化が容易であること、
自動設計に適する等の理由から、PolySi(ゲート電極)
−Al−Alの多層配線構造が提供されている。配線幅は、
高集積化、高密度化の要求から細くなる一方であるが、
出力バッファトランジスタへの電源供給等、チップ内に
は大電流容量用に一般の信号ラインよりは線幅が太い配
線が必ず存在することになる。前記バッファトランジス
タは、入出力パッドの関係からチップの周縁部に配置さ
れることが多く、そして信号の種類によってNchバッフ
ァ、Pchバッファを使い分けたり、CMOSを構成する等の
要求から、相反する電源電位、つまり、VDDとVSS用のラ
インが近接配置されることがしばしばである。
(B) Conventional technology In semiconductor integrated circuits, it is easy to increase the speed,
PolySi (gate electrode) because it is suitable for automatic design
-Al-Al multilayer wiring structures are provided. The wiring width is
It is becoming smaller due to the demand for higher integration and higher density,
For the large current capacity such as the power supply to the output buffer transistor, a wiring having a line width larger than that of a general signal line is necessarily present in the chip. The buffer transistors are often arranged in the peripheral portion of the chip due to the relationship of the input / output pads, and the Nch buffer and the Pch buffer are selectively used depending on the type of the signal, and the CMOS power supply and other requirements make the power supply potentials contradictory to each other. That is, lines for V DD and V SS are often placed close together.

斯上したパターンの一例を第2図に示す。半導体チッ
プ(1)の周縁部に個々に出力パッド(2)に接続され
たNchバッファトランジスタ(3)とPchバッファトラン
ジスタ(4)が並設され、Nchバッファトランジスタ
(3)には1層目Alから成る第1の配線(5)が電源電
位VSSを、Pchバッファトランジスタ(4)には2層目Al
から成る第2の配線(6)が電源電位VDDを夫々印加し
ている。
An example of such a pattern is shown in FIG. An Nch buffer transistor (3) and a Pch buffer transistor (4), which are individually connected to the output pad (2), are arranged side by side on the peripheral edge of the semiconductor chip (1), and the Nch buffer transistor (3) has a first layer Al. The first wiring (5) consisting of the power supply potential V SS , and the Pch buffer transistor (4) in the second layer Al.
The second wiring (6) composed of the power supply potential V DD is applied to each.

そして、これらの配線は幅広に形成される為大きな占
有面積を要し、チップサイズの増大につながるので、第
1の配線(5)と第2の配線(6)とを重ねて配置する
ことでその縮小を図っていた。
Since these wirings are formed to have a large width, a large occupied area is required, which leads to an increase in chip size. Therefore, by arranging the first wiring (5) and the second wiring (6) in an overlapping manner. I was trying to reduce it.

(ハ)発明が解決しようとする課題 しかしながら、Al配線はその線幅が太い程ヒロックが
発生し易く、さらには幅広のAl配線が重なり合うことに
よるストレスが層間絶縁膜にクラックを発生させ易い。
その為、ヒロックやクラックによって第1の配線(5)
と第2の配線(6)が層間短絡し、VDDとVSSのショート
不良が多発するという欠点があった。両者が重ならない
ように配置すると、チップサイズの増大が避けられな
い。
(C) Problems to be Solved by the Invention However, the thicker the line width of the Al wiring is, the more easily hillocks are generated, and the stress caused by the overlapping of the wide Al wirings is more likely to cause cracks in the interlayer insulating film.
Therefore, the first wiring (5) is formed by hillocks and cracks.
The second wiring (6) is short-circuited between layers, and short circuits between V DD and V SS often occur. If they are arranged so that they do not overlap, an increase in chip size cannot be avoided.

(ニ)課題を解決するための手段 本発明は上記従来の課題に鑑み成されたもので、両者
が重ならないようにそこだけ線幅を細くすると共に、多
層配線構造を利用して前記細くした部分と重なるように
予備配線(20)(21)を延在させ、前記細くした部分と
予備配線(20)(21)とを層間接続することによって、
VDDとVSSのショート不良を防止できる半導体集積回路を
提供するものである。
(D) Means for Solving the Problems The present invention has been made in view of the above-described problems of the related art. The line width is made thin so that they do not overlap each other, and the thinning is made by using a multilayer wiring structure. By extending the spare wiring (20) (21) so as to overlap the portion and connecting the thinned portion and the spare wiring (20) (21) between layers,
A semiconductor integrated circuit capable of preventing a short circuit defect between V DD and V SS .

(ホ)作 用 本発明によれば、各配線を部分的に細くして互いに重
ならない配置としたので、ヒロック発生やクラック発生
を防止できる。その一方で、各配線の細くした部分と予
備配線(20)(21)とを電気接続したので、その両者で
各配線の太い部分と同等の電流容量を確保できる。
(E) Operation According to the present invention, since the wirings are partially thinned and arranged so as not to overlap each other, hillocks and cracks can be prevented from occurring. On the other hand, since the thinned portion of each wiring and the auxiliary wirings (20, 21) are electrically connected, the same current capacity as the thick portion of each wiring can be secured by both of them.

(ヘ)実施例 以下に本発明の一実施例を図面を参照しながら詳細に
説明する。
(F) Embodiment One embodiment of the present invention will be described in detail below with reference to the drawings.

第1図において、(11)はシリコン半導体基板、(1
2)は外部入出力ボンディングパッド、(13)はNchバッ
ファトランジスタ、(14)はPchバッファトランジスタ
である。
In FIG. 1, (11) is a silicon semiconductor substrate and (1
2) is an external input / output bonding pad, (13) is an Nch buffer transistor, and (14) is a Pch buffer transistor.

Nch及びPchトランジスタ(13)及び(14)は、シリコ
ン半導体基板上にポリシリコン(Poly−Si)から成るゲ
ート電極を配置しその両脇にN又はP型拡散によるソー
ス・ドレイン領域を設けると共に、チャンネル幅を増大
することで負荷に応じた駆動能力を持たせてある。一般
的には、ゲート電極を蛇行させることで面積の効率利用
を図る。
In Nch and Pch transistors (13) and (14), a gate electrode made of polysilicon (Poly-Si) is arranged on a silicon semiconductor substrate, and source / drain regions by N or P type diffusion are provided on both sides of the gate electrode. By increasing the channel width, the drive capability according to the load is given. Generally, the gate electrode is meandered to make efficient use of the area.

これらバッファトランジスタ(13)(14)への電源供
給を行う電源ラインは、大電流に対応する為と電位降下
を防ぐ為に、機種にもよるが大体100〜300μmもの太い
線幅に形成される。内部の信号ライン(15)は、1.0〜
3.0μm程度である。
The power supply line for supplying power to these buffer transistors (13) (14) is formed with a thick line width of about 100 to 300 μm, depending on the model, in order to handle a large current and prevent a potential drop. . Internal signal line (15) is 1.0 to
It is about 3.0 μm.

各配線の形成は、基板表面を覆う絶縁膜(SiO2等)上
へのアルミニウム(Al)の蒸着又はスパッタ法による堆
積と堆積した材料のホトレジストプロセスによるパター
ニングで得られる。多層構造はこの繰り返しによって得
られ、1層目Al上への絶縁膜(CVD−SiO2,SOG,SiN等)
の堆積、スルーホール形成、Alの堆積とパターニングに
より得られる。同図の例では1層目AlによってNchバッ
ファトランジスタ(13)のソースに電源電位VSSを供給
する第1の配線(16)が、2層目AlによってPchバッフ
ァトランジスタ(14)のソースに電源電位VDDを供給す
る第2の配線(17)が夫々形成されている。Nchバッフ
ァトランジスタ(13)のソース領域と第1の配線(16)
とはコンタクトホールを介して直に、Pchバッファトラ
ンジスタ(14)のソース領域と第2の配線(17)とは、
ステップカバレージの問題やプロセスフローの問題があ
るので、1層目Al層を介してコンタクトホールでコンタ
クトする。各トランジスタのドレインは個々にボンディ
ングパッド(12)に接続される。CMOS型の場合は、ラッ
チアップの問題が避けられないので、NchはNch、PchはP
chでまとめて配置してある。
The formation of each wiring can be obtained by vapor deposition of aluminum (Al) on an insulating film (SiO 2 or the like) covering the surface of the substrate or deposition by a sputtering method, and patterning the deposited material by a photoresist process. A multi-layer structure is obtained by repeating this process, and an insulating film (CVD-SiO 2 , SOG, SiN, etc.) on the first Al layer.
Is deposited, through holes are formed, Al is deposited and patterned. In the example of the figure, the first wiring (16) for supplying the power supply potential V SS to the source of the Nch buffer transistor (13) by the first layer Al is used for the source of the Pch buffer transistor (14) by the second layer Al. Second wirings (17) for supplying the potential V DD are respectively formed. Source region of Nch buffer transistor (13) and first wiring (16)
Between the source region of the Pch buffer transistor (14) and the second wiring (17) directly through the contact hole.
Since there is a problem of step coverage and a problem of process flow, contact is made with a contact hole through the first Al layer. The drain of each transistor is individually connected to the bonding pad (12). In the case of CMOS type, the problem of latch-up is unavoidable, so Nch is Nch, Pch is P
It is arranged collectively by ch.

第1の配線(16)と第2の配線(17)とは、面積に余
裕がある又はどちらか一方が必要無い等で重ねずに済む
部分では、各出力バッファトランジスタ(13)(14)が
要求する電流容量に応じた太い線幅(18)で延在する。
一方、両者が近接し互いに前記太い線幅(18)で延在す
る為には重なり合うような部分では、各配線(16)(1
7)は前記太い線幅(18)より細く形成され、細い線幅
19)で互いに延在することで重畳することを防止す
る。VSSが印加された第1の配線(16)とVDDが印加され
た第2の配線(17)とが重畳しなければ、ヒロック等に
よる層間短絡は生じない。
In the portion where the first wiring (16) and the second wiring (17) do not need to be overlapped because there is a margin in area or one of them is not necessary, each output buffer transistor (13) (14) is It extends with a thick line width ( 18 ) according to the required current capacity.
On the other hand, in the portion where they are close to each other and extend to each other with the thick line width ( 18 ), the wiring (16) (1)
7) is formed thinner than the thick line width ( 18 ), and extends with a thin line width ( 19 ) to prevent overlapping. If the first wiring (16) to which V SS is applied and the second wiring (17) to which V DD is applied do not overlap, an interlayer short circuit due to hillocks or the like does not occur.

さらに、各配線(16)(17)の線幅を細くした結果低
下することが避けられない各配線(16)(17)の電流容
量は、各配線(16)(17)の上層又は下層に予備配線
(20)(21)を形成することで補償する。第1の配線
(16)用の予備配線(20)は2層目Al層で形成し、第2
の配線(17)用の予備配線(21)は1層目Al層で形成す
る。各予備配線(20)(21)は、前記細い線幅(19)で
延在する部分の略全体にわたってそれらと重畳し、且つ
全体にわたってスルーホール(22)により電気接続され
る。スルーホール(22)は全体で細長い形状の1個とし
ても良いし同図に示すように多数個設けても良い。
In addition, the current capacity of each wiring (16) (17), which cannot be avoided as a result of reducing the line width of each wiring (16) (17), is in the upper or lower layer of each wiring (16) (17). Compensation is performed by forming spare wirings (20) (21). The spare wiring (20) for the first wiring (16) is formed of the second Al layer,
The preliminary wiring (21) for the wiring (17) is formed of the first Al layer. The spare wirings (20) and (21) overlap with substantially the entire portion extending with the narrow line width ( 19 ) and are electrically connected to each other by through holes (22). The through hole (22) may be one elongated shape as a whole, or a plurality of through holes (22) may be provided as shown in FIG.

斯る構成によれば、予備配線(20)(21)を設けこれ
と電気接続することにより、前記細い線幅(19)で延在
する部分の電流容量を、前記太い線幅(18)で延在する
部分の電流容量と略同等にすることができる。従って、
細くしたことによる電流容量の低下、電位降下の発生、
さらにはエレクトロマイグレーションの発生をも防止で
きる。各配線(16)(17)と各予備配線(20)(21)と
は、同電位であるからヒロック等による層間短絡が生じ
ても支障は無い。
According to this structure, the spare wires (20) (21) are provided and electrically connected to the spare wires (20) (21), so that the current capacity of the portion extending by the thin line width ( 19 ) can be increased by the thick line width ( 18 ). The current capacity of the extending portion can be made substantially equal. Therefore,
Reduction of current capacity due to thinning, potential drop,
Furthermore, the occurrence of electromigration can be prevented. Since the wirings (16) (17) and the spare wirings (20) (21) have the same potential, there is no problem even if an interlayer short circuit due to hillocks or the like occurs.

(ト)発明の効果 以上説明した通り、本発明によれば予備配線(20)
(21)を利用することにより必要な電流容量を確保でき
るので、線幅を細くすることにより第1の配線(16)と
第2の配線(17)とが重ならないパターン配置が可能と
なる。重ならなければ、ヒロック等による層間短絡が生
じないので、VSSとVDDのショート不良を完全に防止しそ
れによって多層配置構造の信頼性を向上し製品の歩留り
も向上できるという利点を有する。まだ、線幅を細くす
ることで第1と第2の配線(16)(17)の重畳を防止す
るので、チップサイズを増大せずに済む利点をも有す
る。
(G) Effect of the Invention As described above, according to the present invention, the auxiliary wiring (20)
Since the necessary current capacity can be secured by using (21), the pattern can be arranged so that the first wiring (16) and the second wiring (17) do not overlap by reducing the line width. If they do not overlap, an interlayer short circuit due to a hillock or the like does not occur, so that there is an advantage that a short circuit defect between V SS and V DD can be completely prevented, thereby improving the reliability of the multilayer arrangement structure and improving the product yield. Still further, by making the line width narrower to prevent the first and second wirings (16) and (17) from overlapping, there is also an advantage that the chip size does not need to be increased.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を説明するための平面図、第2図は従来
例を説明するための平面図である。
FIG. 1 is a plan view for explaining the present invention, and FIG. 2 is a plan view for explaining a conventional example.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】異る電源電位が印加された配線が多層配線
構造を成して近接して延在する半導体集積回路におい
て、 一方の電源電位が印加された第1の配線は、他方の電源
電位が印加された第2の配線と重ならない部分において
ある太い線幅で延在し、且つ前記第2の配線と重なりそ
うな部分においては、前記第2の配線と重ならないよう
に前記ある太い線幅よりも細い線幅で延在させて両配線
を重なることなしに形成すると共に、 前記第1の配線の上層又は下層に前記第1の配線と重畳
し重畳した部分の略全体にわたって層間接続される予備
配線を設け、 前記細い線幅で延在する第1の配線と前記予備配線との
両方で前記太い線幅で延在する第1の配線の電流容量と
略同等の電流容量を得たことを特徴とする半導体集積回
路。
1. In a semiconductor integrated circuit in which wirings to which different power supply potentials are applied extend in close proximity to each other in a multilayer wiring structure, the first wiring to which one power supply potential is applied is the other power supply. The thick line extends in a portion not overlapping the second wiring to which the electric potential is applied, and has a certain thick width so as not to overlap the second wiring in a portion likely to overlap the second wiring. The wirings are formed to have a line width smaller than the line width so that both wirings are formed without overlapping, and interlayer connection is formed over the entire upper or lower layer of the first wirings overlapping and overlapping the first wirings. Is provided, and a current capacity substantially equal to the current capacity of the first wire extending with the thick line width is obtained in both the first wire extending with the narrow line width and the spare wire. A semiconductor integrated circuit characterized by the above.
【請求項2】前記第1の配線と第2の配線はアルミ又は
アルミを主体とする導電材料から成る電源配線であるこ
とを特徴とする請求項第1項に記載の半導体集積回路。
2. The semiconductor integrated circuit according to claim 1, wherein the first wiring and the second wiring are power wirings made of aluminum or a conductive material mainly containing aluminum.
【請求項3】前記予備配線と前記第2の配線とは同層の
配線層であることを特徴とする請求項第1項に記載の半
導体集積回路。
3. The semiconductor integrated circuit according to claim 1, wherein the spare wiring and the second wiring are wiring layers in the same layer.
【請求項4】一方の電源電位が印加された第1の配線
と、これとは異る他方の電源電位が印加された第2の配
線とが多層配線構造を成して近接して延在する半導体集
積回路において、 前記第1と第2の配線は、互いに他方の配線と重ならな
い部分においてある太い線幅で延在し、且つ互いに重な
りそうな部分においては、互いに他方の配線と重ならな
いように前記太い線幅よりも細い線幅で延在させて両配
線を重なることなしに形成すると共に、 個々の配線の上層又は下層に夫々前記細い線幅で延在す
る部分と重畳し重畳した部分の略全体にわたって前記第
1又は第2の配線と層間接続される予備配線を設け、 前記細い線幅で延在する部分と前記予備配線との両方で
前記太い線幅で延在する部分の電流容量と略同等の電流
容量を得たことを特徴とする半導体集積回路。
4. A first wiring to which one power source potential is applied and a second wiring to which another power source potential is applied, which are different from the first wiring, extend in close proximity in a multilayer wiring structure. In the semiconductor integrated circuit, the first and second wirings extend with a thick line width in a portion that does not overlap the other wiring, and do not overlap the other wiring in a portion that is likely to overlap each other. As described above, the wirings are formed so as to extend with a line width smaller than the thick line width so that both wirings are formed without overlapping, and the wirings are overlapped and overlapped with the portions extending with the thin line widths on the upper or lower layers of the individual wirings. A preliminary wiring that is interlayer-connected to the first or second wiring is provided over substantially the entire portion, and both of the portion extending with the thin line width and the portion extending with the thick line width of the preliminary wiring are provided. That the current capacity almost equal to the current capacity was obtained Semiconductor integrated circuit to be butterflies.
【請求項5】前記予備配線は、層間接続された配線とは
反対の配線層と同層の配線層であることを特徴とする請
求項第1項あるいは第4項に記載の半導体集積回路。
5. The semiconductor integrated circuit according to claim 1, wherein the spare wiring is a wiring layer which is the same as a wiring layer opposite to the wiring connected between layers.
JP2014208A 1990-01-23 1990-01-23 Semiconductor integrated circuit Expired - Fee Related JPH0831455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014208A JPH0831455B2 (en) 1990-01-23 1990-01-23 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014208A JPH0831455B2 (en) 1990-01-23 1990-01-23 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH03218022A JPH03218022A (en) 1991-09-25
JPH0831455B2 true JPH0831455B2 (en) 1996-03-27

Family

ID=11854688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014208A Expired - Fee Related JPH0831455B2 (en) 1990-01-23 1990-01-23 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0831455B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481928B2 (en) * 2009-05-19 2014-04-23 株式会社リコー Wiring layer layout method and semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344742A (en) * 1986-08-12 1988-02-25 Fujitsu Ltd Semiconductor device

Also Published As

Publication number Publication date
JPH03218022A (en) 1991-09-25

Similar Documents

Publication Publication Date Title
US5220199A (en) Semiconductor integrated circuit device in which a semiconductor chip is mounted with solder bumps for mounting to a wiring substrate
US5027188A (en) Semiconductor integrated circuit device in which a semiconductor chip is mounted with solder bumps for mounting to a wiring substrate
US8115315B2 (en) Semiconductor chips having redistributed power/ground lines directly connected to power/ground lines of internal circuits and methods of fabricating the same
JPH09283632A (en) Semiconductor integrated circuit device
KR930005493B1 (en) Semiconductor integrated circuit device
JPH0338043A (en) Semiconductor integrated circuit device
JP3253549B2 (en) Semiconductor integrated circuit device
US9070550B2 (en) Semiconductor device and manufacturing method thereof
JPH0831455B2 (en) Semiconductor integrated circuit
JP3696706B2 (en) Power line structure of semiconductor device
JPS59144171A (en) Semiconductor integrated circuit device
JP2676801B2 (en) Semiconductor integrated circuit device having output buffer circuit
JP3101252B2 (en) Semiconductor integrated circuit device
JPH0286160A (en) Semiconductor device
JP2710253B2 (en) Multilayer wiring structure of semiconductor integrated circuit
JP3636523B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
JP2630845B2 (en) Semiconductor integrated circuit
JPS5935477A (en) Semiconductor device
JPH10321623A (en) Semiconductor device and its manufacture
JPH03169073A (en) Semiconductor integrated circuit device
JP2001189427A (en) Standard cell ad semiconductor integrated circuit equipped with the same
JPH0786281A (en) Semiconductor device and manufacture of semiconductor device
JP2000164696A (en) Multilayer interconnection structure
JPH043980A (en) Semiconductor device
JP2000232103A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees