JPH0831419A - Negative electrode material for lithium secondary battery and lithium secondary battery - Google Patents

Negative electrode material for lithium secondary battery and lithium secondary battery

Info

Publication number
JPH0831419A
JPH0831419A JP6162417A JP16241794A JPH0831419A JP H0831419 A JPH0831419 A JP H0831419A JP 6162417 A JP6162417 A JP 6162417A JP 16241794 A JP16241794 A JP 16241794A JP H0831419 A JPH0831419 A JP H0831419A
Authority
JP
Japan
Prior art keywords
mcmb
negative electrode
secondary battery
lithium secondary
brooks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6162417A
Other languages
Japanese (ja)
Inventor
Hiroaki Matsuyoshi
弘明 松好
Yoshiteru Nakagawa
喜照 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP6162417A priority Critical patent/JPH0831419A/en
Publication of JPH0831419A publication Critical patent/JPH0831419A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain the lithium secondary battery, which has excellent energy density, excellent discharging characteristic and excellent cycle characteristic, by using carbide, which is obtained by baking Brooks-Taylor type mesophase small spherical body, as the negative electrode material. CONSTITUTION:Brooks Taylor type mesophase small spherical body is baked in the nitride atmosphere so as to obtain the Brooks-Taylor type mesophase small spherical body carbide at 1.50-2.00 of true specific gravity. It is used for the structural member of a negative electrode of a lithium secondary battery. Raw material of MCMB (meso carbon micro beads) of the Brooks-Taylor type mesophase is manufactured form coal tar or pitch. Spherical body of type MCMB has the structure that condensed multi-ring aromatic molecular are vertically laminated in the optical axis direction. Consequently, since the end surface of carbon is arranged vertical to the surface of the spherical body of MCMB, lithium ion can easily go in and out at the time of charge and discharge, and the diffusing speed thereof is considered high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エネルギー密度、放電
特性、サイクル特性などに優れたリチウム二次電池およ
びそれに用いる負極材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery excellent in energy density, discharge characteristics, cycle characteristics and the like, and a negative electrode material used therein.

【0002】[0002]

【従来の技術】負極活物質としてリチウムを使用し、正
極活物質として金属カルコゲン化物あるいは金属酸化物
を使用し、電解液として非プロトン性有機溶媒に種々の
塩を溶解させた溶液を使用する、いわゆるリチウム二次
電池は、高エネルギー密度型二次電池として注目され、
広く研究されている。
2. Description of the Related Art Lithium is used as a negative electrode active material, metal chalcogenide or metal oxide is used as a positive electrode active material, and a solution prepared by dissolving various salts in an aprotic organic solvent is used as an electrolytic solution. The so-called lithium secondary battery has attracted attention as a high energy density secondary battery,
Has been widely studied.

【0003】従来のリチウム電池では、負極活物質とし
てのリチウムは、箔状の単体で用いられることが多く、
充放電を繰り返すことにより、樹枝状リチウムが析出し
て両極が短絡するという危険性を有している。
In a conventional lithium battery, lithium as a negative electrode active material is often used in the form of a foil.
By repeating charging and discharging, there is a risk that dendritic lithium is deposited and both electrodes are short-circuited.

【0004】樹枝状リチウムの析出を防止するために、
負極活物質として、リチウムとアルミニウム、鉛、カド
ミウムおよびインジウムというリチウムとの合金化が可
能な金属の少なくとも1種とを使用して、充電時にリチ
ウムを合金として析出させ、放電時にこの合金からリチ
ウムを溶解させる方法が提案されている(米国特許40
02492号)。しかしながら、このような方法によれ
ば、樹枝状リチウムの析出は抑止できるものの、エネル
ギー密度の減少およびサイクル寿命の低下という新たな
問題点が発生する。
In order to prevent the deposition of dendritic lithium,
As the negative electrode active material, at least one kind of metal capable of alloying with lithium and lithium such as aluminum, lead, cadmium, and indium is used, lithium is deposited as an alloy during charging, and lithium is discharged from this alloy during discharging. A method of dissolving has been proposed (US Pat. No. 40).
02492). However, according to such a method, although the deposition of dendritic lithium can be suppressed, new problems such as a decrease in energy density and a decrease in cycle life occur.

【0005】このような問題点を解決すべく、カーボン
材にリチウムを担持させることが試みられている。例え
ば、繊維状ないし粉末状のカーボン材にリチウムを担持
させることが提案されている(特開昭63−11405
6号公報、特開昭62−268056号公報など)。し
かしながら、繊維状ないし粉末状のカーボン材を使用す
る場合には、電極の平滑性が得られない、炭素の結晶に
方向性があるため、導電性にも方向性が認められるなど
の問題点が生じる。
In order to solve such problems, it has been attempted to support lithium on a carbon material. For example, it has been proposed to support lithium on a fibrous or powdery carbon material (Japanese Patent Laid-Open No. 63-11405).
No. 6, JP-A No. 62-268056, etc.). However, when a fibrous or powdery carbon material is used, there are problems that the smoothness of the electrode cannot be obtained, and the conductivity of carbon is directional because of the directional carbon crystal. Occurs.

【0006】また、カーボン材としてMCMB(メソカ
ーボンマイクロビーズ)を使用することも提案されてい
る(特公平4−115457号公報、特公平4−115
458号公報など)。
It has also been proposed to use MCMB (mesocarbon microbeads) as a carbon material (Japanese Patent Publication No. 4-115457 and Japanese Patent Publication No. 4-115).
No. 458, etc.).

【0007】MCMBの構造には、ブルックス−テーラ
ー型、ホンダ型、ヒュッティンガー型、コバック−ルイ
ス型などがあり、これらは、種々の特性上相互に明確に
相違している。
The structure of MCMB includes Brooks-Taylor type, Honda type, Huttinger type, Kovac-Lewis type and the like, which are clearly different from each other due to various characteristics.

【0008】即ち、G.H.Taylorらは、コールタールピッ
チのキノリン可溶分を熱処理した際に得られるMCMB
を偏光顕微鏡と制限視野電子線回折により観察した結
果、図1に示す様に、このMCMBは、縮合多環芳香族
化合物の平面分子が一定方向に薄層(ラメラ)を形成
し、この薄層が積層したものであることを報告した(Ca
rbon,8,185(1965))。この構造を有するMCMBは、
ブルックス−テーラー型MCMBと呼ばれている。この
MCMBを偏光顕微鏡で観察すると、光軸を含む面で
は、アイソジャー(十字架)によって区分けされる領域
の色は、第1および第3象限が青色となり、第2および
第4象限が黄色となる。
[0008] That is, GH Taylor et al. Obtained MCMB obtained by heat-treating a quinoline soluble component of coal tar pitch.
As a result of observing with a polarizing microscope and a selected area electron beam diffraction, as shown in FIG. 1, in this MCMB, planar molecules of the condensed polycyclic aromatic compound form a thin layer (lamella) in a certain direction, and this thin layer It was reported that they were laminated (Ca
rbon, 8,185 (1965)). MCMB with this structure
It is called Brooks-Taylor type MCMB. When observing this MCMB with a polarization microscope, in the plane including the optical axis, the color of the region divided by the isogen (cross) is blue in the first and third quadrants and yellow in the second and fourth quadrants. .

【0009】また、本田らは、コールタールピッチのキ
ノリン可溶分に特定のカーボンブラックを添加したもの
を熱処理した際に得られるMCMBにおいては、ブルッ
クス−テーラー型とは異なり、図2に示す様に、光軸を
含む面では、分子はその長軸が光軸にほぼ垂直になる様
に配向し、光軸に垂直な面では、同心円状に配向してい
ることを報告した(炭素、73、51(1973))。
この構造を有するMCMBは、ホンダ型MCMBと呼ば
れている。このMCMBを偏光顕微鏡で観察すると、光
軸を含む面では、アイソジャー(十字架)によって区分
けされる領域の色は、第1および第3象限が黄色とな
り、第2および第4象限が青色となる。
In addition, Honda et al., In MCMB obtained by heat-treating coal tar pitch having quinoline-soluble component added with specific carbon black, unlike Brooks-Taylor type, as shown in FIG. In the plane containing the optical axis, it was reported that the molecules are oriented so that their long axes are almost perpendicular to the optical axis, and in the plane perpendicular to the optical axis, they are concentrically oriented (carbon, 73 , 51 (1973)).
An MCMB having this structure is called a Honda MCMB. When observing this MCMB with a polarization microscope, in the plane including the optical axis, the colors of the regions divided by the isogers (crosses) are yellow in the first and third quadrants and blue in the second and fourth quadrants. .

【0010】しかしながら、上記の公報では、用いられ
るMCMBの構造と電極特性との対応関係が明確にされ
ていないので、どの様な構造のMCMBを使用する場合
にどの様な効果が達成されるかは、全く不明である。
However, in the above publication, since the correspondence between the structure of the MCMB used and the electrode characteristics is not clarified, what kind of effect is achieved when using the MCMB having any structure. Is completely unknown.

【0011】[0011]

【発明が解決しようとする課題】したがって、本発明
は、カーボン材を負極物質として使用するリチウム二次
電池用の新たなMCMB系負極材料を提供することを主
な目的とする。
Therefore, the main object of the present invention is to provide a new MCMB-based negative electrode material for a lithium secondary battery using a carbon material as a negative electrode material.

【0012】さらに、本発明は、上記の新たなMCMB
系負極材料を使用するリチウム二次電池を提供すること
をも目的とする。
Furthermore, the present invention provides the above-mentioned new MCMB.
It is also an object to provide a lithium secondary battery using a system negative electrode material.

【0013】[0013]

【課題を解決するための手段】本発明者は、上記のよう
な技術の現状に鑑みて鋭意研究を重ねる間に、MCMB
の構造によって電極特性が異なること、およびブルック
ス−テーラー型構造のMCMBが負極材料として特に優
れた性能を発揮することを見出した。
Means for Solving the Problems The present inventor has conducted an earnest research in view of the current state of the art as described above, and
It was found that the electrode characteristics differ depending on the structure of No. 3, and that the MCMB of Brooks-Taylor structure exhibits particularly excellent performance as a negative electrode material.

【0014】本発明はこのような新規な知見に基いて完
成されたものである。
The present invention has been completed based on such novel knowledge.

【0015】即ち、本発明は、下記のリチウム二次電池
用負極材料およびこれを使用するリチウム二次電池を提
供するものである。
That is, the present invention provides the following negative electrode material for a lithium secondary battery and a lithium secondary battery using the same.

【0016】1.ブルックステーラー型メソフェーズ小
球体を焼成処理することにより得られ、真比重が1.5
0〜2.00である炭化ブルックス−テーラー型メソフ
ェーズ小球体からなるリチウム二次電池用負極材料。
1. The true specific gravity is 1.5, which is obtained by firing a Brook-Stellar type mesophase sphere.
A negative electrode material for lithium secondary batteries comprising Brooks-Taylor type mesophase spherules having a carbon number of 0 to 2.00.

【0017】2.上記項1に記載のリチウム二次電池用
負極材料を負極の構成材料とするリチウム二次電池。
2. A lithium secondary battery comprising the negative electrode material for a lithium secondary battery according to item 1 as a constituent material of a negative electrode.

【0018】3.ブルックル−テーラー型メソフェーズ
小球体を焼成処理することにより得られ、真比重が2.
00〜2.21である黒鉛化ブルックス−テーラー型メ
ソフェーズ小球体からなるリチウム二次電池用負極材
料。
3. A true specific gravity of 2. was obtained by firing a Brookle-Taylor type mesophase microsphere.
A negative electrode material for a lithium secondary battery comprising graphitized Brooks-Taylor type mesophase spherules having a size of 00 to 2.21.

【0019】4.上記項2に記載のリチウム二次電池用
負極材料を負極の構成材料とするリチウム二次電池。
4. A lithium secondary battery comprising the negative electrode material for a lithium secondary battery according to item 2 as a constituent material of a negative electrode.

【0020】本発明において使用する負極材料となるM
CMB(生品)の原料は、常法に従って、コールタール
やピッチから製造される。このようなMCMBは、特に
限定されるものではないが、例えば、特開昭58−16
1049号公報、特開昭63−70949号公報などに
開示されている方法により製造される。
M as the negative electrode material used in the present invention
The raw material of CMB (raw product) is produced from coal tar or pitch according to a conventional method. Such MCMB is not particularly limited, but for example, JP-A-58-16 is used.
It is manufactured by the method disclosed in Japanese Patent No. 1049, Japanese Patent Laid-Open No. 63-70949 and the like.

【0021】MCMB(生品)の炭化焼成は、窒素雰囲
気、アルゴン雰囲気などの非酸化性雰囲気中もしくは真
空脱気などの減圧下600〜1500℃程度の温度で1
〜5時間程度の条件下に行なう。
Carbonization firing of MCMB (raw product) is performed at a temperature of about 600 to 1500 ° C. in a non-oxidizing atmosphere such as a nitrogen atmosphere or an argon atmosphere or under reduced pressure such as vacuum deaeration.
Perform under conditions of about 5 hours.

【0022】また、MCMB(生品)の黒鉛化焼成は、
窒素雰囲気、アルゴン雰囲気などの非酸化性雰囲気中2
500〜3000℃程度の温度で1〜5時間程度の条件
下に行なう。
Further, the graphitization firing of MCMB (raw product) is
In a non-oxidizing atmosphere such as a nitrogen atmosphere or an argon atmosphere 2
It is performed at a temperature of about 500 to 3000 ° C. for about 1 to 5 hours.

【0023】ブルックス−テーラー型MCMBの炭化品
を使用する場合には、電解液として1モル/lの濃度で
LiClO4 を溶解させたプロピレンカーボネートを用
い、電流密度を0.1mA/cm2 とする条件下に、リ
チウム二次電池の放電容量は360Ah/kg程度、充
放電効率は85%以上となる。
When a Brooks-Taylor type MCMB carbonized product is used, propylene carbonate in which LiClO 4 is dissolved at a concentration of 1 mol / l is used as the electrolytic solution, and the current density is 0.1 mA / cm 2 . Under the conditions, the discharge capacity of the lithium secondary battery is about 360 Ah / kg, and the charge / discharge efficiency is 85% or more.

【0024】ブルックス−テーラー型MCMBの黒鉛炭
化品を使用する場合には、電解液として1モル/lの濃
度でLiClO4 を溶解させたエチレンカーボネートと
ジエチルカーボネート(体積比で1:1)の混合溶媒を
用い、電流密度を0.1mA/cm2 とする条件下に、
リチウム二次電池の放電容量は350Ah/kg程度、
充放電効率は85%以上となる。
When a Brooks-Taylor type MCMB graphite carbonized product is used, a mixture of ethylene carbonate and diethyl carbonate (1: 1 by volume) in which LiClO 4 is dissolved at a concentration of 1 mol / l is used as an electrolytic solution. Using a solvent and a current density of 0.1 mA / cm 2 ,
The discharge capacity of the lithium secondary battery is about 350 Ah / kg,
The charge / discharge efficiency is 85% or more.

【0025】ブルックス−テーラー型MCMBが、ホン
ダ型MCMBなどの他の構造を有するMCMBに比し
て、リチウム二次電池負極材料として優れた特性を発揮
する理由は、未だ解明されていないが、以下のように推
測される。
The reason why the Brooks-Taylor type MCMB exhibits excellent characteristics as a lithium secondary battery negative electrode material as compared with MCMB having other structures such as Honda type MCMB has not yet been elucidated. Is speculated as.

【0026】ブルックス−テーラー型MCMBの球体
は、図1に示す様に、縮合多環芳香族分子が光軸方向に
垂直に積層した構造をしている。したがって、MCMB
の球体表面に対して炭素の端面(エッジ面)が垂直に配
向しているため、充放電に際し、リチウムイオンが出入
りしやすく、その拡散速度が速いものと考えられる。
As shown in FIG. 1, the Brooks-Taylor type MCMB sphere has a structure in which condensed polycyclic aromatic molecules are laminated perpendicularly to the optical axis direction. Therefore, MCMB
It is considered that since the carbon end faces (edge faces) are oriented perpendicularly to the sphere surface, the lithium ions easily enter and leave during charge and discharge, and the diffusion speed thereof is fast.

【0027】これに対し、ホンダ型MCMBの球体で
は、図2に示す様に、光軸を含む面では、縮合多環芳香
族分子の長軸が光軸にほぼ平行になるように配向し、光
軸に垂直な面では、同心円状に配向している。したがっ
て、MCMBの球体表面に対して炭素の端面(エッジ
面)が平行に配向しているため、充放電に際し、リチウ
ムイオンが出入りしにくく、その拡散速度が遅いものと
考えられる。
On the other hand, in the sphere of Honda MCMB, as shown in FIG. 2, in the plane including the optical axis, the fused polycyclic aromatic molecule is oriented so that the long axis thereof is substantially parallel to the optical axis, The plane perpendicular to the optical axis is concentrically oriented. Therefore, since the carbon end faces (edge faces) are oriented parallel to the surface of the spheres of MCMB, it is considered that lithium ions are hard to come in and out during charge and discharge, and the diffusion speed thereof is slow.

【0028】本発明によるリチウム二次電池用負極は、
公知の正極、電解液、電解質などと組み合わせて、常法
により、二次電池を構成することが出来る。
The negative electrode for a lithium secondary battery according to the present invention comprises:
A secondary battery can be formed by a conventional method in combination with a known positive electrode, electrolytic solution, electrolyte and the like.

【0029】正極物質としては、特に限定されず、金属
カルコゲン化物、金属酸化物、導電性を有する共役系高
分子物質などを用いることが出来る。
The positive electrode material is not particularly limited, and a metal chalcogenide, a metal oxide, a conjugated polymer material having conductivity, or the like can be used.

【0030】本発明によるMCMB炭化品を負極材料と
する場合の電解液としては、プロピレンカーボネート系
の非プロトン性溶媒にリチウム塩を溶解させたものを用
いることが出来る。
When the MCMB carbonized product according to the present invention is used as a negative electrode material, an electrolyte prepared by dissolving a lithium salt in a propylene carbonate-based aprotic solvent can be used.

【0031】本発明によるMCMB黒鉛化品を負極材料
とする場合の電解液としては、エチレンカーボネート系
の非プロトン性溶媒にリチウム塩を溶解させたものを用
いることが出来る。エチレンカーボネートは、粘度が高
いため、常法に従って通常ジエチルカーボネート、ジエ
チルエーテル、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン、1,2−ジメトキシエタン、アセトニト
リルなどの低粘度溶媒を混合して使用する。
When the MCMB graphitized product according to the present invention is used as a negative electrode material, an electrolyte prepared by dissolving a lithium salt in an ethylene carbonate aprotic solvent can be used. Since ethylene carbonate has a high viscosity, a low-viscosity solvent such as diethyl carbonate, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,2-dimethoxyethane or acetonitrile is usually mixed and used according to a conventional method.

【0032】また、電解質としてのリチウム塩は、Li
PF6 、LiClO4 、LiBF4、LiAsF6 、L
iSbF6 などの溶媒和しにくいアニオンを生成する塩
が用いられる。
The lithium salt used as the electrolyte is Li
PF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , L
A salt that produces an anion that is difficult to solvate, such as iSbF 6, is used.

【0033】本発明によるリチウム二次電池は、通常使
用される多孔質ポリプロピレン製不織布などのポリオレ
フィン系の多孔質膜のセパレータ、集電体、ガスケッ
ト、封口板、ケースなどの公知の電池構成要素と前記の
本発明によるカーボン負極を使用し、常法に従って、円
筒型、角型あるいはボタン型などの任意の形態に組み立
てることが出来る。
The lithium secondary battery according to the present invention has well-known battery components such as a separator of a porous polyolefin film such as a porous polypropylene non-woven fabric which is usually used, a current collector, a gasket, a sealing plate and a case. Using the carbon negative electrode according to the present invention, it can be assembled into any shape such as a cylindrical shape, a square shape or a button shape according to a conventional method.

【0034】[0034]

【実施例】以下に実施例および比較例を示し、本発明の
特徴とするところをより一層明確にする。
EXAMPLES Examples and comparative examples will be shown below to further clarify the features of the present invention.

【0035】なお、偏光顕微鏡観察に際しては、MCM
Bと樹脂とを混合して成型し、研磨を行い、光源にハロ
ゲン白熱灯を用いたZeiss社製オルソルックス反射
偏光顕微鏡により、直交ニコル下で石膏検板を入れて組
織を観察した。
When observing with a polarization microscope, MCM
B and a resin were mixed, molded, and polished, and a gypsum test plate was put under a crossed Nicols by a Zeiss Orsolux reflection polarization microscope using a halogen incandescent lamp as a light source, and the structure was observed.

【0036】実施例1 I.ブルックステーラー型MCMBの調製 出発原料として一次QIを除去したコールタールピッチ
を3kg/cm2 ・Gの加圧下、400℃で8時間反応
させ、生成したMCMBを高温遠心分離機により反応タ
ールから分離し、トルエンで洗浄した後、窒素雰囲気下
で減圧乾燥を行った。
Example 1 I. Preparation of Brooks Taylor type MCMB Coal tar pitch from which primary QI was removed was reacted as a starting material under a pressure of 3 kg / cm 2 · G for 8 hours at 400 ° C., and the produced MCMB was separated from the reaction tar by a high temperature centrifuge. After washing with toluene, it was dried under reduced pressure in a nitrogen atmosphere.

【0037】得られたMCMB生品の構造を偏光顕微鏡
で観察したところ、球体の光軸を含む面では、アイソジ
ャーによって区分される領域の色は、第1および第3象
限が青色、第2および4象限が黄色であることから、こ
のMCMBは、ブルックス−テーラー型構造を有するこ
とが確認された。
When the structure of the obtained MCMB raw product was observed with a polarizing microscope, in the plane including the optical axis of the sphere, the colors of the regions divided by the isogens were blue in the first and third quadrants and second in the second quadrant. It was confirmed that the MCMB had a Brooks-Taylor type structure because of the yellow color in the four quadrants.

【0038】II.ブルックステーラー型MCMBの炭
化焼成処理 得られたMCMBを窒素雰囲気中1000℃で1時間焼
成し、炭化した。得られたMCMB炭化品の構造を偏光
顕微鏡で観察したところ、ブルックス−テーラー型であ
った。
II. Carbonization and calcination treatment of Brook Stellar type MCMB The obtained MCMB was calcinated and calcined at 1000 ° C. for 1 hour in a nitrogen atmosphere. When the structure of the obtained MCMB carbonized product was observed with a polarizing microscope, it was Brooks-Taylor type.

【0039】III.負極体の作成 上記で得られたMCMB炭化品95重量部とデイスパー
ジョンタイプのPTFE(ダイキン工業(株)製、D−
1)5重量部とを混合し、液相で均一に攪拌した後、乾
燥させ、ペースト状とした。このペースト状負極用物質
30mgをプレス機により成型し、直径10mmの負極
体を作成した後、得られた負極体を200℃で6時間真
空乾燥させた。
III. Preparation of Negative Electrode Body 95 parts by weight of MCMB carbonized product obtained above and dispersion type PTFE (manufactured by Daikin Industries, Ltd., D-
1) 5 parts by weight were mixed, stirred uniformly in the liquid phase, and then dried to obtain a paste. 30 mg of this paste-like negative electrode substance was molded by a press to form a negative electrode body having a diameter of 10 mm, and the obtained negative electrode body was vacuum dried at 200 ° C. for 6 hours.

【0040】IV.電池の作成 上記で得られた負極体としてのMCMB炭化品、正極体
としてのLiCoO2および電解液として1モル/lの
濃度にLiClO4 を溶解させたプロピレンカーボネー
トを用い、セパレータとしてポリプロピレン不織布を用
いて、リチウム二次電池を作成した。その断面図を図3
に示す。図3において、1は正極体、2はセパレータ、
3は負極体、4はケース、5は封口板、6は絶縁パッキ
ングをそれぞれ示す。
IV. Preparation of Battery Using MCMB carbonized product as the negative electrode body obtained above, LiCoO 2 as the positive electrode body, and propylene carbonate in which LiClO 4 was dissolved at a concentration of 1 mol / l as the electrolytic solution, and using polypropylene nonwoven fabric as the separator. , A lithium secondary battery was created. Its sectional view is shown in FIG.
Shown in In FIG. 3, 1 is a positive electrode body, 2 is a separator,
Reference numeral 3 is a negative electrode, 4 is a case, 5 is a sealing plate, and 6 is an insulating packing.

【0041】V.電池特性の測定 上記で得られたリチウム二次電池の放電特性を測定し
た。
V. Measurement of Battery Characteristics The discharge characteristics of the lithium secondary battery obtained above were measured.

【0042】測定は、0.1mA/cm2 の定電流充放
電下で行い、放電容量は、電池電圧が2.0Vに低下す
るまでの容量とした。結果を表1に示す。
The measurement was performed under a constant current charge / discharge of 0.1 mA / cm 2 , and the discharge capacity was the capacity until the battery voltage dropped to 2.0V. The results are shown in Table 1.

【0043】実施例2 I.ブルックステーラー型MCMBの黒鉛化焼成処理 実施例1と同様にして調製したブルックステーラー型M
CMB生品を2800℃で1時間焼成し、黒鉛化した。
得られたMCMB黒鉛化品の構造を偏光顕微鏡で観察し
たところ、ブルックス−テーラー型であった。
Example 2 I. Graphitization and firing treatment of Brooks Taylor type MCMB Brooks Taylor type M prepared in the same manner as in Example 1.
The CMB raw product was fired at 2800 ° C. for 1 hour to be graphitized.
When the structure of the obtained MCMB graphitized product was observed with a polarizing microscope, it was Brooks-Taylor type.

【0044】II.負極体の作成 上記で焼成処理を行った黒鉛化MCMBを用いて、実施
例1と同様にして負極体を作成した。
II. Preparation of Negative Electrode Body A negative electrode body was prepared in the same manner as in Example 1 by using the graphitized MCMB subjected to the above-mentioned firing treatment.

【0045】III.電池の作成 電解液として1モル/lの濃度にLiClO4 を溶解さ
せたエチレンカーボネートとジエチルカーボネートの混
合溶媒(体積比で1:1)を用いる以外は、実施例1と
同様にしてリチウム二次電池を作成した。
III. Preparation of Battery Secondary lithium secondary battery was prepared in the same manner as in Example 1 except that a mixed solvent of ethylene carbonate and diethyl carbonate (1: 1 by volume) in which LiClO 4 was dissolved at a concentration of 1 mol / l was used as an electrolytic solution. I made a battery.

【0046】IV.電池特性の測定 得られたリチウム二次電池の放電特性を実施例1と同様
に測定した。結果を表1に示す。
IV. Measurement of Battery Characteristics The discharge characteristics of the obtained lithium secondary battery were measured in the same manner as in Example 1. The results are shown in Table 1.

【0047】比較例1 出発原料として一次QIを除去したコールタールピッチ
にファーネスブラックを3重量%添加したものを原料と
し、3kg/cm2 ・Gの加圧下400℃で8時間反応
を行い、生成したMCMBを高温遠心分離機により反応
ピッチから分離した。この際、ファーネスブラックは、
ピッチマトリックス側に分離された。得られたMCMB
をトルエンで洗浄後、窒素雰囲気下で減圧乾燥を行っ
た。得られたMCMB生品の構造を偏光顕微鏡で観察し
たところ、球体の光軸を含む面では、アイソジャーによ
って区分される領域の色は、第1および第3象眼が黄
色、第2および第4象眼が青色であることから、このM
CMBはホンダ型構造を有していることがわかった。
Comparative Example 1 As a starting material, a coal tar pitch from which primary QI was removed and 3% by weight of furnace black was added was used as a starting material, and the reaction was carried out at 400 ° C. for 8 hours under a pressure of 3 kg / cm 2 · G to produce a product. The prepared MCMB was separated from the reaction pitch by a high temperature centrifuge. At this time, Furnace Black
Separated on the pitch matrix side. The obtained MCMB
After washing with toluene, it was dried under reduced pressure in a nitrogen atmosphere. When the structure of the obtained MCMB raw product was observed with a polarization microscope, in the plane including the optical axis of the sphere, the colors of the regions divided by the Isogen were yellow in the first and third inlays, and second and fourth. Since the inlay is blue, this M
It was found that the CMB has a Honda structure.

【0048】得られたMCMBを窒素雰囲気中1000
℃で1時間焼成し、炭化した。得られたMCMB炭化品
の構造を偏光顕微鏡で観察したところ、ホンダ型であっ
た。
The obtained MCMB was treated with 1000 in a nitrogen atmosphere.
Carbonization was performed by firing at 1 ° C for 1 hour. When the structure of the obtained MCMB carbonized product was observed with a polarizing microscope, it was found to be a Honda type.

【0049】次いで、実施例1と同様にして、負極体の
作成および電池の作成を行い、電極特性の測定を行っ
た。結果を表1に示す。
Then, in the same manner as in Example 1, a negative electrode body and a battery were prepared and the electrode characteristics were measured. The results are shown in Table 1.

【0050】比較例2 比較例1と同様にして調整したホンダ型MCMB生品を
2800℃で1時間焼成し、黒鉛化した。得られたMC
MB黒鉛化品の構造を偏光顕微鏡で観察したところ、ホ
ンダ型であった。
Comparative Example 2 A Honda type MCMB raw material prepared in the same manner as in Comparative Example 1 was fired at 2800 ° C. for 1 hour to be graphitized. The obtained MC
When the structure of the MB graphitized product was observed with a polarizing microscope, it was a Honda type.

【0051】次いで、実施例1と同様にして、負極体の
作成および電池の作成を行い、電極特性の測定を行っ
た。結果を表1に示す。
Then, in the same manner as in Example 1, a negative electrode body and a battery were prepared, and the electrode characteristics were measured. The results are shown in Table 1.

【0052】[0052]

【表1】 [Table 1]

【0053】表1から明らかな様に、ブルックス−テー
ラー型MCMBの炭化品または黒鉛化品を負極材料とし
て使用する場合には、ホンダ型MCMBの炭化品または
黒鉛化品を負極材料として使用する場合よりも、リチウ
ム二次電池の放電容量および充放電効率が著しく改善さ
れることが判明した。
As is clear from Table 1, when a carbonized product or graphitized product of Brooks-Taylor type MCMB is used as a negative electrode material, a carbonized product or graphitized product of Honda type MCMB is used as a negative electrode material. It was found that the discharge capacity and charging / discharging efficiency of the lithium secondary battery are significantly improved.

【0054】[0054]

【発明の効果】本発明によれば、MCMBの炭化品或い
は黒鉛化品をリチウム二次電池の負極材料として使用す
る場合に、MCMB生品の構造を予め偏光顕微鏡により
調べておくことにより、これを使用する二次電池の電極
特性を予測することができる。
According to the present invention, when a carbonized product or a graphitized product of MCMB is used as a negative electrode material of a lithium secondary battery, the structure of the MCMB raw product is examined in advance by a polarization microscope. It is possible to predict the electrode characteristics of the secondary battery using

【0055】その結果、電池作成の前段階でMCMBの
出発原料であるコールタールを適切に選択し、あるいは
コールタールを適切に処理することにより、所望のMC
MBを得て、高充放電効率のリチウム二次電池用の負極
およびリチウム二次電池を構成することができる。
As a result, the desired MC was obtained by appropriately selecting the coal tar as the starting material of MCMB or appropriately treating the coal tar in the pre-stage of battery production.
By obtaining MB, a negative electrode for a lithium secondary battery with high charge / discharge efficiency and a lithium secondary battery can be constructed.

【図面の簡単な説明】[Brief description of drawings]

【図1】ブルックス−テーラー型MCMBの構造を示す
概念図である。
FIG. 1 is a conceptual diagram showing the structure of a Brooks-Taylor type MCMB.

【図2】ホンダ型MCMBの構造を示す概念図である。FIG. 2 is a conceptual diagram showing the structure of a Honda MCMB.

【図3】実施例で作成したリチウム二次電池の断面図で
ある。
FIG. 3 is a cross-sectional view of a lithium secondary battery created in an example.

【符号の説明】[Explanation of symbols]

1:負極 2:セパレータ 3:正極 4:ケース 5:封口板 6:絶縁パッキング 1: Negative electrode 2: Separator 3: Positive electrode 4: Case 5: Sealing plate 6: Insulating packing

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ブルックス−テーラー型メソフェーズ小球
体を焼成処理することにより得られ、真比重が1.50
〜2.00である炭化ブルックス−テーラー型メソフェ
ーズ小球体からなるリチウム二次電池用負極材料。
1. A true specific gravity of 1.50 obtained by firing a Brooks-Taylor type mesophase small sphere.
A negative electrode material for lithium secondary batteries comprising Brooks-Taylor type mesophase spherules having a size of about 2.00.
【請求項2】請求項1に記載のリチウム二次電池用負極
材料を負極の構成要素とするリチウム二次電池。
2. A lithium secondary battery comprising the negative electrode material for a lithium secondary battery according to claim 1 as a constituent of a negative electrode.
【請求項3】ブルックス−テーラー型メソフェーズ小球
体を焼成処理することにより得られ、真比重が2.00
〜2.21である黒鉛化ブルックス−テーラー型メソフ
ェーズ小球体からなるリチウム二次電池用負極材料。
3. A true specific gravity obtained by calcining Brooks-Taylor type mesophase spherules and having a true specific gravity of 2.00.
A negative electrode material for lithium secondary batteries, which comprises graphitized Brooks-Taylor type mesophase spherules of .about.2.21.
【請求項4】請求項3に記載のリチウム二次電池用負極
材料を負極の構成要素とするリチウム二次電池。
4. A lithium secondary battery comprising the negative electrode material for a lithium secondary battery according to claim 3 as a component of a negative electrode.
JP6162417A 1994-07-14 1994-07-14 Negative electrode material for lithium secondary battery and lithium secondary battery Pending JPH0831419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6162417A JPH0831419A (en) 1994-07-14 1994-07-14 Negative electrode material for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6162417A JPH0831419A (en) 1994-07-14 1994-07-14 Negative electrode material for lithium secondary battery and lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH0831419A true JPH0831419A (en) 1996-02-02

Family

ID=15754208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6162417A Pending JPH0831419A (en) 1994-07-14 1994-07-14 Negative electrode material for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0831419A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852449B2 (en) 2002-08-29 2005-02-08 Quallion Llc Negative electrode including a carbonaceous material for a nonaqueous battery
US6998192B1 (en) 2002-08-29 2006-02-14 Quallion Llc Negative electrode for a nonaqueous battery
US7174207B2 (en) 2004-09-23 2007-02-06 Quallion Llc Implantable defibrillator having reduced battery volume
KR100749416B1 (en) * 1999-12-08 2007-08-14 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
JP2011184293A (en) * 2009-10-22 2011-09-22 Showa Denko Kk Graphite material, carbonaceous material for battery electrode, and battery
KR20190077571A (en) 2016-11-18 2019-07-03 에어 워터 가부시키가이샤 Method for manufacturing compound semiconductor substrate and compound semiconductor substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100749416B1 (en) * 1999-12-08 2007-08-14 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
US6852449B2 (en) 2002-08-29 2005-02-08 Quallion Llc Negative electrode including a carbonaceous material for a nonaqueous battery
US6998192B1 (en) 2002-08-29 2006-02-14 Quallion Llc Negative electrode for a nonaqueous battery
US7174207B2 (en) 2004-09-23 2007-02-06 Quallion Llc Implantable defibrillator having reduced battery volume
JP2011184293A (en) * 2009-10-22 2011-09-22 Showa Denko Kk Graphite material, carbonaceous material for battery electrode, and battery
KR20190077571A (en) 2016-11-18 2019-07-03 에어 워터 가부시키가이샤 Method for manufacturing compound semiconductor substrate and compound semiconductor substrate

Similar Documents

Publication Publication Date Title
KR100722071B1 (en) Cathode material for lithium secondary battery, process for manufacturing the same, and secondary battery using the same
JP4666876B2 (en) Composite graphite material and method for producing the same, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
KR101936530B1 (en) Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery, and carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
KR20140140323A (en) Negative electrode active material for rechargeable lithium battery, method for preparing the same and rechargeable lithium battery including the same
KR20020070764A (en) Carbonaceous material, lithium secondary battery comprising the same and method for preparation of carbonaceous material
KR20140147414A (en) Anode for lithium secondary battery, lithium secondary battery comprising the anode, and method of preparing the anode
KR20200101252A (en) Lithium sulfur battery and method to manufacture molybdenum disulfide-carbon nanofiber interlayer thereof
CN110419128A (en) Cathode for lithium secondary battery and the lithium secondary battery including the cathode
JP4123313B2 (en) Carbon material for negative electrode, method for producing the same, and lithium secondary battery using the same
JP2000251890A (en) Negative electrode for nonaqueous electrolyte secondary battery, and secondary battery using the same
JPH0831419A (en) Negative electrode material for lithium secondary battery and lithium secondary battery
KR20160018174A (en) Anode active material and lithium secondary battery comprising the same
CN112397693A (en) High-rate rapid charging negative electrode material and preparation method thereof, negative electrode plate and battery
JP3401646B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and its manufacturing method
JP2002241117A (en) Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
JPH05266880A (en) Manufacture of negative electrode for nonaqueous electrolyte secondary battery
KR19990030823A (en) Anode active material for lithium ion secondary battery, negative electrode plate and lithium ion secondary battery manufactured using same
KR20000056339A (en) Lithium ion secondary battery
KR20220050816A (en) Anode, and Method for Preparing the same
KR101693711B1 (en) Preparation method of lithium titanium oxide particles coated with carbon and nitrogen, electrode active material and lithium secondary batteries
JP2000315500A (en) Slightly graphitizable carbon material for lithium ion secondary battery, its manufacture, and lithium ion secondary battery
JP4029232B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JPH05283060A (en) Negative electrode for lithium secondary battery, manufacture of the negative electrode and lithium secondary battery using same negative electrode
JPH0834108B2 (en) Non-aqueous solvent secondary battery
WO2023119857A1 (en) Negative electrode for solid-state battery and solid-state battery