JPH08313321A - Coriolis mass flow meter - Google Patents
Coriolis mass flow meterInfo
- Publication number
- JPH08313321A JPH08313321A JP12121795A JP12121795A JPH08313321A JP H08313321 A JPH08313321 A JP H08313321A JP 12121795 A JP12121795 A JP 12121795A JP 12121795 A JP12121795 A JP 12121795A JP H08313321 A JPH08313321 A JP H08313321A
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- measuring
- tube
- measuring tube
- coriolis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、外部からの振動ノイズ
に強く耐振性に優れた高安定なコリオリ質量流量計に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly stable Coriolis mass flowmeter which is resistant to external vibration noise and has excellent vibration resistance.
【0002】[0002]
【従来の技術】図8は、従来より一般に使用されている
従来例の平行2本U字管型コリオリ質量流量計の構成説
明図で、例えば、米国特許4,491,025号、発明
の名称「PARALLEL PATH CORIOLIS MASS FLOW RATE METE
R 」、1982年11月3日出願、1985年1月1日
特許、に示されている。図9,図10は、図8の動作説
明図である。2. Description of the Related Art FIG. 8 is a structural explanatory view of a conventional parallel double U-tube type Coriolis mass flowmeter which is generally used in the past. For example, US Pat. No. 4,491,025, title of the invention. "PARALLEL PATH CORIOLIS MASS FLOW RATE METE
R ", filed Nov. 3, 1982, patented Jan. 1, 1985. 9 and 10 are operation explanatory diagrams of FIG. 8.
【0003】図において、1は固定体2に、両端が取付
けられたU字形の測定管で、流量計入口で2つに分岐し
出口で再び合流する。従って、測定流体fは、流量計入
口より流入し、流量計出口より流出する。In the figure, reference numeral 1 is a U-shaped measuring tube having both ends attached to a fixed body 2, which branches into two at the inlet of the flowmeter and joins again at the outlet. Therefore, the measurement fluid f flows in from the flow meter inlet and flows out from the flow meter outlet.
【0004】2は管路Aへの測定管1の取付け固定体で
ある。3はU字形をなす測定管1の中央部分に設けられ
た加振器で、測定管1をU字形の測定管1が存在する平
面に対し垂直方向に加振する。4,5は、測定管1の固
定端と中央部との間にそれぞれ設けられた振動検出セン
サである。Reference numeral 2 is a fixed body for mounting the measuring pipe 1 on the pipe line A. Reference numeral 3 denotes an exciter provided in the central portion of the U-shaped measuring tube 1, which vibrates the measuring tube 1 in a direction perpendicular to the plane in which the U-shaped measuring tube 1 is present. Reference numerals 4 and 5 are vibration detection sensors respectively provided between the fixed end and the central portion of the measuring tube 1.
【0005】以上の構成において、測定管1に測定流体
を流した状態で、中央部に設置した加振器3から振動を
与えると、図9に示す如く、M1,M3に示すように中
央部が振動の腹となる1次モード形状で測定管1が振動
する。In the above construction, when the vibration is applied from the vibrator 3 installed in the central portion while the measuring fluid is flowing in the measuring pipe 1, as shown in FIG. 9, the central portions are indicated by M1 and M3. The measurement tube 1 vibrates in a first-order mode shape in which is an antinode of vibration.
【0006】この振動は測定管1の上流側と下流側に付
いて考えると、各々固定端付近を中心とする回転運動を
していると見なし得るので、加振器3の振動方向の角速
度『ω』、測定流体の流速『V』(以下『』で囲まれた
記号はベクトル量を表す。)とすると、 Fc=―2m『ω』×『V』 のコリオリ力が働く。Considering these vibrations on the upstream side and the downstream side of the measuring pipe 1, it can be considered that they are rotating around the fixed end, respectively. Therefore, the angular velocity of the vibration exciter 3 in the vibration direction " Letting “ω” be the flow velocity of the measured fluid be “V” (the symbol surrounded by “” represents a vector quantity), the Coriolis force of Fc = −2 m “ω” × “V” works.
【0007】このコリオリ力により、図10に示す如
く、測定管1の中央点に対して、上流部分と下流部分で
はその撓み振動が対称になる振動モードM4,M6が発
生する。なお、実際には、この2種類の振動パターンが
重畳された形でパイプ1は振動する。この変形を振動検
出手段(通常は変位センサ)4,5で測定することによ
り質量流量Qを知ることができる。Due to this Coriolis force, as shown in FIG. 10, vibration modes M4 and M6 in which the flexural vibrations are symmetrical in the upstream portion and the downstream portion with respect to the center point of the measuring tube 1 are generated. In addition, actually, the pipe 1 vibrates in a form in which these two types of vibration patterns are superimposed. The mass flow rate Q can be known by measuring this deformation with the vibration detecting means (usually a displacement sensor) 4, 5.
【0008】通常は振動検出手段4と5での振動振幅
や、振動検出手段4と5での位相差を求め、振動周波数
や温度による補正を行い、質量流量を求める。Usually, the vibration amplitude in the vibration detecting means 4 and 5 and the phase difference in the vibration detecting means 4 and 5 are obtained, correction is made by the vibration frequency and temperature, and the mass flow rate is obtained.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、この様
な装置においては、図9、図10に示すような振動モー
ドを用いていたが、このような平行2本管構造では、測
定管固定部は完全な固定端ではなく、図11に示す如
く、音叉構造の振動の節であるので、図12に示す様な
通常使用の振動モードに対して、図13に示すような、
最も共振周波数が低い振動モードが存在する。However, in such an apparatus, the vibration mode as shown in FIGS. 9 and 10 was used. However, in such a parallel double tube structure, the measuring tube fixing portion is not provided. As shown in FIG. 11, it is not a complete fixed end but a vibration node of the tuning fork structure. Therefore, as shown in FIG.
There is a vibration mode with the lowest resonance frequency.
【0010】測定管1の振動を検出するコリオリ質量流
量計では、測定管1の固有振動数と同じ振動周波数成分
をもつ外部からの振動ノイズが加わると、出力に影響が
出て誤差が発生する(固有周波数以外の振動ノイズでは
ほとんど影響受けない)。In the Coriolis mass flowmeter for detecting the vibration of the measuring tube 1, when external vibration noise having the same vibration frequency component as the natural frequency of the measuring tube 1 is applied, the output is affected and an error occurs. (It is hardly affected by vibration noise other than natural frequency).
【0011】また、プラント等での使用環境では、10
0Hz以下程度の低周波数のノイズは多く存在するのに
対し、高周波数のノイズは少ない上、大きさも小さい。
図9、図10に示すような流量測定に不可欠な振動モー
ドの他に、図13に示すような不必要な振動モードが、
低共振周波数で存在することは、耐振動特性上、大きな
欠点になる。Further, in the environment of use in a plant or the like, 10
While there are many low-frequency noises of 0 Hz or less, there are few high-frequency noises, and the size is also small.
In addition to the vibration modes essential for flow rate measurement as shown in FIGS. 9 and 10, unnecessary vibration modes as shown in FIG.
Existence at a low resonance frequency is a major drawback in terms of vibration resistance.
【0012】本発明は、この問題点を解決するものであ
る。本発明の目的は、外部からの振動ノイズに強く耐振
性に優れた高安定なコリオリ質量流量計を提供するにあ
る。The present invention solves this problem. An object of the present invention is to provide a highly stable Coriolis mass flowmeter that is resistant to external vibration noise and has excellent vibration resistance.
【0013】[0013]
【課題を解決するための手段】この目的を達成するため
に、本発明は、 (1)互いに平行に配置された測定管の振動する測定管
内に測定流体を流し、測定流体の流れと測定管の角振動
によって生じるコリオリ力により、測定管を変形振動さ
せ、振動の変化を振動検出センサで測定し、質量流量や
密度を求めるコリオリ質量流量計において、同一形状を
なし両端が固定され互いに平行に配置され管内を流れる
測定流体が互いに逆方向に流れるように構成された2個
の測定管と、該それぞれの測定管の中央部に一端が接続
され他端がコリオリ質量流量計本体に接続され各々の測
定管では両端の固定端が振動の節になり中央部付近が唯
一の振動の腹となるように且つ該測定管の最も共振周波
数が低い振動モードで励振し平行な2本の前記測定管の
相互関係ではそれぞれの測定管が存在する平面に対し垂
直な同じ方向に同位相で振動するような振動モードで励
振する加振器とを具備したことを特徴とするコリオリ質
量流量計。In order to achieve this object, the present invention provides: (1) Flowing a measuring fluid in the vibrating measuring tubes of the measuring tubes arranged in parallel with each other, and the flow of the measuring fluid and the measuring tube. The Coriolis mass flowmeter that deforms the measuring pipe by the Coriolis force generated by the angular vibration of the, and measures the vibration change with the vibration detection sensor to obtain the mass flow rate and density has the same shape and both ends are fixed and parallel to each other. Two measuring pipes arranged so that the measuring fluids flowing in the pipes flow in mutually opposite directions, one end of which is connected to the central portion of each of the measuring pipes and the other end of which is connected to the main body of the Coriolis mass flowmeter. In the above measuring tube, the two fixed measuring tubes are excited in the vibration mode in which the resonance frequency of the measuring tube is the lowest, and the fixed ends at both ends become nodes of vibration and the vicinity of the central part is the only antinode of vibration. Phase of A Coriolis mass flowmeter, comprising a vibrating device that excites in a vibration mode that vibrates in the same phase in the same direction perpendicular to the plane in which the respective measuring tubes are present in mutual relation.
【0014】(2)互いに平行に配置された測定管の振
動する測定管内に測定流体を流し、測定流体の流れと測
定管の角振動によって生じるコリオリ力により、測定管
を変形振動させ、振動の変化を振動検出センサで測定
し、質量流量や密度を求めるコリオリ質量流量計におい
て、同一形状をなし両端が固定され互いに平行に配置さ
れ管内を流れる測定流体が互いに逆方向に流れるように
構成された2個の測定管と、該測定管の一方の測定管の
固定端と中央部の間に一端が接続され他方の測定管の固
定端と中央部の間に他端が接続され個々の測定管では両
端の固定端と中央部付近が振動の節となるように且つ該
測定管が存在する平面に対し垂直な方向に前記中央部の
節を境に上流側と下流側が反対方向に振動するような振
動モードで励振し平行な2本の前記測定管の相互関係で
はそれぞれの測定管が存在する2平面から等距離にある
平面を中心に2本の振動測定管が対称な方向に振動する
ような振動モードで励振する加振器とを具備したことを
特徴とするコリオリ質量流量計を構成したものである。(2) A measuring fluid is caused to flow in the vibrating measuring tubes arranged in parallel with each other, and the measuring tube is deformed and vibrated by the Coriolis force generated by the flow of the measuring fluid and the angular vibration of the measuring tube to cause the vibration. In a Coriolis mass flowmeter that measures changes with a vibration detection sensor to determine mass flow rate and density, both ends of the Coriolis mass flowmeter are fixed and arranged parallel to each other, and the measurement fluids flowing in the pipe are configured to flow in opposite directions. Each of the two measuring tubes has one end connected between the fixed end and the central part of one of the measuring tubes and the other end connected between the fixed end and the central part of the other measuring tube. So that the fixed ends at both ends and the vicinity of the central part become nodes of vibration, and the upstream and downstream sides vibrate in opposite directions with the node at the central part as a boundary in a direction perpendicular to the plane in which the measuring tube exists. Excited in various vibration modes The mutual relationship between the two measuring pipes is such that the two vibration measuring pipes are excited in a vibration mode such that the two measuring pipes vibrate in symmetrical directions about a plane equidistant from the two planes in which the respective measuring pipes are present. A Coriolis mass flowmeter comprising a shaker.
【0015】[0015]
【作用】以上の構成において、測定管に測定流体が流さ
れ、加振器が駆動されると、コリオリ力が働く、このコ
リオリ力に比例した振動の振幅を測定すれば、質量流量
が測定出来る。以下、実施例に基づき詳細に説明する。In the above structure, when the measuring fluid is flown into the measuring tube and the vibrator is driven, the Coriolis force acts. By measuring the amplitude of vibration proportional to this Coriolis force, the mass flow rate can be measured. . Hereinafter, detailed description will be given based on examples.
【0016】[0016]
【0017】図1は、本発明の一実施例の要部構成説明
図、図3,図4は図1の動作説明図である。図におい
て、図8と同一記号の構成は同一機能を表わす。以下、
図8と相違部分のみ説明する。11,12は、同一形状
をなし両端13,14,15,16が固定体2に固定さ
れ、互いに平行に配置された2個の測定管である。この
場合は、U字形状をなしている。FIG. 1 is an explanatory view of the essential structure of an embodiment of the present invention, and FIGS. 3 and 4 are operation explanatory views of FIG. In the figure, the same symbols as those in FIG. 8 indicate the same functions. Less than,
Only parts different from FIG. 8 will be described. Reference numerals 11 and 12 denote two measuring tubes which have the same shape and whose both ends 13, 14, 15, 16 are fixed to the fixed body 2 and which are arranged in parallel with each other. In this case, it has a U shape.
【0018】17は、測定管の一方の測定管11の一端
と他方の測定管12の一端とを連通し、一方の測定管1
1の他端から測定流体が流入し、他方の測定管12の他
端から流出出来るようにされた連通管である。Reference numeral 17 connects one end of one measurement pipe 11 of the measurement pipes and one end of the other measurement pipe 12 so that one measurement pipe 1
It is a communication tube that allows a measurement fluid to flow in from the other end of the first measurement tube 1 and to flow out from the other end of the other measurement tube 12.
【0019】18,19は、それぞれの測定管11,1
2の中央部11,12に一端が接続され他端がコリオリ
質量流量計本体(図示せず)に接続された加振器であ
る。加振器18,19は、各々の測定管11,12では
両端の固定端13,14,15,16が振動の節にな
り、中央部21,22付近が唯一の振動の腹となるよう
に、且つ、測定管11,12の最も共振周波数が低い振
動モードで励振し、平行な2本の測定管11,12の相
互関係では、それぞれの測定管11,12が存在する平
面に対し、垂直な同じ方向に同位相で振動するような振
動モードで励振する。Reference numerals 18 and 19 denote measuring tubes 11 and 1, respectively.
The vibration exciter has one end connected to the central portions 11 and 12 of 2 and the other end connected to a Coriolis mass flowmeter main body (not shown). In each of the measuring tubes 11 and 12, the vibrators 18 and 19 have fixed ends 13, 14, 15 and 16 at both ends serving as nodes of vibration, and the central portions 21 and 22 serve as antinodes of vibration. Further, the measurement tubes 11 and 12 are excited in the vibration mode having the lowest resonance frequency, and in the mutual relationship between the two parallel measurement tubes 11 and 12, the measurement tubes 11 and 12 are perpendicular to the plane in which they exist. It is excited in a vibration mode that vibrates in the same direction and in the same phase.
【0020】23,24,25,26は、測定管の固定
端13,14,15,16と測定管の中央21,22の
間に配置された振動検出センサである。この場合は、コ
イルセンサが使用され、コリオリ質量流量計本体を基準
とした測定管11,12の絶対位置を測定する。Reference numerals 23, 24, 25, and 26 are vibration detection sensors arranged between the fixed ends 13, 14, 15, 16 of the measuring pipe and the centers 21, 22 of the measuring pipe. In this case, a coil sensor is used to measure the absolute positions of the measuring tubes 11 and 12 with the Coriolis mass flowmeter main body as a reference.
【0021】図2に信号処理系の一般的な例を示す。セ
ンサ部31、前置増幅回路部32、時間(差)・位相(差)
検出回路部33、流量演算回路部34、加振回路部35
から構成される。FIG. 2 shows a general example of a signal processing system. Sensor unit 31, preamplifier circuit unit 32, time (difference) / phase (difference)
Detection circuit unit 33, flow rate calculation circuit unit 34, vibration circuit unit 35
Consists of
【0022】以上の構成において、測定管11,12
は、加振器18,19により、図3のM11,M12,
M13に示すような振動を行う。このとき測定管内を流
体が流れると、コリオリ力が生じ、図4のM14,M1
5,M16に示すような振動モードが発生する。In the above structure, the measuring tubes 11 and 12
Is controlled by the vibrators 18 and 19 to generate M11, M12,
Vibration as shown by M13 is performed. At this time, when the fluid flows in the measuring pipe, Coriolis force is generated, and M14 and M1 in FIG.
5, a vibration mode as shown by M16 is generated.
【0023】なお実際には、図3と図4の2種類の振動
パターンが重畳した形で測定管11,12は振動する。
振動検出センサ23,24,25,26により測定管1
1,12の絶対振動が求められる。励振振動による振動
振幅をA、コリオリ振動による振動振幅をC(C=k
Q,Qは質量流量)とすると(一般的にはA≫C)、セ
ンサコイルの出力は、以下のようになる。Actually, the measuring tubes 11 and 12 vibrate in a form in which the two types of vibration patterns shown in FIGS. 3 and 4 are superimposed.
Measuring tube 1 with vibration detection sensors 23, 24, 25, 26
Absolute vibrations of 1 and 12 are required. The vibration amplitude due to the excitation vibration is A, and the vibration amplitude due to the Coriolis vibration is C (C = k
Assuming that Q and Q are mass flow rates (generally A >> C), the output of the sensor coil is as follows.
【0024】 コイル23:S23=+Asinθ−Ccosθ = A'sin(θ−δ)……(1) コイル24:S24=+Asinθ+Ccosθ = A'sin(θ+δ)……(2) コイル25:S25=+Asinθ+Ccosθ = A'sin(θ+δ)……(3) コイル26:S26=+Asinθ−Ccosθ = A'sin(θ−δ)……(4) 但し、A'=(A2+C2)1/2、δ=atan(C/A)≒
k'Q、k,k’は定数 式(1)〜(4)より、位相差δを求め、質量流量を求
める。Coil 23: S 23 = + Asin θ−Ccos θ = A′sin (θ−δ) (1) Coil 24: S 24 = + A sin θ + C cos θ = A′sin (θ + δ) (2) Coil 25: S 25 = + Asinθ + Ccosθ = A'sin (θ + δ) (3) Coil 26: S 26 = + Asinθ-Ccosθ = A'sin (θ-δ) (4) However, A '= (A 2 + C 2 ) 1 / 2 , δ = atan (C / A) ≒
k′Q, k, k ′ are constants The phase difference δ is calculated from the formulas (1) to (4), and the mass flow rate is calculated.
【0025】図2の信号処理回路により、センサ信号は
前置増幅回路部32で増幅され、時間(差)・位相(差)検
出回路部33で2つのセンサ出力の時間差や位相(差)
が検出される。さらに、流量演算回路部34で振動周波
数・温度・密度・振幅等で補正され、質量流量が求めら
れる。この他に、加振回路部35で測定管11,12を
加振させるドライブ信号が作られる。The signal processing circuit of FIG. 2 amplifies the sensor signal in the preamplifier circuit section 32, and in the time (difference) / phase (difference) detection circuit section 33, the time difference or phase (difference) between the two sensor outputs.
Is detected. Further, the mass flow rate is obtained by correcting the vibration frequency, temperature, density, amplitude, etc. in the flow rate calculation circuit section 34. In addition to this, a drive signal for vibrating the measuring tubes 11 and 12 is generated by the vibrating circuit unit 35.
【0026】この結果、 (1)コリオリ流量計の稼働に直接関係がある振動モー
ド(励振振動モードとコリオリ力によって生じる振動モ
ード)の共振周波数より低い周波数に、測定管11,1
2の共振周波数が存在しない。即ち、余計な振動モード
が、低い共振周波数領域に存在しなくなるので、外部か
らの振動ノイズの影響を受け難くなる。As a result, (1) the measuring tubes 11 and 1 are set to a frequency lower than the resonance frequency of the vibration mode (excitation vibration mode and vibration mode generated by Coriolis force) which is directly related to the operation of the Coriolis flowmeter.
There is no resonant frequency of 2. That is, since the extra vibration mode does not exist in the low resonance frequency region, it is less likely to be affected by the vibration noise from the outside.
【0027】具体的には、測定管形状や長さにより値は
異なるが、出願人が実験した実験例の内の、一例によれ
ば、基本的には以下の例のように、直接関係ある振動モ
ードの共振周波数は変化なくても(この場合80H
z)、チューブ長を短くする等して最低共振周波数は上
げ(この場合、60から80Hz)、外部振動ノイズの
影響を小さくすることができる。Specifically, although the value differs depending on the shape and length of the measuring tube, one of the experimental examples that the applicant experimented with is basically directly related as in the following example. Even if the resonance frequency of the vibration mode does not change (in this case 80H
z), the minimum resonance frequency can be increased by shortening the tube length (in this case, 60 to 80 Hz), and the influence of external vibration noise can be reduced.
【0028】従来の平行2本U字形の1例では、 余計なモード:45Hz、励振モード:60Hz、コリオリモ
ード:170Hz、 である場合、外部振動ノイズの影響を小さくするため
に、チューブ長を短くする等して、余計なモードの共振
周波数を上げると、 余計なモード:60Hz、励振モード:80Hz、コリオリモ
ード:200Hz、 となり、励振モードの共振周波数とコリオリモードの共
振周波数も一斉に上がる。In the conventional example of two parallel U-shapes, if the extra mode is 45 Hz, the excitation mode is 60 Hz, and the Coriolis mode is 170 Hz, the tube length is shortened in order to reduce the influence of external vibration noise. If the resonance frequency of the extra mode is increased by doing so, the extra mode: 60Hz, the excitation mode: 80Hz, the Coriolis mode: 200Hz, and the resonance frequency of the excitation mode and the resonance frequency of the Coriolis mode also increase all at once.
【0029】本提案の例では、 余計なモード: 80Hz、励振モード:60Hz、コリオリ
モード:200Hz、 である場合、外部振動ノイズの影響を小さくするため
に、チューブ長を短くする等して、余計なモードの共振
周波数を上げると、 余計なモード:100Hz、励振モード:80Hz、コリオリ
モード:230Hz、 となり、励振モードとコリオリモード側の最低共振周波
数が、従来例と同じ80Hzであっても、余計なモードの
共振周波数を100Hzにすることができ、外部振動ノイズ
の影響を小さくすることができる。In the example of this proposal, if the extra mode is 80 Hz, the excitation mode is 60 Hz, and the Coriolis mode is 200 Hz, the tube length is shortened in order to reduce the influence of external vibration noise. If you increase the resonance frequency of this mode, the extra mode is 100Hz, the excitation mode is 80Hz, the Coriolis mode is 230Hz, and even if the lowest resonance frequency on the excitation mode and Coriolis mode side is 80Hz, which is the same as the conventional example, it becomes extra. The resonance frequency of various modes can be set to 100 Hz, and the influence of external vibration noise can be reduced.
【0030】(2)更に、連通管17で、測定管11と
12を連通したので、流体流路に分岐や合流はないの
で、分岐部、合流部で流体のつまりが生じたり、圧力損
失が増大する等の心配がない。高粘度流体や食品等の腐
りやすく詰まりやすい流体でも安定して、低圧損で測定
することができる。(2) Further, since the measuring pipes 11 and 12 are communicated with each other by the communication pipe 17, there is no branching or merging in the fluid flow path, so that fluid is clogged at the branching or merging portion, or pressure loss occurs. There is no worry of increasing. Stable and low-pressure loss can be measured even with high-viscosity fluids and foods and other fluids that easily perish and clog.
【0031】図5は、本発明の他の実施例の要部構成説
明図で、図6,図7は図5の動作説明図である。41,
42は、同一形状をなし両端43,44,45,46が
固定体2に固定され、互いに平行に配置された2個の測
定管である。この場合は、U字形状をなしている。FIG. 5 is an explanatory view of a main part configuration of another embodiment of the present invention, and FIGS. 6 and 7 are operation explanatory views of FIG. 41,
Reference numeral 42 denotes two measuring tubes that have the same shape and both ends 43, 44, 45, 46 are fixed to the fixed body 2 and are arranged in parallel with each other. In this case, it has a U shape.
【0032】47は、測定管の一方の測定管41の一端
と他方の測定管42の一端とを連通し、一方の測定管4
1の他端から測定流体が流入し、他方の測定管42の他
端から流出出来るようにされた連通管である。Reference numeral 47 connects one end of one measurement pipe 41 of the measurement pipes and one end of the other measurement pipe 42 to connect one measurement pipe 4
It is a communication tube that allows the measurement fluid to flow in from the other end of the one and to flow out from the other end of the other measurement tube 42.
【0033】48,49は、互いに平行に配置された測
定管41,42の一方の測定管41の固定端43,45
と中央部51の間に一端が接続され、他方の測定管42
の固定端44,46と中央部52の間に他端が接続され
た加振器である。Reference numerals 48 and 49 denote fixed ends 43 and 45 of one of the measuring tubes 41 and 42 arranged in parallel with each other.
And the central portion 51, one end of which is connected to the other measuring tube 42
The other end is connected between the fixed ends 44, 46 and the central portion 52 of the vibrator.
【0034】加振器48,49は、個々の測定管41,
42では両端の固定端43,44,45,46と中央部
51,52付近が振動の節となるように、且つ、測定管
41,42が存在する平面に対し、垂直な方向に、中央
部51,52の節を境に、上流側と下流側が反対方向に
振動するように励振し、平行な2本の測定管41,42
の相互関係では、それぞれの測定管41,42が存在す
る2平面から等距離にある平面を中心に、2本の振動測
定管が対称な方向に振動するような振動モードで励振す
る。The vibrators 48, 49 are connected to the individual measuring tubes 41,
In 42, the fixed ends 43, 44, 45, 46 at both ends and the central portions 51, 52 are nodes of vibration, and the central portion is in a direction perpendicular to the plane in which the measuring tubes 41, 42 exist. Excited so that the upstream side and the downstream side oscillate in opposite directions with the node 51, 52 as a boundary, and two parallel measuring tubes 41, 42
In the mutual relationship, the two vibration measuring tubes are excited in a vibration mode such that the two vibration measuring tubes vibrate in symmetrical directions about a plane equidistant from the two planes where the respective measuring tubes 41 and 42 exist.
【0035】53,54,55,56は、測定管の固定
端43,44,45,46と測定管の中央部51,52
の間に配置された振動検出センサである。この場合は、
コイルセンサが使用され、コリオリ質量流量計本体(図
示せず)を基準とした測定管41,42の絶対位置を測
定する。53, 54, 55 and 56 are fixed ends 43, 44, 45 and 46 of the measuring pipe and central portions 51 and 52 of the measuring pipe.
It is a vibration detection sensor arranged between. in this case,
A coil sensor is used to measure the absolute position of the measuring tubes 41, 42 relative to the Coriolis mass flowmeter body (not shown).
【0036】以上の構成において、測定管41,42
は、加振器48,49により、図6のM21,M22,
M23に示すような振動を行う。このとき測定管内を流
体が流れると、コリオリ力が生じ、図7のM24,M2
5,M26のような振動モードが発生する。In the above structure, the measuring tubes 41, 42
Is controlled by the vibrators 48, 49 to generate M21, M22,
Vibration as shown in M23 is performed. At this time, when the fluid flows in the measuring tube, Coriolis force is generated, and M24 and M2 in FIG.
5, a vibration mode such as M26 is generated.
【0037】なお、実際には、加振振動(M21,M2
2,M23)とコリオリ力による振動(M24,M2
5,M26)の2種類の振動パターンが重畳した形で測
定管41,42は振動する。励振振動による振動振幅を
A、コリオリ振動による振動振幅をC(C=kQ,Qは
質量流量)とすると(一般的にはA≫C)、センサコイ
ル53,54,55,56の出力は、以下のようにな
る。Actually, the exciting vibration (M21, M2
2, M23) and vibration due to Coriolis force (M24, M2
5, M26), the measuring tubes 41 and 42 vibrate in a form in which two kinds of vibration patterns are superposed. When the vibration amplitude due to the excitation vibration is A and the vibration amplitude due to the Coriolis vibration is C (C = kQ, Q is a mass flow rate) (generally A >> C), the outputs of the sensor coils 53, 54, 55, 56 are It looks like this:
【0038】 コイル53:S53= +Asinθ−Ccosθ = A'sin(θ−δ)……(5 ) コイル54:S54= −Asinθ−Ccosθ = −A'sin(θ+δ)…(6) コイル55:S55= −Asinθ−Ccosθ = −A'sin(θ+δ)…(7) コイル56:S56= +Asinθ−Ccosθ = A'sin(θ−δ)……(8) 但し、A'=(A2+C2)1/2、δ=atan(C/A)≒
k'Q、k,k’は定数。 式(5)〜(8)より、位相差δを求め、質量流量を求
める。通常は、コイル54,55の出力を反転し、位相
差δを求めやすくする。Coil 53: S 53 = + Asinθ-Ccosθ = A'sin (θ-δ) (5) Coil 54: S 54 = -Asinθ-Ccosθ = -A'sin (θ + δ) (6) Coil 55 : S 55 = -Asinθ-Ccosθ = -A'sin (θ + δ) ... (7) coil 56: S 56 = + Asinθ- Ccosθ = A'sin (θ-δ) ...... (8) where, A '= (A 2 + C 2 ) 1/2 , δ = atan (C / A) ≈
k'Q and k, k 'are constants. The phase difference δ is obtained from the equations (5) to (8), and the mass flow rate is obtained. Normally, the outputs of the coils 54 and 55 are inverted to facilitate the determination of the phase difference δ.
【0039】この結果、 (1)コリオリ流量計の稼働に直接関係がある振動モー
ド(励振振動モードとコリオリ力によって生じる振動モ
ード)の共振周波数より低い周波数に、測定管41,4
2の共振周波数が存在しない。即ち、余計な振動モード
が、低い共振周波数領域に存在しなくなるので、外部か
らの振動ノイズの影響を受け難くなる。As a result, (1) the measuring tubes 41, 4 are set to frequencies lower than the resonance frequency of the vibration mode (excitation vibration mode and vibration mode generated by Coriolis force) which is directly related to the operation of the Coriolis flowmeter.
There is no resonant frequency of 2. That is, since the extra vibration mode does not exist in the low resonance frequency region, it is less likely to be affected by the vibration noise from the outside.
【0040】具体的には、測定管形状や長さにより値は
異なるが、出願人が実験した実験例の内の、一例によれ
ば、基本的には以下の例のように、直接関係ある振動モ
ードの共振周波数は変化なくても(この場合80H
z)、チューブ長を短くする等して最低共振周波数は上
げ(この場合、60から80Hz)、外部振動ノイズの
影響を小さくすることができる。Specifically, although the value varies depending on the shape and length of the measuring tube, one of the experimental examples that the applicant experimented with is basically directly related as in the following example. Even if the resonance frequency of the vibration mode does not change (in this case 80H
z), the minimum resonance frequency can be increased by shortening the tube length (in this case, 60 to 80 Hz), and the influence of external vibration noise can be reduced.
【0041】従来の平行2本U字形の1例では、 余計なモード:45Hz、励振モード:60Hz、コリオリモ
ード:170Hz、 である場合、外部振動ノイズの影響を小さくするため
に、チューブ長を短くする等して、余計なモードの共振
周波数を上げると、 余計なモード:60Hz、励振モード:80Hz、コリオリモ
ード:200Hz、 となり、励振モードの共振周波数とコリオリモードの共
振周波数も一斉に上がる。In an example of the conventional two parallel U-shapes, if the extra mode is 45 Hz, the excitation mode is 60 Hz, and the Coriolis mode is 170 Hz, the tube length is shortened in order to reduce the influence of external vibration noise. If the resonance frequency of the extra mode is increased by doing so, the extra mode: 60Hz, the excitation mode: 80Hz, the Coriolis mode: 200Hz, and the resonance frequency of the excitation mode and the resonance frequency of the Coriolis mode also increase all at once.
【0042】本提案の例では、 余計なモード: 80Hz、励振モード:200Hz、コリオリ
モード:60Hz、 である場合、外部振動ノイズの影響を小さくするため
に、チューブ長を短くする等して、余計なモードの共振
周波数を上げると、 余計なモード:100Hz、励振モード:230Hz、コリオリ
モード:80Hz、 となり、励振モードとコリオリモード側の最低共振周波
数が、従来例と同じ80Hzであっても、余計なモードの
共振周波数を100Hzにすることができ、外部振動ノイズ
の影響を小さくすることができる。In the example of this proposal, if the extra mode is 80 Hz, the excitation mode is 200 Hz, and the Coriolis mode is 60 Hz, in order to reduce the influence of the external vibration noise, the tube length is shortened to make it unnecessary. If you increase the resonance frequency of this mode, the extra mode becomes 100Hz, the excitation mode: 230Hz, the Coriolis mode: 80Hz, and even if the lowest resonance frequency of the excitation mode and the Coriolis mode side is 80Hz, which is the same as the conventional example, it becomes extra. The resonance frequency of various modes can be set to 100 Hz, and the influence of external vibration noise can be reduced.
【0043】(2)励振振動は図6のように測定管4
1,42の2本で対称な動きをするので、図5の固定端
43と44、45と46は、それぞれ逆方向のモーメン
トが加わるので、振動が打ち消しあい、振動絶縁が容易
に構成できる。(2) Excited vibration is measured by the measuring tube 4 as shown in FIG.
Since the first and second 42 and 42 have symmetrical movements, moments in opposite directions are applied to the fixed ends 43 and 44 and 45 and 46 of FIG. 5, so that vibrations cancel each other out, and vibration isolation can be easily configured.
【0044】このため振動系のQ値が高くなり外部から
の振動ノイズに強くなり、小さなエネルギーを加振器4
8,49に加えるだけで、励振が可能になる。さらに自
らの振動が外部にもれることで発生するゼロ点、スパン
の変化も小さく出来る。For this reason, the Q value of the vibration system becomes high and the vibration noise from the outside becomes strong, and a small energy is applied to the vibration exciter 4.
It becomes possible to excite just by adding it to 8,49. In addition, changes in the zero point and span that occur when the vibration of itself leaks to the outside can be reduced.
【0045】なお、発生するコリオリ力による振動は、
図7のように対称な動きではない。しかし、一般的に、
コリオリ力による振動振幅は、励振振動振幅に比べ、フ
ルスケール流量でも数十〜数百分の一と小さいので、励
振振動の対称性が保たれれば上記の利点は十分に発揮で
きる。The vibration due to the generated Coriolis force is
The movement is not symmetrical as in FIG. But in general,
Since the vibration amplitude due to the Coriolis force is as small as several tens to several hundreds even at the full-scale flow rate as compared with the excitation vibration amplitude, the above advantages can be sufficiently exhibited if the symmetry of the excitation vibration is maintained.
【0046】(3)更に、加えるに、連通管47で、測
定管41と42を連通したので、流体流路に分岐や合流
はないので、分岐部、合流部で流体のつまりが生じた
り、圧力損失が増大する等の心配がない。高粘度流体や
食品等の腐りやすく詰まりやすい流体でも安定して、低
圧損で測定することができる。(3) In addition, since the measuring pipes 41 and 42 are communicated with each other by the communication pipe 47, there is no branching or merging in the fluid flow path, so that the fluid is clogged at the branching or merging portion. There is no concern that pressure loss will increase. Stable and low-pressure loss can be measured even with high-viscosity fluids and foods and other fluids that easily perish and clog.
【0047】なお、前述の実施例においては、測定管1
1、12は、連通管17で連通されていると説明した
が、これに限ることはなく、例えば、外部で実質的に測
定管11、12は連通されても良い。要するに、測定管
11、12中の測定流体が互いに逆方向に流れるもので
あればよい。In the above embodiment, the measuring tube 1
Although it has been described that the communication pipes 1 and 12 are communicated with each other by the communication pipe 17, the communication pipes 17 and 12 may be communicated with each other substantially outside, for example. In short, it suffices that the measuring fluids in the measuring pipes 11 and 12 flow in mutually opposite directions.
【0048】なお、前述の実施例においては、振動検出
センサ23,24,25,26として、電磁コイル(速
度センサ)の場合を示して説明したが、これに限ること
はなく、例えば、変位センサ、応力センサ、歪センサで
も良い。要するに、測定管11,12,41,42の振
動検出が出来るものであればよい。In the above-described embodiment, the vibration detection sensors 23, 24, 25 and 26 are electromagnetic coils (speed sensors). However, the present invention is not limited to this. Alternatively, a stress sensor or a strain sensor may be used. In short, what is necessary is just to be able to detect the vibration of the measuring pipes 11, 12, 41, 42.
【0049】なお、前述の実施例においては、図2の信
号処理説明図では、時間(差)または位相(差)検出に
よる方法を示して説明したが、これに限ることはなく、
例えば、同期整流と積分による励振成分とコリオリ成分
を分離してその比から質量流量を求める方法でも良い。
要するに、信号処理出来る方法であればよい。In the above-described embodiment, the method of detecting the time (difference) or the phase (difference) is shown in the signal processing explanatory diagram of FIG. 2, but the method is not limited to this.
For example, a method of separating the excitation component and the Coriolis component by synchronous rectification and integration and obtaining the mass flow rate from the ratio may be used.
In short, any method capable of signal processing may be used.
【0050】[0050]
【発明の効果】以上説明したように、本発明は、 (1)互いに平行に配置された測定管の振動する測定管
内に測定流体を流し、測定流体の流れと測定管の角振動
によって生じるコリオリ力により、測定管を変形振動さ
せ、振動の変化を振動検出センサで測定し、質量流量や
密度を求めるコリオリ質量流量計において、同一形状を
なし両端が固定され互いに平行に配置され管内を流れる
測定流体が互いに逆方向に流れるように構成された2個
の測定管と、該それぞれの測定管の中央部に一端が接続
され他端がコリオリ質量流量計本体に接続され各々の測
定管では両端の固定端が振動の節になり中央部付近が唯
一の振動の腹となるように且つ該測定管の最も共振周波
数が低い振動モードで励振し平行な2本の前記測定管の
相互関係ではそれぞれの測定管が存在する平面に対し垂
直な同じ方向に同位相で振動するような振動モードで励
振する加振器とを具備したことを特徴とするコリオリ質
量流量計。As described above, according to the present invention, (1) a measuring fluid is caused to flow in an oscillating measuring tube of measuring tubes arranged in parallel with each other, and Coriolis caused by the flow of the measuring fluid and angular vibration of the measuring tube. A Coriolis mass flowmeter that uses a force to deform and vibrate the measurement pipe and measure the change in vibration with a vibration detection sensor to determine the mass flow rate and density. Two measuring tubes configured so that fluids flow in mutually opposite directions, one end of which is connected to the central portion of each measuring tube and the other end of which is connected to the Coriolis mass flowmeter main body The fixed end serves as a node of vibration, and the vicinity of the central portion serves as the only antinode of vibration, and the two parallel measurement tubes are excited by the vibration mode in which the resonance frequency of the measurement tube is the lowest. A Coriolis mass flowmeter, comprising: a vibration exciter that is excited in a vibration mode that vibrates in the same phase in the same direction perpendicular to the plane in which the measurement tube exists.
【0051】(2)互いに平行に配置された測定管の振
動する測定管内に測定流体を流し、測定流体の流れと測
定管の角振動によって生じるコリオリ力により、測定管
を変形振動させ、振動の変化を振動検出センサで測定
し、質量流量や密度を求めるコリオリ質量流量計におい
て、同一形状をなし両端が固定され互いに平行に配置さ
れ管内を流れる測定流体が互いに逆方向に流れるように
構成された2個の測定管と、該測定管の一方の測定管の
固定端と中央部の間に一端が接続され他方の測定管の固
定端と中央部の間に他端が接続され個々の測定管では両
端の固定端と中央部付近が振動の節となるように且つ該
測定管が存在する平面に対し垂直な方向に前記中央部の
節を境に上流側と下流側が反対方向に振動するような振
動モードで励振し平行な2本の前記測定管の相互関係で
はそれぞれの測定管が存在する2平面から等距離にある
平面を中心に2本の振動測定管が対称な方向に振動する
ような振動モードで励振する加振器とを具備したことを
特徴とするコリオリ質量流量計。を構成した。(2) A measuring fluid is caused to flow in the vibrating measuring tubes arranged in parallel with each other, and the measuring tube is deformed and vibrated by the Coriolis force generated by the flow of the measuring fluid and the angular vibration of the measuring tube to cause the vibration. In a Coriolis mass flowmeter that measures changes with a vibration detection sensor to determine mass flow rate and density, both ends of the Coriolis mass flowmeter are fixed and arranged parallel to each other, and the measurement fluids flowing in the pipe are configured to flow in opposite directions. Each of the two measuring tubes has one end connected between the fixed end and the central part of one of the measuring tubes and the other end connected between the fixed end and the central part of the other measuring tube. So that the fixed ends at both ends and the vicinity of the central part become nodes of vibration, and the upstream and downstream sides vibrate in opposite directions with the node at the central part as a boundary in a direction perpendicular to the plane in which the measuring tube exists. Excited in various vibration modes The mutual relationship between the two measuring pipes is such that the two vibration measuring pipes are excited in a vibration mode such that the two measuring pipes vibrate in symmetrical directions about a plane equidistant from the two planes in which the respective measuring pipes are present. A Coriolis mass flowmeter, comprising a shaker. Was configured.
【0052】この結果、請求項1によれば、コリオリ流
量計の稼働に直接関係がある振動モード(励振振動モー
ドとコリオリ力によって生じる振動モード)の共振周波
数より低い周波数に、測定管の共振周波数が存在しな
い。余計な振動モードが、低い共振周波数領域に存在し
なくなるので、外部からの振動ノイズの影響を受け難く
なる。As a result, according to the first aspect, the resonance frequency of the measuring tube becomes lower than the resonance frequency of the vibration mode (excitation vibration mode and vibration mode generated by Coriolis force) which is directly related to the operation of the Coriolis flowmeter. Does not exist. Since the extra vibration mode does not exist in the low resonance frequency region, it is less likely to be affected by vibration noise from the outside.
【0053】更に、請求項2によれば、励振振動は、測
定管の2本で対称な動きをするので、固定端は、それぞ
れ逆方向のモーメントが加わるので、振動が打ち消しあ
い、振動絶縁が容易にできる。Further, according to the second aspect, since the excited vibrations are symmetrically moved by the two measuring tubes, moments in opposite directions are applied to the fixed ends. Therefore, the vibrations cancel each other out, and the vibration isolation is achieved. You can easily.
【0054】このため振動系のQ値が高くなり外部から
の振動ノイズに強くなり、小さなエネルギーを加振器に
加えるだけで、励振が可能になる。更に、自らの振動が
外部にもれることで発生するゼロ点、スパンの変化も小
さく出来る。For this reason, the Q value of the vibration system becomes high and the vibration noise becomes strong against the external vibration noise, and the vibration can be excited only by applying a small energy to the vibration exciter. Furthermore, changes in the zero point and span that occur when the vibration of the user leaks to the outside can be reduced.
【0055】なお、発生するコリオリ力による振動は、
対称な動きではない。しかし、一般的に、コリオリ力に
よる振動振幅は、励振振動振幅に比べ、フルスケール流
量でも数十〜数百分の一と小さいので、励振振動の対称
性が保たれれば上記の利点は十分に発揮できる。The vibration due to the generated Coriolis force is
Not a symmetrical movement. However, in general, the vibration amplitude due to Coriolis force is smaller than the excitation vibration amplitude by several tens to several hundreds even at full scale flow rate, so if the symmetry of the excitation vibration is maintained, the above advantages are sufficient. Can be demonstrated.
【0056】従って、本発明によれば、外部からの振動
ノイズに強く耐振性に優れた高安定なコリオリ質量流量
計を実現することが出来る。Therefore, according to the present invention, it is possible to realize a highly stable Coriolis mass flowmeter which is resistant to vibration noise from the outside and is excellent in vibration resistance.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の一実施例の要部構成説明図である。FIG. 1 is an explanatory diagram of a main part configuration of an embodiment of the present invention.
【図2】図1の信号処理説明図である。FIG. 2 is an explanatory diagram of signal processing of FIG.
【図3】図1の動作説明図である。FIG. 3 is an operation explanatory diagram of FIG. 1.
【図4】図1の動作説明図である。FIG. 4 is an operation explanatory diagram of FIG. 1;
【図5】本発明の他の実施例の要部構成説明図である。FIG. 5 is an explanatory diagram of a main part configuration of another embodiment of the present invention.
【図6】図5の動作説明図である。FIG. 6 is an operation explanatory diagram of FIG. 5;
【図7】図5の動作説明図である。FIG. 7 is an operation explanatory diagram of FIG. 5;
【図8】従来より一般に使用されている従来例の構成説
明図である。FIG. 8 is an explanatory diagram of a configuration of a conventional example that is generally used in the past.
【図9】図8の動作説明図である。9 is an operation explanatory diagram of FIG. 8;
【図10】図8の動作説明図である。10 is an explanatory diagram of the operation of FIG.
【図11】図8の動作説明図である。11 is an explanatory diagram of the operation of FIG.
【図12】図8の動作説明図である。12 is an explanatory diagram of the operation of FIG.
【図13】図8の動作説明図である。13 is an explanatory diagram of the operation of FIG.
11 測定管 12 測定管 13 固定端 14 固定端 15 固定端 16 固定端 17 連通管 18 加振器 19 加振器 21 中央部 22 中央部 23 振動検出センサ 24 振動検出センサ 25 振動検出センサ 26 振動検出センサ 31 センサ部 32 前置増幅回路部 33 時間(差)・位相(差)検出回路部 34 流量演算回路部 35 加振回路部 41 測定管 42 測定管 43 固定端 44 固定端 45 固定端 46 固定端 47 連通管 48 加振器 49 加振器 51 中央部 52 中央部 53 振動検出センサ 54 振動検出センサ 55 振動検出センサ 56 振動検出センサ 11 Measuring tube 12 Measuring tube 13 Fixed end 14 Fixed end 15 Fixed end 16 Fixed end 17 Communication pipe 18 Exciter 19 Exciter 21 Central part 22 Central part 23 Vibration detection sensor 24 Vibration detection sensor 25 Vibration detection sensor 26 Vibration detection Sensor 31 Sensor part 32 Preamplifier circuit part 33 Time (difference) / phase (difference) detection circuit part 34 Flow rate calculation circuit part 35 Excitation circuit part 41 Measuring tube 42 Measuring tube 43 Fixed end 44 Fixed end 45 Fixed end 46 Fixed End 47 Communication pipe 48 Exciter 49 Exciter 51 Central part 52 Central part 53 Vibration detection sensor 54 Vibration detection sensor 55 Vibration detection sensor 56 Vibration detection sensor
Claims (2)
測定管内に測定流体を流し、測定流体の流れと測定管の
角振動によって生じるコリオリ力により、測定管を変形
振動させ、振動の変化を振動検出センサで測定し、質量
流量や密度を求めるコリオリ質量流量計において、 同一形状をなし両端が固定され互いに平行に配置され管
内を流れる測定流体が互いに逆方向に流れるように構成
された2個の測定管と、 該それぞれの測定管の中央部に一端が接続され他端がコ
リオリ質量流量計本体に接続され各々の測定管では両端
の固定端が振動の節になり中央部付近が唯一の振動の腹
となるように且つ該測定管の最も共振周波数が低い振動
モードで励振し平行な2本の前記測定管の相互関係では
それぞれの測定管が存在する平面に対し垂直な同じ方向
に同位相で振動するような振動モードで励振する加振器
とを具備したことを特徴とするコリオリ質量流量計。1. A change in vibration is caused by causing a measuring fluid to flow in a vibrating measuring tube arranged in parallel with each other, and causing the measuring tube to deform and vibrate due to Coriolis force generated by the flow of the measuring fluid and angular vibration of the measuring tube. In a Coriolis mass flowmeter for measuring mass flow rate and density by measuring with a vibration sensor, both ends of the Coriolis mass flowmeter are fixed and arranged parallel to each other, and the measurement fluids flowing in the pipe are configured to flow in opposite directions. One measuring tube and one end is connected to the central part of each measuring tube and the other end is connected to the main body of the Coriolis mass flowmeter. In each measuring tube, the fixed ends at both ends are vibration nodes and the vicinity of the central part is unique. Of the two parallel measuring tubes which are excited in the vibration mode having the lowest resonance frequency of the measuring tube and are parallel to each other in the same vertical direction to the plane in which each measuring tube exists. Coriolis mass flowmeter, characterized by comprising a vibrator to excite a vibration mode in which vibrate in the same phase direction.
測定管内に測定流体を流し、測定流体の流れと測定管の
角振動によって生じるコリオリ力により、測定管を変形
振動させ、振動の変化を振動検出センサで測定し、質量
流量や密度を求めるコリオリ質量流量計において、 同一形状をなし両端が固定され互いに平行に配置され管
内を流れる測定流体が互いに逆方向に流れるように構成
された2個の測定管と、 該測定管の一方の測定管の固定端と中央部の間に一端が
接続され他方の測定管の固定端と中央部の間に他端が接
続され個々の測定管では両端の固定端と中央部付近が振
動の節となるように且つ該測定管が存在する平面に対し
垂直な方向に前記中央部の節を境に上流側と下流側が反
対方向に振動するような振動モードで励振し平行な2本
の前記測定管の相互関係ではそれぞれの測定管が存在す
る2平面から等距離にある平面を中心に2本の振動測定
管が対称な方向に振動するような振動モードで励振する
加振器とを具備したことを特徴とするコリオリ質量流量
計。2. A measuring fluid is caused to flow through the vibrating measuring tubes arranged in parallel with each other, and the measuring tube is deformed and vibrated by the Coriolis force generated by the flow of the measuring fluid and the angular vibration of the measuring tube to change the vibration. In a Coriolis mass flowmeter for measuring mass flow rate and density by measuring with a vibration sensor, both ends of the Coriolis mass flowmeter are fixed and arranged parallel to each other, and the measurement fluids flowing in the pipe are configured to flow in opposite directions. One of the measuring tubes is connected between the fixed end and the central part of one of the measuring tubes, and the other end is connected between the fixed end and the central part of the other measuring tube. The fixed ends of both ends and the vicinity of the central part become nodes of vibration, and the upstream side and the downstream side vibrate in opposite directions across the node of the central part in a direction perpendicular to the plane in which the measuring tube exists. Excited in vibration mode and parallel In the mutual relation of the two measuring tubes, a vibration exciter that excites in a vibration mode such that the two vibrating measuring tubes vibrate in symmetrical directions about a plane equidistant from the two planes in which the respective measuring tubes are present. A Coriolis mass flowmeter characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12121795A JPH08313321A (en) | 1995-05-19 | 1995-05-19 | Coriolis mass flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12121795A JPH08313321A (en) | 1995-05-19 | 1995-05-19 | Coriolis mass flow meter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08313321A true JPH08313321A (en) | 1996-11-29 |
Family
ID=14805790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12121795A Pending JPH08313321A (en) | 1995-05-19 | 1995-05-19 | Coriolis mass flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08313321A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109425395A (en) * | 2017-08-25 | 2019-03-05 | 罗凡 | Coriolis mass flowmeters and its sensor module |
-
1995
- 1995-05-19 JP JP12121795A patent/JPH08313321A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109425395A (en) * | 2017-08-25 | 2019-03-05 | 罗凡 | Coriolis mass flowmeters and its sensor module |
CN109425395B (en) * | 2017-08-25 | 2024-02-13 | 罗凡 | Coriolis mass flowmeter and sensor assembly therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5497666A (en) | Increased sensitivity coriolis effect flowmeter using nodal-proximate sensors | |
JPH0353131A (en) | Mass flowmeter operating under coriolis principle | |
JP2654341B2 (en) | Mass flow meter based on Coriolis principle | |
EP1190226B1 (en) | Type identification for drive control of a coriolis flowmeter | |
JP2004538449A (en) | Vibration transducer | |
EP0421812B1 (en) | Improved coriolis-type flowmeter | |
JP3469550B2 (en) | Combination of pick-off and vibratory drive used in Coriolis flowmeter and method of using this combination | |
JP5608742B2 (en) | Method and apparatus for separating driver and pick-off provided in vibration type flow sensor assembly so as not to transmit vibration | |
JP2012510072A (en) | Method and apparatus for vibrating a flow tube of a vibratory flow meter | |
JP4015852B2 (en) | Method and apparatus for Coriolis flowmeter with balance bar to increase accuracy | |
JP5439592B2 (en) | Flow meter with a balanced reference member | |
JPH08313321A (en) | Coriolis mass flow meter | |
JPH0341319A (en) | Coriolis mass flowmeter | |
US6553845B2 (en) | Coriolis flowmeter utilizing three-forked plate vibrator mode | |
JPH08193864A (en) | Coriolis mass flowmeter | |
JPH10104040A (en) | Mass flowmeter converter | |
JPH06331405A (en) | Vibration type measuring instrument | |
DK1402236T3 (en) | METHOD FOR DETERMINING THE MASS FLOW IN A Coriolis mass flowmeter | |
JP2000111380A (en) | Coriolis-type mass flowmeter | |
JP2000046617A (en) | Coriolis mass flowmeter | |
JPH0436409Y2 (en) | ||
JPH0348729A (en) | Coriolis mass flowmeter | |
JPH0783718A (en) | Coriolis mass flowmeter | |
JPH06137920A (en) | Coriolis mass flowmeter | |
JPH1123341A (en) | Coriolis mass flowmeter |