JPH08193864A - Coriolis mass flowmeter - Google Patents

Coriolis mass flowmeter

Info

Publication number
JPH08193864A
JPH08193864A JP697995A JP697995A JPH08193864A JP H08193864 A JPH08193864 A JP H08193864A JP 697995 A JP697995 A JP 697995A JP 697995 A JP697995 A JP 697995A JP H08193864 A JPH08193864 A JP H08193864A
Authority
JP
Japan
Prior art keywords
measuring
vibration
pipe
coriolis mass
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP697995A
Other languages
Japanese (ja)
Inventor
Norikazu Osawa
紀和 大沢
Hiroshi Owada
博 大和田
Hirohide Tsutsui
弘英 筒井
Hideki Kuwayama
秀樹 桑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP697995A priority Critical patent/JPH08193864A/en
Publication of JPH08193864A publication Critical patent/JPH08193864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE: To obtain a Coriolis mass flowmeter by which a mass flow rate is measured with high accuracy by a method wherein a curved part which becomes one plane as a whole is formed at a measuring pipe in which a fluid to be measured flows and both ends of which are fixed, a vibration is applied to the plane and a change in the vibration due to Coriolis' force is detected. CONSTITUTION: Both ends of a measuring pipe 20 in which a fluid to be measured flows and in which a gently curved part 19 is provided as one plane shape are fixed by fixation members 21, 22, and a shape which is symmetric with respect to a point is formed. A vibration is applied inside of an identical plane by a vibrator 23 while the central point of symmetry is used as the belly of a vibration, electromagnetic coils 24, 25 are installed at an equal distance from both ends, and the vibration of the measuring pipe 20 is detected. The measuring pipe 20 is vibrated in a superposed manner by the vibration applied by the vibrator 23 and by a vibration due to Coriolis' force at an amplitude. Outputs of the coils 24, 25 are amplified by a preamplifier circuit part, and a tin difference and a phase difference are detected by a time-difference and phase-difference detection circuit part. In addition, the time difference and the phase difference are corrected by a flow-rate arithmetic circuit part regarding a vibration frequency, a temperature, a density, an amplitude and the like, and a mass flow rate is found. Thereby, a high-accuracy mass flowmeter can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、曲管構造の振動測定管
を用い、その曲管が形成する平面と同一方向に測定管を
振動させることにより、薄型でコンパクト化を実現し、
湾曲部により、温度変化による熱応力や配管応力による
影響を低減し、温度特性が向上でき、両端固定の直管測
定管よりは剛性を小さくできて、感度向上による高精
度,S/N比が向上出来、測定管形状選択の自由度大に
より、各モードの共振周波数を比較的自由に選択出来る
コリオリ質量流量計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a vibration measuring pipe having a curved pipe structure and vibrates the measuring pipe in the same direction as the plane formed by the curved pipe to realize a thin and compact structure.
The curved part reduces the influence of thermal stress and pipe stress due to temperature change, improves the temperature characteristics, can reduce the rigidity compared to the straight pipe measuring pipe with both ends fixed, and can improve the accuracy and S / N ratio by improving the sensitivity. The present invention relates to a Coriolis mass flowmeter in which the resonance frequency of each mode can be relatively freely selected by improving the flexibility of the measurement tube shape selection.

【0002】[0002]

【従来の技術】図40は、従来より一般に使用されてい
る従来例の構成説明図で、例えば、特開平6−1095
12号に示されている。図において、1はフランジ2
に、両端が取付けられた直管状の測定管である。フラン
ジ2は管路A(図示せず)へ測定管1を取付けるための
ものである。
2. Description of the Related Art FIG. 40 is an explanatory view of a configuration of a conventional example which has been generally used, for example, Japanese Patent Laid-Open No. 6-1095.
No. 12 is shown. In the figure, 1 is a flange 2
It is a straight tube type measuring tube with both ends attached. The flange 2 is for attaching the measuring tube 1 to the conduit A (not shown).

【0003】3は測定管1の中央部に設けられた加振器
である。加振器3は測定管1を測定管の中心軸に対し垂
直方向に加振して、図の上下方向に変位させる。4,5
は測定管1の両側にそれぞれ設けられた振動検出センサ
である。6,7は、測定管1の両側をそれぞれ固定する
固定部材である。
Reference numeral 3 denotes an exciter provided at the center of the measuring tube 1. The vibrator 3 vibrates the measuring tube 1 in a direction perpendicular to the central axis of the measuring tube to displace it in the vertical direction in the figure. 4,5
Are vibration detection sensors provided on both sides of the measuring tube 1. Reference numerals 6 and 7 denote fixing members for fixing both sides of the measuring tube 1, respectively.

【0004】以上の構成において、測定管1に測定流体
を流した状態で、中央部に設置した加振器3から振動を
与えると、図40に示す如く、M1,M3に示すように
中央部が振動の腹となる1次モード形状で測定管1が振
動する。
In the above construction, when the measuring fluid is flowed through the measuring pipe 1, vibration is applied from the vibration exciter 3 installed in the central portion, as shown in FIG. The measurement tube 1 vibrates in a first-order mode shape in which is a vibration antinode.

【0005】この振動は測定管1の上流側と下流側に付
いて考えると、各々固定端付近を中心とする回転運動を
していると見なし得るので、加振器3の振動方向の角速
度『ω』、測定流体の流速『V』(以下『』で囲まれた
記号はベクトル量を表す。)とすると、 Fc=―2m『ω』×『V』 のコリオリ力が働く、コリオリ力に比例した振動の振幅
を測定すれば、質量流量Qが測定出来る。
Considering these vibrations on the upstream side and the downstream side of the measuring pipe 1, it can be considered that they are rotating around the fixed end, respectively. ω ”, and the flow velocity of the measured fluid is“ V ”(the symbol enclosed by“ ”represents a vector quantity), Fc = −2m“ ω ”ד V ”Coriolis force is proportional to Coriolis force The mass flow rate Q can be measured by measuring the amplitude of the vibration.

【0006】これにより測定管1の中央点に対して、上
流部分と下流部分ではその撓み振動が対称になる振動モ
ードM4,M6が発生する。なお、実際には、この2種
類の振動パターンが重畳された形で測定管1は振動す
る。この変形を振動検出手段4、5で測定することによ
り質量流量Qを知ることができる。
As a result, vibration modes M4 and M6 are generated in which the flexural vibrations are symmetrical in the upstream portion and the downstream portion with respect to the center point of the measuring pipe 1. Actually, the measuring tube 1 vibrates in a form in which these two types of vibration patterns are superimposed. The mass flow rate Q can be known by measuring this deformation with the vibration detecting means 4 and 5.

【0007】通常は振動検出手段4と5での振動振幅
や、振動検出手段4と5での位相差を求め、振動周波数
や温度による補正を行い、質量流量を求める。
Normally, the vibration amplitude between the vibration detecting means 4 and 5 and the phase difference between the vibration detecting means 4 and 5 are obtained, correction is made by the vibration frequency and temperature, and the mass flow rate is obtained.

【0008】図41は従来より一般に使用されている他
の従来例の構成説明図である。本従来例では、図39実
施例に対して、更に、ノイズを低減し、信号を大きくと
るために、測定管1を2管式にし、ノイズを打消すよう
にしたものである。
FIG. 41 is an explanatory view of the configuration of another conventional example which is generally used conventionally. In this conventional example, in order to further reduce noise and increase the signal, compared to the example of FIG. 39, the measuring tube 1 is of a two-tube type, and the noise is canceled.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この様
な装置においては、測定流体や外気温の変化があると、
測定管1とその固定部や流量計ボディとに温度差が生
じ、熱膨張の影響で測定管1に応力が加わり、測定管1
の振動状態(共振周波数,振動形状等)が変化してしま
う。
However, in such a device, when the measured fluid or the outside air temperature changes,
A temperature difference occurs between the measuring pipe 1 and its fixed part or the flowmeter body, and stress is applied to the measuring pipe 1 due to the effect of thermal expansion.
Vibration state (resonance frequency, vibration shape, etc.) will change.

【0010】また、外部からの配管応力の影響も無視で
きず、やはり測定管1の振動状態に影響を与える。これ
らの現象により、流量や密度の測定誤差が生じるのみな
らず、場合によっては測定管1が応力破壊や疲労破壊を
起こす可能性がある。
Further, the influence of external pipe stress cannot be ignored, and it also affects the vibration state of the measuring pipe 1. Due to these phenomena, not only measurement errors of the flow rate and the density occur but also the measurement pipe 1 may cause stress fracture or fatigue fracture in some cases.

【0011】また、両端固定の直線ビーム状の測定管1
の剛性は、曲管に比べ高いので、共振周波数は高く、発
生振幅は小さい。高周波数で振動振幅が小さいと、変換
器での信号処理が難しく、S/Nが悪くなりがちで、精
度が悪い、揺動が大きい、変換器の製造が困難でコスト
が高くなる等の欠点がある。
Further, a linear beam measuring tube 1 having both ends fixed
Since its rigidity is higher than that of a curved pipe, the resonance frequency is high and the generated amplitude is small. If the vibration amplitude is small at a high frequency, signal processing in the converter is difficult, the S / N tends to be poor, the accuracy is poor, the oscillation is large, the manufacturing of the converter is difficult, and the cost is high. There is.

【0012】これに対して、図42は図39実施例の欠
点を考慮に入れた、従来より一般に使用されている他の
従来例の構成説明図で、例えば、米国特許4,491,
025号、発明の名称「PARALLEL PATH CORIOLIS MASS
FLOW RATE METER 」1982年11月3日出願、198
5年1月1日特許に示されている。
On the other hand, FIG. 42 is a structural explanatory view of another conventional example which has been generally used in the past, taking into consideration the drawbacks of the embodiment of FIG. 39, for example, US Pat. No. 4,491.
No. 025, the title of the invention "PARALLEL PATH CORIOLIS MASS
FLOW RATE METER "filed on November 3, 1982, 198
It is shown in the 1 January 5 patent.

【0013】図において、11は配管Aに、両端が取付
けられたU字形の測定管である。12は管路Aへの測定
管11の取付けフランジである。13はU字形をなす測
定管11の先端に設けられた加振器である。14,15
は測定管11の両側にそれぞれ設けられた変位検出セン
サである。図43は従来より一般に使用されている他の
従来例の構成説明図である。
In the figure, reference numeral 11 is a U-shaped measuring tube having both ends attached to a pipe A. Reference numeral 12 is a mounting flange of the measuring pipe 11 to the pipe line A. Reference numeral 13 denotes a vibrator provided at the tip of the U-shaped measuring tube 11. 14, 15
Are displacement detection sensors provided on both sides of the measuring pipe 11. FIG. 43 is an explanatory view of the configuration of another conventional example which is generally used in the past.

【0014】本従来例では、図42実施例に対して、更
に、ノイズを低減し、信号を大きくとるために、測定管
11を、2管式にし、ノイズを打消すようにしたもので
ある。
In this conventional example, the measuring tube 11 is of a two-tube type in order to further reduce the noise and increase the signal in comparison with the embodiment of FIG. 42, and the noise is canceled. .

【0015】図42,図43実施例のような曲がった測
定管11を、その測定管11が存在する平面に対して垂
直方向に振動させる方法もある。この場合、測定管11
以外の付加構造物がなければ、測定管11の共振周波数
は、測定管11の長さによって支配的に決定されてしま
う。このため励振振動やコリオリ振動の共振周波数や、
それらのモードの共振周波数の比を自由に変更させるこ
とは困難である。
There is also a method of vibrating the curved measuring pipe 11 in the direction perpendicular to the plane in which the measuring pipe 11 exists, as in the embodiment shown in FIGS. In this case, the measuring tube 11
If there is no additional structure other than the above, the resonance frequency of the measuring tube 11 is predominantly determined by the length of the measuring tube 11. Therefore, the resonance frequency of excitation vibration and Coriolis vibration,
It is difficult to freely change the ratio of the resonance frequencies of those modes.

【0016】本発明は、この問題点を解決するものであ
る。本発明の目的は、薄型でコンパクト化、温度特性の
向上、高精度,S/N比の向上、測定管形状選択の自由
度拡大が得られるコリオリ質量流量計を提供するにあ
る。
The present invention solves this problem. An object of the present invention is to provide a Coriolis mass flowmeter that is thin and compact, has improved temperature characteristics, high accuracy, improved S / N ratio, and has a greater degree of freedom in selecting the shape of a measuring tube.

【0017】[0017]

【課題を解決するための手段】この目的を達成するため
に、本発明は、 (1)振動する測定管内に測定流体を流し、測定流体の
流れと測定管の角振動によって生じるコリオリ力によ
り、測定管を変形振動させ、振動の変化を振動検出セン
サで測定し、質量流量や密度を求めるコリオリ質量流量
計において、両端が固定され前記測定流体が流れる測定
管と、該測定管に設けられ該測定管全体として1個の平
面内に配置されるようにされた少なくとも1個の湾曲部
と、前記測定管を前記平面上において該平面方向に加振
する加振器と、前記コリオリ力による測定管の振動の変
化を検出する振動検出センサとを具備したことを特徴と
するコリオリ質量流量計。 (2)同一形状をなし同一平面上であって互いに平行に
配置された2個の測定管と、該一方の測定管に一端が取
付られ該他方の測定管に他端が取付られた加振器と、一
端が前記一方の測定管に取付られ他端が前記他方の測定
管或いはコリオリ質量流量計本体に取付られ前記2個の
測定管の相対的振動あるいはコリオリ質量流量計本体に
対する絶対的振動を検出する振動検出センサとを具備し
たことを特徴とする請求項1記載のコリオリ質量流量
計。 (3)同一形状をなし同一平面上であって互いに線対称
あるいは点対称に配置された2個の測定管と、該一方の
測定管に一端が取付られ該他方の測定管に他端が取付ら
れた加振器と、一端が前記一方の測定管に取付られ他端
が前記他方の測定管或いはコリオリ質量流量計本体に取
付られ前記2個の測定管の相対的振動あるいはコリオリ
質量流量計本体に対する絶対的振動を検出する振動検出
センサとを具備したことを特徴とする請求項1記載のコ
リオリ質量流量計。 (4)同一形状をなし互いに平行な異なる2つの平面上
であって互いに平行に配置された2個の測定管と、該一
方の測定管に一端が取付られ該他方の測定管に他端が取
付られた加振器と、一端が前記一方の測定管に取付られ
他端が前記他方の測定管或いはコリオリ質量流量計本体
に取付られ前記2個の測定管の相対的振動あるいはコリ
オリ質量流量計本体に対する絶対的振動を検出する振動
検出センサとを具備したことを特徴とする請求項1記載
のコリオリ質量流量計。を構成したものである。
In order to achieve this object, the present invention provides (1) a measuring fluid is caused to flow in an oscillating measuring tube, and the flow of the measuring fluid and Coriolis force generated by angular vibration of the measuring tube In a Coriolis mass flowmeter for deforming and vibrating a measuring pipe and measuring a change in vibration with a vibration detecting sensor to determine a mass flow rate and a density, a measuring pipe having both ends fixed and through which the measuring fluid flows, and a measuring pipe provided on the measuring pipe. At least one curved portion arranged so as to be arranged in one plane as a whole of the measuring tube, an exciter for exciting the measuring tube in the plane direction on the plane, and measurement by the Coriolis force. A Coriolis mass flowmeter, comprising: a vibration detection sensor for detecting a change in vibration of a pipe. (2) Two measuring pipes having the same shape and arranged on the same plane and parallel to each other, and one of the measuring pipes having one end attached thereto and the other measuring pipe having the other end attached thereto And one end is attached to the one measuring pipe and the other end is attached to the other measuring pipe or the Coriolis mass flowmeter main body, and relative vibration of the two measuring pipes or absolute vibration with respect to the Coriolis mass flowmeter main body The Coriolis mass flowmeter according to claim 1, further comprising a vibration detection sensor for detecting (3) Two measuring tubes that have the same shape and are arranged in line symmetry or point symmetry with each other on the same plane, and one measuring tube has one end attached and the other measuring tube has the other end attached And one end attached to the one measuring pipe and the other end attached to the other measuring pipe or the Coriolis mass flowmeter main body, and relative vibration of the two measuring pipes or Coriolis mass flowmeter main body 2. A Coriolis mass flowmeter according to claim 1, further comprising a vibration detection sensor for detecting an absolute vibration with respect to. (4) Two measuring tubes having the same shape and arranged on two different planes parallel to each other and parallel to each other, and one measuring tube has one end attached to the other measuring tube and the other measuring tube has the other end. Attached vibrator and one end attached to the one measuring pipe and the other end attached to the other measuring pipe or the Coriolis mass flowmeter main body, relative vibration of the two measuring pipes or Coriolis mass flowmeter The Coriolis mass flowmeter according to claim 1, further comprising a vibration detection sensor that detects an absolute vibration with respect to the main body. Is configured.

【0018】[0018]

【作用】以上の構成において、測定管に測定流体が流さ
れ、加振器が駆動されると、コリオリ力が働く、このコ
リオリ力に比例した振動の振幅を測定すれば、質量流量
が測定出来る。以下、実施例に基づき詳細に説明する。
In the above structure, when the measuring fluid is flown into the measuring tube and the vibrator is driven, the Coriolis force acts. By measuring the amplitude of vibration proportional to this Coriolis force, the mass flow rate can be measured. . Hereinafter, detailed description will be given based on examples.

【0019】[0019]

【実施例】図1は、本発明の一実施例の要部構成説明図
である。20は、測定流体が流れ緩やかな湾曲部19を
有する測定管であり、この測定管20の両端は固定部材
21,22で固定されている。本構成例では、測定管2
0の形状は、両固定端から等距離にある点を対称の中心
として点対称な測定管形状としされている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of the essential structure of an embodiment of the present invention. Reference numeral 20 denotes a measuring pipe having a curved portion 19 through which the measuring fluid flows, and both ends of the measuring pipe 20 are fixed by fixing members 21 and 22. In this configuration example, the measuring tube 2
The shape of 0 is a measurement tube shape that is point-symmetric with respect to a point that is equidistant from both fixed ends.

【0020】測定管20には加振器23が設置され、固
定端と測定管20から決定される平面内で、対称の中心
の点が振動の腹となるような振動を発生させる。振動検
出センサーとして、電磁コイル24と電磁コイル25を
使用し、振動測定管の振動(速度)を検出する。コイル
24,25は両固定端から等距離の場所に設置する。
A vibration exciter 23 is installed on the measuring tube 20 to generate vibration such that a point at the center of symmetry is an antinode of the vibration within a plane determined by the fixed end and the measuring tube 20. As the vibration detection sensor, the electromagnetic coil 24 and the electromagnetic coil 25 are used to detect the vibration (speed) of the vibration measuring tube. The coils 24 and 25 are installed at positions equidistant from both fixed ends.

【0021】図2に信号処理系の一般的な例を示す。セ
ンサ部261、前置増幅回路部262、時間(差)・位相
(差)検出回路部263、流量演算回路部264、加振回
路部265から構成される。
FIG. 2 shows a general example of a signal processing system. Sensor part 261, preamplifier circuit part 262, time (difference) / phase
(Difference) detection circuit unit 263, flow rate calculation circuit unit 264, and vibration circuit unit 265.

【0022】以上の構成において、振動測定管20は、
加振器23により、図3のM21,M22,M23に示
すような振動を行う。このとき測定管内を流体が流れる
と、コリオリ力が生じ、図3のM24,M25,M26
のような振動モードが発生する。
In the above structure, the vibration measuring tube 20 is
The vibrator 23 vibrates as shown by M21, M22, and M23 in FIG. At this time, when the fluid flows in the measuring pipe, Coriolis force is generated, and M24, M25, M26 in FIG.
A vibration mode like this occurs.

【0023】なお、実際には、加振振動(M21,M2
2,M23)とコリオリ力による振動(M24,M2
5,M26)の2種類の振動パターンが重畳した形で測
定管20は振動する。励振振動による振動振幅をA、コ
リオリ振動による振動振幅をC(C=kQ,Qは質量流
量)とすると(一般的にはA≫C)、センサコイル24
と25の出力は、 コイル24:S24= Asinθ+Ccosθ = A'sin(θ
+δ) コイル25:S25= Asinθ−Ccosθ = A'sin(θ
−δ) 但し、A'=(A2+C21/2、δ=atan(C/A)≒
k'Q 、k,k’は定数
Actually, the exciting vibration (M21, M2
2, M23) and vibration due to Coriolis force (M24, M2
5, M26), the measuring tube 20 vibrates in a form in which two types of vibration patterns are superimposed. When the vibration amplitude due to the excitation vibration is A and the vibration amplitude due to the Coriolis vibration is C (C = kQ, Q is a mass flow rate) (generally A >> C), the sensor coil 24
And the outputs of 25 are: coil 24: S 24 = Asinθ + Ccosθ = A'sin (θ
+ Δ) Coil 25: S 25 = Asinθ-Ccosθ = A'sin (θ
−δ) where A ′ = (A 2 + C 2 ) 1/2 , δ = atan (C / A) ≈
k'Q and k, k 'are constants

【0024】図2の信号処理回路により、センサ信号は
前置増幅回路部262で増幅され、時間(差)・位相(差)
検出回路部263で2つのセンサ出力の時間差や位相
(差)が検出される。さらに、流量演算回路部264で
振動周波数・温度・密度・振幅等で補正され、質量流量
が求められる。この他に、加振回路部265で測定管2
0を加振させるドライブ信号が作られる。
The sensor signal is amplified by the preamplifier circuit section 262 by the signal processing circuit of FIG. 2, and the time (difference) / phase (difference)
The detection circuit unit 263 detects a time difference or a phase (difference) between the outputs of the two sensors. Further, the mass flow rate is obtained by correcting the vibration frequency, temperature, density, amplitude, etc. in the flow rate calculation circuit section 264. In addition, the measuring circuit 2
A drive signal for exciting 0 is generated.

【0025】この結果、 (1)2本管でも測定管20、加振器23、振動検出セ
ンサ24,25を同一平面におくことが可能になり、薄
型でコンパクトなコリオリ質量流量計を実現できる。 (2)曲管部19を有する測定管20を使用すること
で、流体や外気温による熱応力、配管応力等の影響を低
減できる。これにより、外部環境変化に対し安定で温度
特性が良好で、高精度なコリオリ質量流量計を実現でき
る。
As a result, (1) it becomes possible to place the measuring pipe 20, the vibrator 23, and the vibration detection sensors 24 and 25 on the same plane even with a double pipe, and it is possible to realize a thin and compact Coriolis mass flowmeter. . (2) By using the measuring pipe 20 having the curved pipe portion 19, it is possible to reduce the influence of thermal stress, pipe stress, etc. due to the fluid and the ambient temperature. As a result, it is possible to realize a highly accurate Coriolis mass flowmeter that is stable against changes in the external environment and has good temperature characteristics.

【0026】(3)測定管20は、直管測定管と異なり
湾曲部19を有しているので、同一の検出器ケースサイ
ズでも、測定管長を長くとれるので、振動振幅を稼ぎや
すく、比較的大きな振動センサ出力を得ることができ
る。これにより、変換器の負荷が減り、S/N比が向上
し揺動が減り、さらに精度の向上も期待できる。
(3) Since the measuring pipe 20 has the curved portion 19 unlike the straight pipe measuring pipe, even if the same detector case size is used, the measuring pipe length can be made long, so that the vibration amplitude can be easily obtained and the measuring pipe can be comparatively obtained. A large vibration sensor output can be obtained. As a result, the load on the converter is reduced, the S / N ratio is improved, oscillation is reduced, and further improvement in accuracy can be expected.

【0027】(4)両固定端と曲管測定管が構成する平
面に対し、垂直に振動させる従来の方法では、各振動モ
ードの共振周波数を決定するのは、測定管の長さに大き
く依存する。これに対し、振動方向も同一な本発明で
は、各モードの共振周波数は測定管の形状に大きく依存
する。従って、設計の自由度が大きいので、いろいろな
特徴をもたせやすい。
(4) In the conventional method of vibrating vertically with respect to the plane formed by both fixed ends and the curved measuring tube, the resonance frequency of each vibration mode is largely determined by the length of the measuring tube. To do. On the other hand, in the present invention in which the vibration direction is also the same, the resonance frequency of each mode greatly depends on the shape of the measuring tube. Therefore, since the degree of freedom in design is great, it is easy to give various characteristics.

【0028】(5)緩やかな湾曲部19を有するので、
曲管測定管でありながら、圧損やセルフドレイン性は直
管測定管に近く、かつ、緩やかな湾曲部を持つことで、
熱応力や配管応力に強い特徴を有する。
(5) Since it has a gentle curved portion 19,
Despite being a curved pipe, the pressure loss and self-drainability are close to those of a straight pipe and have a gentle curve,
It has a strong resistance to thermal stress and piping stress.

【0029】図4は、本発明の他の実施例の要部構成説
明図、図5,図6は図4の動作説明図である。本実施例
において、30、31は、湾曲部29を有する測定管
で、コリオリ質量流量計に流れ込んだ流体は入り口で2
つに分岐、また、出口で1つに合流する。2つの同一形
状測定管30、31は、同一平面内に平行に設置する。
32、33は測定管の固定部材、34は加振器、35、
36は2本の測定管30、31の相対振動を検出するセ
ンサコイルである。
FIG. 4 is an explanatory view of a main part configuration of another embodiment of the present invention, and FIGS. 5 and 6 are operation explanatory views of FIG. In this embodiment, reference numerals 30 and 31 denote measuring tubes having a curved portion 29, and the fluid flowing into the Coriolis mass flowmeter is 2 at the inlet.
Divide into two and merge into one at the exit. The two identical shape measuring tubes 30 and 31 are installed in parallel in the same plane.
32 and 33 are measuring tube fixing members, 34 is a vibrator, 35,
Reference numeral 36 is a sensor coil that detects relative vibration of the two measuring tubes 30 and 31.

【0030】以上の構成において、振動測定管30,3
1は、加振器36により、図5のM31,M32,M3
3に示すような振動を行う。このとき測定管内を流体が
流れると、コリオリ力が生じ、図6のM34,M35,
M36に示すような振動モードが発生する。
In the above structure, the vibration measuring tubes 30, 3
1 is generated by the vibration exciter 36 from M31, M32, M3 in FIG.
Vibration as shown in FIG. At this time, when the fluid flows in the measuring pipe, Coriolis force is generated, and M34, M35,
A vibration mode as shown by M36 occurs.

【0031】なお実際には、図5と図6の2種類の振動
パターンが重畳した形で測定管30は振動する。センサ
コイル35,36により振動測定管30と31の相対振
動が求められ、その出力は コイル35:S35= Asinθ+Ccosθ = A'sin(θ
+δ) コイル36:S36= Asinθ−Ccosθ = A'sin(θ
−δ) となる。
Actually, the measuring tube 30 vibrates in a form in which the two types of vibration patterns shown in FIGS. 5 and 6 are superimposed. The relative vibrations of the vibration measuring tubes 30 and 31 are obtained by the sensor coils 35 and 36, and the output is the coil 35: S 35 = Asinθ + Ccosθ = A'sin (θ
+ Δ) Coil 36: S 36 = Asinθ-Ccosθ = A'sin (θ
−δ).

【0032】この結果、本実施例でも、直管に近い形
状、圧損で、セルフドレイン性にも優れながら、緩やか
な湾曲部29を持つことで、熱応力や配管応力に強いコ
リオリ質量流量計が得られる。
As a result, also in the present embodiment, the Coriolis mass flowmeter which has a shape and pressure loss close to that of a straight pipe, has excellent self-draining property, and has a gentle curved portion 29, is resistant to thermal stress and piping stress. can get.

【0033】更に、2本の測定管30、31は互いに反
対方向に振動するので、両端の固定部では互いに応力が
打ち消しあい、音叉の効果で、振動絶縁性に優れる。こ
れにより加振器34に加えるエネルギが小さくて済む。
またQ値が高くなるので、外部振動ノイズの影響を受け
にくくなる。また自らの振動が外に洩れて振動系に悪影
響を及ぼすこともなくなる。従って、耐振性に優れたコ
リオリ質量流量計を実現することができる。
Further, since the two measuring tubes 30 and 31 vibrate in mutually opposite directions, the stresses cancel each other out at the fixing portions at both ends, and the vibration isolation is excellent due to the effect of the tuning fork. As a result, the energy applied to the vibrator 34 can be small.
Further, since the Q value is high, it is less likely to be affected by external vibration noise. Also, the vibration of itself does not leak to the outside and adversely affect the vibration system. Therefore, a Coriolis mass flowmeter excellent in vibration resistance can be realized.

【0034】図7は、本発明の他の実施例の要部構成説
明図、図8,図9は図7の動作説明図である。本実施例
において、40、41は、それぞれ固定端近くに湾曲部
39を有し、計2個の湾曲部39を有する測定管で、コ
リオリ質量流量計に流れ込んだ流体は入り口で2つに分
岐、また、出口で1つに合流する。
FIG. 7 is an explanatory view of the essential structure of another embodiment of the present invention, and FIGS. 8 and 9 are operation explanatory views of FIG. In the present embodiment, reference numerals 40 and 41 each have a curved portion 39 near the fixed end, and have a total of two curved portions 39. The fluid flowing into the Coriolis mass flowmeter is branched into two at the inlet. , Also, join one at the exit.

【0035】2つの同一形状測定管40,41は、同一
平面内に存在し、線対称または点対称な位置に設置す
る。42、43は測定管の固定部材、44、45は加振
器、46、47は2本の測定管40,41の相対振動を
検出するセンサコイルである。
The two identical-shape measuring tubes 40 and 41 are present in the same plane and are installed in line-symmetrical or point-symmetrical positions. 42 and 43 are fixing members for the measuring pipes, 44 and 45 are vibrators, and 46 and 47 are sensor coils for detecting relative vibration of the two measuring pipes 40 and 41.

【0036】以上の構成において、測定管40,41は
加振器44,45により、図8のM41,M42,M4
3に示すような振動を行う。このとき測定管内に流体が
流れると、コリオリ力が生じ、図9のM44,M45,
M46に示すような振動を行う(各振動モードの共振周
波数と励振周波数により振動形状は決定する。よって正
確な形状は若干異なってくる可能性がある)。実際に
は、図8と図9の2種類の振動パターンが重畳した形で
測定管は振動する。センサコイル46,47により振動
測定管40と41の相対振動が求められ、その出力は以
下のようになる。
In the above construction, the measuring tubes 40 and 41 are moved by the vibrators 44 and 45 to M41, M42 and M4 of FIG.
Vibration as shown in FIG. At this time, when the fluid flows into the measuring pipe, Coriolis force is generated, and M44, M45,
Vibration as shown by M46 is performed (the vibration shape is determined by the resonance frequency and the excitation frequency of each vibration mode. Therefore, the exact shape may be slightly different). Actually, the measuring tube vibrates in a form in which the two types of vibration patterns of FIGS. 8 and 9 are superposed. The relative vibrations of the vibration measuring tubes 40 and 41 are obtained by the sensor coils 46 and 47, and their outputs are as follows.

【0037】コイル46:S46=Asinθ+Ccosθ =
A'sin(θ+δ) コイル47:S47= −Asinθ+Ccosθ = −A'sin
(θ−δ) なお、信号処理に付いては、図2と同様である。但し、
コイル46の出力が図1実施例のときと符号が正負逆に
なっているので、通常は、符号反転または180度移相
の手段を併用する。
Coil 46: S 46 = A sin θ + C cos θ =
A'sin (θ + δ) coil 47: S 47 = -Asinθ + Ccosθ = -A'sin
(Θ−δ) Note that the signal processing is the same as in FIG. However,
Since the output of the coil 46 has a sign opposite to that in the embodiment of FIG. 1, the sign inversion or 180-degree phase shift means is usually used together.

【0038】この結果、本実施例でも、直管に近い形
状、圧損で、セルフドレイン性にも優れたコリオリ質量
流量計が得られる。
As a result, also in this embodiment, a Coriolis mass flowmeter having a shape close to a straight pipe, a pressure loss, and an excellent self-draining property can be obtained.

【0039】更に、測定管40、41は、それぞれ固定
端近くに湾曲部39を有しているので、剛性が低く、比
較的大きな振動を得ることができ、S/N比に優れた高
精度な流量計を実現できる。また、2本の測定管が互い
に逆方向に振動するので、図4実施例の場合と同じく耐
振性にも優れたコリオリ質量流量計が得られる。
Further, since the measuring tubes 40 and 41 each have the curved portion 39 near the fixed end, the rigidity is low, a relatively large vibration can be obtained, and the S / N ratio is excellent and the precision is high. It can realize various flow meters. Further, since the two measuring tubes vibrate in opposite directions, a Coriolis mass flowmeter excellent in vibration resistance can be obtained as in the case of the embodiment of FIG.

【0040】図10は、本発明の他の実施例の要部構成
説明図、図11,図12,図13,図14は図10の動
作説明図である。
FIG. 10 is an explanatory view of the essential structure of another embodiment of the present invention, and FIGS. 11, 12, 13, and 14 are explanatory views of the operation of FIG.

【0041】本実施例において、50、51は測定流体
が流されるU字形パイプよりなる測定管で、流量計の入
り口で2つに別れ、出口で合流する。2つの同一形状測
定管50,51は、互いに平行な異なる2つの平面に設
置される。52は測定管の固定部材、53、54は加振
器、55、56は2本の測定管の相対振動を検出する振
動検出センサで、この場合は、コイルセンサが使用され
ている。
In the present embodiment, reference numerals 50 and 51 are U-shaped pipes through which a measuring fluid flows, which are divided into two at the inlet of the flowmeter and merge at the outlet. The two identical shape measurement tubes 50 and 51 are installed on two different planes parallel to each other. Reference numeral 52 is a fixing member of the measuring pipe, 53 and 54 are vibrators, and 55 and 56 are vibration detecting sensors for detecting relative vibration of the two measuring pipes. In this case, a coil sensor is used.

【0042】以上の構成において、振動測定管50、
は、加振器53、54により、紙面上を図11のM5
1,M52,M53に示すような振動を行う。一方、振
動測定管51は、加振器53、54により、紙面上を図
12のM51,M52,M53に示すような振動を行う
(図10のように、測定管50と測定管51は、Z座標
が異なる平行な位置関係にある。)
In the above structure, the vibration measuring tube 50,
Is moved by the shakers 53 and 54 to move the M5 of FIG.
Vibration such as 1, M52 and M53 is performed. On the other hand, the vibration measuring tube 51 vibrates on the paper surface as indicated by M51, M52, and M53 in FIG. 12 by the vibrators 53 and 54 (as shown in FIG. 10, the measuring tube 50 and the measuring tube 51 are There is a parallel positional relationship with different Z coordinates.)

【0043】このとき測定管50,51内に測定流体が
流れると、コリオリ力が生じ、図13,図14のM5
4,M55,M56に示すような振動を行う(図10の
ように、測定管50と測定管51は、Z座標が異なる平
行な位置関係にある。)。実際には、測定管50は、図
11と図13の2種類の振動パターンが重畳した形状で
振動する。
At this time, when the measuring fluid flows in the measuring pipes 50 and 51, Coriolis force is generated, and M5 in FIGS.
4, M55 and M56 are vibrated (as shown in FIG. 10, the measuring tube 50 and the measuring tube 51 have a parallel positional relationship in which the Z coordinates are different). Actually, the measuring tube 50 vibrates in a shape in which the two types of vibration patterns of FIG. 11 and FIG. 13 are superimposed.

【0044】一方、測定管51は、図12と図14の2
種類の振動パターンが重畳した形状で振動する。センサ
コイル55、56により測定管50と51の相対振動が
求められ、その出力は以下のようになる。 コイル55:S55= Asinθ+Ccosθ = A'sin(θ
+δ) コイル56:S56= Asinθ−Ccosθ = −A'sin
(θ−δ)
On the other hand, the measuring tube 51 is the same as that shown in FIG.
It vibrates in a shape in which different types of vibration patterns are superimposed. The relative vibration of the measuring tubes 50 and 51 is obtained by the sensor coils 55 and 56, and the output is as follows. Coil 55: S 55 = Asinθ + Ccosθ = A'sin (θ
+ Δ) Coil 56: S 56 = Asinθ-Ccosθ = -A'sin
(Θ-δ)

【0045】この結果、剛性が低くできるので、比較的
大きな振動を得る事ができ、S/N比が優れた高精度な
コリオリ質量流量計を得る事ができる。また、湾曲部の
存在により、熱応力や配管応力に強いコリオリ質量流量
計が実現できる。
As a result, since the rigidity can be lowered, a relatively large vibration can be obtained, and a highly accurate Coriolis mass flowmeter having an excellent S / N ratio can be obtained. Further, due to the presence of the curved portion, it is possible to realize a Coriolis mass flowmeter that is resistant to thermal stress and piping stress.

【0046】なお、前述の実施例においては、測定管が
2本管の場合の分岐、合流は固定端の外側と説明した
が、これに限ることはなく、固定端の内側でも良い。例
えば、図7実施例に対応しては、図15に示す如き構成
となる。
In the above-mentioned embodiment, the branching and merging in the case where the measuring pipe is a double pipe has been described as being outside the fixed end, but the present invention is not limited to this and may be inside the fixed end. For example, the configuration shown in FIG. 15 corresponds to the embodiment of FIG.

【0047】また、図1、図4、図7、図10で示した
4通りの実施例では、それぞれ特定の振動モードで励振
し、それにより特定のコリオリ力による変形の例を示し
た。しかし、ここに示した測定管形状でも、異なる振動
モードで励振し、発生するコリオリ力により異なる変形
を起こす場合が考えられる。また、同一測定管形状でも
1本管と2本平行管の両方が考えられ、特に2本管の場
合、お互いの測定管が同方向に振動する場合、逆方向に
振動する場合が考えられる。図7実施例で示した測定管
20の形状のものについて、これら、考えられる組み合
わせの例を下記図16〜図20に示す。
Further, in the four examples shown in FIGS. 1, 4, 7, and 10, the respective examples are shown in which the vibrations are excited in the specific vibration modes, and thereby the deformation is caused by the specific Coriolis force. However, even with the shape of the measuring tube shown here, it is possible that it is excited in different vibration modes and causes different deformation due to the generated Coriolis force. Further, even if the shape of the measuring tube is the same, both a single tube and a parallel tube are conceivable. Particularly, in the case of a double tube, it is conceivable that the measuring tubes vibrate in the same direction or in the opposite directions. Examples of possible combinations of the shapes of the measuring tube 20 shown in the embodiment of FIG. 7 are shown in FIGS. 16 to 20 below.

【0048】図16においては、図1実施例の1本管の
測定管20を、図16に示す如く、2次モードで矢印a
方向に加振するようにしたものである。而して、測定管
20内を測定流体が流れると、コリオリ力が生じ、図1
7に示す如き振動モードが発生する。
In FIG. 16, the measuring pipe 20 of the single pipe of the embodiment shown in FIG. 1 is changed to the arrow a in the secondary mode as shown in FIG.
The vibration is applied in the direction. When the measuring fluid flows in the measuring tube 20, Coriolis force is generated, and
A vibration mode as shown in 7 occurs.

【0049】図18は、2本管の測定管20を使用した
もので、2本管の測定管20は同一平面上であって、互
いに平行な関係に配置され、矢印a方向に加振するよう
にしたもので、振動検出は2本管の測定管20の相対位
置測定によるようにしたものである。
FIG. 18 shows a case in which a two-pipe measuring pipe 20 is used. The two-pipe measuring pipes 20 are arranged on the same plane and in parallel with each other, and are vibrated in the direction of arrow a. Thus, the vibration is detected by measuring the relative position of the measuring tube 20 having two tubes.

【0050】図19は、2本管の測定管20を使用した
もので、2本管の測定管20は同一平面上であって、互
いに対称な関係に配置され、矢印a方向に加振するよう
にしたもので、振動検出は2本管の測定管20の絶対位
置測定によるようにしたものである。
FIG. 19 uses a double-pipe measuring pipe 20. The double-pipe measuring pipes 20 are arranged in a symmetric relationship with each other on the same plane and are vibrated in the direction of arrow a. The vibration is detected by measuring the absolute position of the measuring pipe 20 having two pipes.

【0051】図20は、2本管の測定管20を使用した
もので、2本管の測定管20は異なる平面上であって、
互いに平行な関係に配置され、矢印a方向に加振するよ
うにしたもので、振動検出は2本管の測定管20の相対
位置測定によるようにしたものである。
FIG. 20 uses a two-tube measuring tube 20. The two-tube measuring tube 20 is on a different plane.
They are arranged so as to be parallel to each other and are vibrated in the direction of arrow a, and the vibration is detected by measuring the relative position of the measuring pipe 20 of the two pipes.

【0052】次に、なお、2本管の測定管20の配置が
互いに平行或いは軸対称、加振方向を同方向振動或いは
逆方向振動、加振モードを1次モード励振或いは高次モ
ード励振、振動検出は絶対位置測定或いは相対位置測定
が採用できる。
Next, the arrangement of the two measuring tubes 20 is parallel or axisymmetric to each other, the vibration direction is the same direction vibration or the reverse direction vibration, the vibration mode is the first mode excitation or the higher mode excitation, For vibration detection, absolute position measurement or relative position measurement can be adopted.

【0053】従って、これらの要素を組み合わせて、色
々な組み合わせが実現できる。加えるに、測定管形状に
ついても様々な形状が考えられる。それぞれの形状につ
いて、1本管か2本管か、1次モード励振か2次モード
またはそれ以上の高次モードの励振か、振動検出センサ
は固定部材基準の絶対位置測定か2本の測定管の相対位
置測定か、2本測定管のとき、測定管の並べ方は同一平
面上か異なる平面上か、そのとき測定管の並べ方は平行
な関係か対称な関係か、の選択要素が存在し、これらの
要素を組み合わせて、色々な組み合わせが実現できる。
測定管形状を主とした実施例について、図21〜図33
に示す。
Therefore, various combinations can be realized by combining these elements. In addition, various shapes of the measuring tube can be considered. For each shape, 1-tube or 2-tube, 1-mode excitation, 2-mode or higher-order mode excitation, vibration detection sensor is fixed member reference absolute position measurement, or 2 measurement tubes There is a selection factor of relative position measurement, or in the case of two measuring tubes, whether the measuring tubes are arranged on the same plane or on different planes, and at that time, the measuring tubes are arranged in a parallel relationship or a symmetrical relationship. Various combinations can be realized by combining these elements.
21 to 33 for the embodiment mainly focusing on the shape of the measuring tube.
Shown in

【0054】図21、図22は、S字形測定管61を採
用し、矢印a方向に加振するようにしたものである。図
23、図24は、Ω字形測定管62を採用し、矢印a方
向に加振するようにしたものである。
21 and 22, the S-shaped measuring tube 61 is adopted and is vibrated in the direction of arrow a. 23 and 24, the Ω-shaped measuring tube 62 is adopted and is vibrated in the direction of the arrow a.

【0055】図25、図26は、U字形測定管63を採
用し、矢印a方向に加振するようにしたものである。図
27、図28は、W字形測定管64を採用し、矢印a方
向に加振するようにしたものである。
25 and 26, a U-shaped measuring tube 63 is adopted and is vibrated in the direction of arrow a. 27 and 28, a W-shaped measuring tube 64 is adopted and is vibrated in the direction of arrow a.

【0056】図29〜図33は、1個の湾曲部65を有
する直線形測定管66を採用し、矢印a方向に加振する
ようにしたものである。
29 to 33, a linear measuring tube 66 having one curved portion 65 is adopted and is vibrated in the direction of arrow a.

【0057】図34〜図38は、図34に示す如く、2
個の湾曲部68を両端部分に有し、中央部分に直管部6
9を有し全体として台形状をなす測定管67を採用し、
矢印a方向に加振するようにしたものである。
34 to 38, as shown in FIG.
It has curved portions 68 at both ends, and the straight pipe portion 6 is provided at the central portion.
Adopting a trapezoidal measuring tube 67 having 9 as a whole,
The vibration is applied in the direction of arrow a.

【0058】図34は、測定管67の形状図、図35,
図37は加振状態を示したもので、図35は測定管67
の中央部分を加振したもの、図37直管部69の両端部
分を加振したものである。図36,図38は、図35あ
るいは図37に示す加振に基づき、発生するコリオリ力
による測定管67の変位状態を示したものである。
FIG. 34 is a shape diagram of the measuring tube 67, FIG.
FIG. 37 shows a vibrating state, and FIG. 35 shows a measuring tube 67.
37, and the both ends of the straight pipe portion 69 in FIG. 36 and 38 show the displacement state of the measuring tube 67 due to the generated Coriolis force based on the vibration shown in FIG. 35 or 37.

【0059】本実施例においては、大きなコリオリ力が
得られるため、測定管67の変形が大きくなり、結果的
に大きな位相差が得られ、精度が高い測定値が得られる
コリオリ質量流量計を得る事ができる。
In the present embodiment, since a large Coriolis force is obtained, the deformation of the measuring tube 67 becomes large, and as a result, a large phase difference is obtained, and a Coriolis mass flowmeter with a highly accurate measurement value is obtained. I can do things.

【0060】なお、前述の実施例においては、振動検出
センサとして電磁コイル(速度センサ)の場合を示して
説明したが、これに限ることはなく、例えば、変位セン
サ、応力センサ、歪センサでも良い。要するに、測定管
の振動検出が出来るものであればよい。
In the above embodiment, the case where the vibration detecting sensor is an electromagnetic coil (speed sensor) has been described, but the invention is not limited to this, and a displacement sensor, a stress sensor, or a strain sensor may be used. . In short, it is sufficient if the vibration of the measuring tube can be detected.

【0061】なお、前述の実施例においては、図2の信
号処理説明図では、時間(差)または位相(差)検出に
よる方法を示して説明したが、これに限ることはなく、
例えば、同期整流と積分による励振成分とコリオリ成分
を分離してその比から質量流量を求める方法でも良い。
要するに、信号処理出来る方法であればよい。
In the above-described embodiment, the method of detecting the time (difference) or the phase (difference) is shown in the signal processing explanatory diagram of FIG. 2, but the present invention is not limited to this.
For example, a method of separating the excitation component and the Coriolis component by synchronous rectification and integration and obtaining the mass flow rate from the ratio may be used.
In short, any method capable of signal processing may be used.

【0062】[0062]

【発明の効果】以上説明したように、本発明は、 (1)振動する測定管内に測定流体を流し、測定流体の
流れと測定管の角振動によって生じるコリオリ力によ
り、測定管を変形振動させ、振動の変化を振動検出セン
サで測定し、質量流量や密度を求めるコリオリ質量流量
計において、両端が固定され前記測定流体が流れる測定
管と、該測定管に設けられ該測定管全体として1個の平
面内に配置されるようにされた少なくとも1個の湾曲部
と、前記測定管を前記平面上において該平面方向に加振
する加振器と、前記コリオリ力による測定管の振動の変
化を検出する振動検出センサとを具備したことを特徴と
するコリオリ質量流量計。 (2)同一形状をなし同一平面上であって互いに平行に
配置された2個の測定管と、該一方の測定管に一端が取
付られ該他方の測定管に他端が取付られた加振器と、一
端が前記一方の測定管に取付られ他端が前記他方の測定
管或いはコリオリ質量流量計本体に取付られ前記2個の
測定管の相対的振動あるいはコリオリ質量流量計本体に
対する絶対的振動を検出する振動検出センサとを具備し
たことを特徴とする請求項1記載のコリオリ質量流量
計。 (3)同一形状をなし同一平面上であって互いに線対称
あるいは点対称に配置された2個の測定管と、該一方の
測定管に一端が取付られ該他方の測定管に他端が取付ら
れた加振器と、一端が前記一方の測定管に取付られ他端
が前記他方の測定管或いはコリオリ質量流量計本体に取
付られ前記2個の測定管の相対的振動あるいはコリオリ
質量流量計本体に対する絶対的振動を検出する振動検出
センサとを具備したことを特徴とする請求項1記載のコ
リオリ質量流量計。 (4)同一形状をなし互いに平行な異なる2つの平面上
であって互いに平行に配置された2個の測定管と、該一
方の測定管に一端が取付られ該他方の測定管に他端が取
付られた加振器と、一端が前記一方の測定管に取付られ
他端が前記他方の測定管或いはコリオリ質量流量計本体
に取付られ前記2個の測定管の相対的振動あるいはコリ
オリ質量流量計本体に対する絶対的振動を検出する振動
検出センサとを具備したことを特徴とする請求項1記載
のコリオリ質量流量計。を構成した。
As described above, according to the present invention, (1) a measuring fluid is caused to flow in an oscillating measuring tube, and the measuring tube is deformed and vibrated by the Coriolis force generated by the flow of the measuring fluid and the angular vibration of the measuring tube. In a Coriolis mass flowmeter for measuring a change in vibration with a vibration detection sensor to determine a mass flow rate and a density, a measuring tube having both ends fixed and through which the measuring fluid flows, and one measuring tube provided in the measuring tube as a whole At least one curved portion arranged in the plane, a vibrator for exciting the measurement tube in the plane direction on the plane, and a change in vibration of the measurement tube due to the Coriolis force. A Coriolis mass flowmeter, comprising a vibration detection sensor for detecting. (2) Two measuring pipes having the same shape and arranged on the same plane and parallel to each other, and one of the measuring pipes having one end attached thereto and the other measuring pipe having the other end attached thereto And one end is attached to the one measuring pipe and the other end is attached to the other measuring pipe or the Coriolis mass flowmeter main body, and relative vibration of the two measuring pipes or absolute vibration with respect to the Coriolis mass flowmeter main body The Coriolis mass flowmeter according to claim 1, further comprising a vibration detection sensor for detecting (3) Two measuring tubes that have the same shape and are arranged in line symmetry or point symmetry with each other on the same plane, and one measuring tube has one end attached and the other measuring tube has the other end attached And one end attached to the one measuring pipe and the other end attached to the other measuring pipe or the Coriolis mass flowmeter main body, and relative vibration of the two measuring pipes or Coriolis mass flowmeter main body 2. A Coriolis mass flowmeter according to claim 1, further comprising a vibration detection sensor for detecting an absolute vibration with respect to. (4) Two measuring tubes having the same shape and arranged on two different planes parallel to each other and parallel to each other, and one measuring tube has one end attached to the other measuring tube and the other measuring tube has the other end. Attached vibrator and one end attached to the one measuring pipe and the other end attached to the other measuring pipe or the Coriolis mass flowmeter main body, relative vibration of the two measuring pipes or Coriolis mass flowmeter The Coriolis mass flowmeter according to claim 1, further comprising a vibration detection sensor that detects an absolute vibration with respect to the main body. Was configured.

【0063】この結果、 (1)2本管でも測定管20、加振器23、振動検出セ
ンサ24,25を同一平面におくことが可能になり、薄
型でコンパクトなコリオリ質量流量計を実現できる。
As a result, (1) it is possible to place the measuring pipe 20, the vibrator 23, and the vibration detection sensors 24 and 25 on the same plane even with a two-pipe structure, and it is possible to realize a thin and compact Coriolis mass flowmeter. .

【0064】(2)曲管部19を有する測定管20を使
用することで、流体や外気温による熱応力、配管応力等
の影響を低減できる。これにより、外部環境変化に対し
安定で温度特性が良好で、高精度なコリオリ質量流量計
を実現できる。
(2) By using the measuring pipe 20 having the curved pipe portion 19, it is possible to reduce the influence of thermal stress, pipe stress, etc. due to the fluid and the ambient temperature. As a result, it is possible to realize a highly accurate Coriolis mass flowmeter that is stable against changes in the external environment and has good temperature characteristics.

【0065】(3)測定管20は、直管測定管と異なり
湾曲部19を有しているので、同一の検出器ケースサイ
ズでも、測定管長を長くとれるので、振動振幅を稼ぎや
すく、比較的大きな振動センサ出力を得ることができ
る。これにより、変換器の負荷が減り、S/N比が向上
し揺動が減り、さらに精度の向上も期待できる。
(3) Since the measuring pipe 20 has the curved portion 19 unlike the straight pipe measuring pipe, even if the same detector case size is used, the measuring pipe length can be made long, so that the vibration amplitude can be easily obtained, and it is comparatively easy to obtain. A large vibration sensor output can be obtained. As a result, the load on the converter is reduced, the S / N ratio is improved, oscillation is reduced, and further improvement in accuracy can be expected.

【0066】(4)両固定端と曲管測定管が構成する平
面に対し、垂直に振動させる従来の方法では、各振動モ
ードの共振周波数を決定するのは、測定管の長さに大き
く依存する。これに対し、振動方向も同一な本発明で
は、各モードの共振周波数は測定管の形状に大きく依存
する。従って、設計の自由度が大きいので、いろいろな
特徴をもたせやすい。
(4) In the conventional method of vibrating vertically with respect to the plane formed by both fixed ends and the curved measuring tube, the resonance frequency of each vibration mode is largely determined by the length of the measuring tube. To do. On the other hand, in the present invention in which the vibration direction is also the same, the resonance frequency of each mode greatly depends on the shape of the measuring tube. Therefore, since the degree of freedom in design is great, it is easy to give various characteristics.

【0067】(5)緩やかな湾曲部19を有するので、
曲管測定管でありながら、圧損やセルフドレイン性は直
管測定管に近く、かつ、緩やかな湾曲部を持つことで、
熱応力や配管応力に強い特徴を有する。
(5) Since it has a gentle curved portion 19,
Despite being a curved pipe, the pressure loss and self-drainability are close to those of a straight pipe and have a gentle curve,
It has a strong resistance to thermal stress and piping stress.

【0068】更に、請求項2によれば、直管に近い形
状、圧損で、セルフドレイン性にも優れながら、2個の
測定管の振動信号を差動処理することにより耐ノイズ特
性が良好なコリオリ質量流量計が得られる。更に、2個
の測定管の振動方向を反対方向にすれば、振動絶縁性に
優れたコリオリ質量流量計が得られる。
Furthermore, according to the second aspect, the noise resistance characteristic is good by differentially processing the vibration signals of the two measuring tubes while having a shape and pressure loss close to those of a straight tube and excellent self-draining property. A Coriolis mass flow meter is obtained. Furthermore, if the vibration directions of the two measuring tubes are made opposite to each other, a Coriolis mass flowmeter excellent in vibration insulation can be obtained.

【0069】更に、請求項3によれば、直管に近い形
状、圧損で、セルフドレイン性、耐ノイズ特性、振動絶
縁性にも優れながら、さらに、設計の自由度が拡大され
たコリオリ質量流量計が得られる。
Further, according to the third aspect, the Coriolis mass flow rate has a shape and pressure loss close to that of a straight pipe, is excellent in self-draining property, noise resistance property, and vibration insulating property, and further has an increased degree of freedom in design. The total is obtained.

【0070】更に、請求項4によれば、直管に近い形
状、圧損で、セルフドレイン性、耐ノイズ特性、振動絶
縁性にも優れながら、2個の測定管は別々の平面に存在
出来るので、更に、設計の自由度が拡大されたコリオリ
質量流量計が得られる。
Further, according to claim 4, the two measuring tubes can be present on different planes while having a shape close to a straight tube, pressure loss, and excellent self-draining property, noise resistance property and vibration insulating property. Furthermore, a Coriolis mass flowmeter with an increased degree of design freedom can be obtained.

【0071】従って、本発明によれば、薄型でコンパク
ト化、温度特性の向上、高精度,S/N比の向上、測定
管形状選択の自由度拡大が得られるコリオリ質量流量計
を実現することが出来る。
Therefore, according to the present invention, it is possible to realize a Coriolis mass flowmeter which is thin and compact, has improved temperature characteristics, high accuracy, improved S / N ratio, and has a greater degree of freedom in selecting the shape of a measuring tube. Can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の要部構成説明図である。FIG. 1 is an explanatory diagram of a main part configuration of an embodiment of the present invention.

【図2】図1の信号処理説明図である。FIG. 2 is an explanatory diagram of signal processing of FIG.

【図3】図1の動作説明図である。FIG. 3 is an operation explanatory diagram of FIG. 1.

【図4】本発明の他の実施例の要部構成説明図である。FIG. 4 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図5】図4の動作説明図である。5 is an operation explanatory diagram of FIG. 4;

【図6】図4の動作説明図である。FIG. 6 is an operation explanatory diagram of FIG. 4;

【図7】本発明の他の実施例の要部構成説明図である。FIG. 7 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図8】図7の動作説明図である。FIG. 8 is an operation explanatory diagram of FIG. 7;

【図9】図7の動作説明図である。9 is an operation explanatory diagram of FIG. 7. FIG.

【図10】本発明の他の実施例の要部構成説明図であ
る。
FIG. 10 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図11】図10の動作説明図である。11 is an operation explanatory diagram of FIG. 10;

【図12】図10の動作説明図である。12 is an operation explanatory diagram of FIG. 10. FIG.

【図13】図10の動作説明図である。13 is an explanatory diagram of the operation of FIG.

【図14】図10の動作説明図である。14 is an explanatory diagram of the operation of FIG.

【図15】本発明の他の実施例の要部構成説明図であ
る。
FIG. 15 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図16】本発明の他の実施例の要部構成説明図であ
る。
FIG. 16 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図17】本発明の他の実施例の要部構成説明図であ
る。
FIG. 17 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図18】本発明の他の実施例の要部構成説明図であ
る。
FIG. 18 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図19】本発明の他の実施例の要部構成説明図であ
る。
FIG. 19 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図20】本発明の他の実施例の要部構成説明図であ
る。
FIG. 20 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図21】本発明の他の実施例の要部構成説明図であ
る。
FIG. 21 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図22】本発明の他の実施例の要部構成説明図であ
る。
FIG. 22 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図23】本発明の他の実施例の要部構成説明図であ
る。
FIG. 23 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図24】本発明の他の実施例の要部構成説明図であ
る。
FIG. 24 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図25】本発明の他の実施例の要部構成説明図であ
る。
FIG. 25 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図26】本発明の他の実施例の要部構成説明図であ
る。
FIG. 26 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図27】本発明の他の実施例の要部構成説明図であ
る。
FIG. 27 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図28】本発明の他の実施例の要部構成説明図であ
る。
FIG. 28 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図29】本発明の他の実施例の要部構成説明図であ
る。
FIG. 29 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図30】本発明の他の実施例の要部構成説明図であ
る。
FIG. 30 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図31】本発明の他の実施例の要部構成説明図であ
る。
FIG. 31 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図32】本発明の他の実施例の要部構成説明図であ
る。
FIG. 32 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図33】本発明の他の実施例の要部構成説明図であ
る。
FIG. 33 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図34】本発明の他の実施例の要部構成説明図であ
る。
FIG. 34 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図35】図35の動作説明図である。FIG. 35 is an operation explanatory diagram of FIG. 35;

【図36】図35の動作説明図である。36 is an explanatory diagram of the operation of FIG. 35.

【図37】図35の動作説明図である。37 is an explanatory diagram of the operation of FIG. 35.

【図38】図35の動作説明図である。38 is an explanatory diagram of the operation of FIG. 35.

【図39】従来より一般に使用されている従来例の構成
説明図である。
FIG. 39 is an explanatory diagram of a configuration of a conventional example that is generally used from the past.

【図40】図39の動作説明図である。FIG. 40 is an operation explanatory diagram of FIG. 39;

【図41】従来より一般に使用されている他の従来例の
構成説明図である。
FIG. 41 is a diagram illustrating the configuration of another conventional example that is generally used in the past.

【図42】従来より一般に使用されている従来例の構成
説明図である。
[Fig. 42] Fig. 42 is a structural explanatory view of a conventional example that is generally used in the past.

【図43】従来より一般に使用されている他の従来例の
構成説明図である。
[Fig. 43] Fig. 43 is a configuration explanatory view of another conventional example that is generally used in the past.

【符号の説明】[Explanation of symbols]

19 湾曲部 20 測定管 21 固定部材 22 固定部材 23 加振器 24 振動検出センサ 25 振動検出センサ 261 センサ部 262 前置増幅器 263 時間(差)・位相(差)検出回路部 264 流量演算回路部 265 加振回路部 29 湾曲部 30 測定管 31 測定管 32 固定部材 33 固定部材 34 加振器 35 振動検出センサ 36 振動検出センサ 39 湾曲部 40 測定管 41 測定管 42 固定部材 43 固定部材 44 加振器 45 加振器 46 振動検出センサ 47 振動検出センサ 49 湾曲部 50 測定管 51 測定管 52 固定部材 53 加振器 54 加振器 55 振動検出センサ 56 振動検出センサ 61 測定管 62 測定管 63 測定管 64 測定管 65 湾曲部 66 測定管 67 測定管 68 湾曲部 69 直管部 19 Bending part 20 Measuring tube 21 Fixing member 22 Fixing member 23 Exciter 24 Vibration detection sensor 25 Vibration detection sensor 261 Sensor part 262 Preamplifier 263 Time (difference) / phase (difference) detection circuit part 264 Flow rate calculation circuit part 265 Excitation circuit section 29 Curved section 30 Measuring tube 31 Measuring tube 32 Fixing member 33 Fixing member 34 Exciter 35 Vibration detection sensor 36 Vibration detection sensor 39 Curved section 40 Measuring tube 41 Measuring tube 42 Fixing member 43 Fixing member 44 Exciter 45 Exciter 46 Vibration Detection Sensor 47 Vibration Detection Sensor 49 Curved Part 50 Measuring Tube 51 Measuring Tube 52 Fixing Member 53 Exciter 54 Exciter 55 Vibration Detection Sensor 56 Vibration Detection Sensor 61 Measuring Tube 62 Measuring Tube 63 Measuring Tube 64 Measuring tube 65 Curved section 66 Measuring tube 67 Measuring tube 68 Curved section 69 Straight tube section

フロントページの続き (72)発明者 桑山 秀樹 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内Front page continuation (72) Inventor Hideki Kuwayama 2-9-32 Nakamachi, Musashino City, Tokyo Yokogawa Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】振動する測定管内に測定流体を流し、測定
流体の流れと測定管の角振動によって生じるコリオリ力
により、測定管を変形振動させ、振動の変化を振動検出
センサで測定し、質量流量や密度を求めるコリオリ質量
流量計において、 両端が固定され前記測定流体が流れる測定管と、 該測定管に設けられ該測定管全体として1個の平面内に
配置されるようにされた少なくとも1個の湾曲部と、 前記測定管を前記平面上において該平面方向に加振する
加振器と、 前記コリオリ力による測定管の振動の変化を検出する振
動検出センサとを具備したことを特徴とするコリオリ質
量流量計。
1. A measuring fluid is flown into an oscillating measuring tube, and the Coriolis force generated by the flow of the measuring fluid and the angular vibration of the measuring tube causes the measuring tube to deform and vibrate. In a Coriolis mass flowmeter for determining a flow rate and a density, a measuring tube having both ends fixed and through which the measuring fluid flows, and at least one measuring tube provided on the measuring tube and arranged as one whole in the measuring tube. A plurality of bending portions, a vibration exciter that vibrates the measurement tube in the plane direction on the plane, and a vibration detection sensor that detects a change in vibration of the measurement tube due to the Coriolis force. Coriolis mass flow meter.
【請求項2】同一形状をなし同一平面上であって互いに
平行に配置された2個の測定管と、 該一方の測定管に一端が取付られ該他方の測定管に他端
が取付られた加振器と、 一端が前記一方の測定管に取付られ他端が前記他方の測
定管或いはコリオリ質量流量計本体に取付られ前記2個
の測定管の相対的振動あるいはコリオリ質量流量計本体
に対する絶対的振動を検出する振動検出センサとを具備
したことを特徴とする請求項1記載のコリオリ質量流量
計。
2. Two measuring pipes having the same shape and arranged on the same plane and parallel to each other, one measuring pipe having one end attached thereto and the other measuring pipe having the other end attached thereto. A shaker, one end of which is attached to the one measuring pipe and the other end of which is attached to the other measuring pipe or the Coriolis mass flowmeter main body, and relative vibration of the two measuring pipes or absolute with respect to the Coriolis mass flowmeter main body. The Coriolis mass flowmeter according to claim 1, further comprising a vibration detection sensor that detects dynamic vibration.
【請求項3】同一形状をなし同一平面上であって互いに
線対称あるいは点対称に配置された2個の測定管と、 該一方の測定管に一端が取付られ該他方の測定管に他端
が取付られた加振器と、 一端が前記一方の測定管に取付られ他端が前記他方の測
定管或いはコリオリ質量流量計本体に取付られ前記2個
の測定管の相対的振動あるいはコリオリ質量流量計本体
に対する絶対的振動を検出する振動検出センサとを具備
したことを特徴とする請求項1記載のコリオリ質量流量
計。
3. Two measuring pipes having the same shape and arranged on the same plane and line-symmetrically or point-symmetrically to each other, and one measuring pipe has one end attached to the other measuring pipe. , And one end is attached to the one measuring pipe and the other end is attached to the other measuring pipe or the Coriolis mass flowmeter body, and the relative vibration of the two measuring pipes or the Coriolis mass flow rate. The Coriolis mass flowmeter according to claim 1, further comprising a vibration detection sensor that detects an absolute vibration with respect to the main body of the meter.
【請求項4】同一形状をなし互いに平行な異なる2つの
平面上であって互いに平行に配置された2個の測定管
と、 該一方の測定管に一端が取付られ該他方の測定管に他端
が取付られた加振器と、 一端が前記一方の測定管に取付られ他端が前記他方の測
定管或いはコリオリ質量流量計本体に取付られ前記2個
の測定管の相対的振動あるいはコリオリ質量流量計本体
に対する絶対的振動を検出する振動検出センサとを具備
したことを特徴とする請求項1記載のコリオリ質量流量
計。
4. Two measuring tubes having the same shape and arranged on two different planes parallel to each other and parallel to each other; one measuring tube having one end attached to the other measuring tube; A shaker with one end attached, and one end attached to the one measurement pipe and the other end attached to the other measurement pipe or the Coriolis mass flowmeter main body and relative vibration or Coriolis mass of the two measurement pipes. The Coriolis mass flowmeter according to claim 1, further comprising a vibration detection sensor that detects an absolute vibration with respect to the flowmeter main body.
JP697995A 1995-01-20 1995-01-20 Coriolis mass flowmeter Pending JPH08193864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP697995A JPH08193864A (en) 1995-01-20 1995-01-20 Coriolis mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP697995A JPH08193864A (en) 1995-01-20 1995-01-20 Coriolis mass flowmeter

Publications (1)

Publication Number Publication Date
JPH08193864A true JPH08193864A (en) 1996-07-30

Family

ID=11653317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP697995A Pending JPH08193864A (en) 1995-01-20 1995-01-20 Coriolis mass flowmeter

Country Status (1)

Country Link
JP (1) JPH08193864A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207836A (en) * 2004-01-21 2005-08-04 Oval Corp S-shaped tube coriolis flowmeter
CN100335868C (en) * 2002-03-08 2007-09-05 恩德斯+豪斯流量技术股份有限公司 Coriolis mass flowmeter for measuring a concentration
JP2012528325A (en) * 2009-05-26 2012-11-12 マイクロ モーション インコーポレイテッド Flow meter with balance member
CN107430020A (en) * 2015-03-25 2017-12-01 高准公司 Reduce the apparatus and method of soldered fitting stress in vibrating flowmeter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100335868C (en) * 2002-03-08 2007-09-05 恩德斯+豪斯流量技术股份有限公司 Coriolis mass flowmeter for measuring a concentration
JP2005207836A (en) * 2004-01-21 2005-08-04 Oval Corp S-shaped tube coriolis flowmeter
JP2012528325A (en) * 2009-05-26 2012-11-12 マイクロ モーション インコーポレイテッド Flow meter with balance member
CN107430020A (en) * 2015-03-25 2017-12-01 高准公司 Reduce the apparatus and method of soldered fitting stress in vibrating flowmeter
JP2018509630A (en) * 2015-03-25 2018-04-05 マイクロ モーション インコーポレイテッド Apparatus and method for reducing brazing joint stress in a vibratory flow meter
US10416017B2 (en) 2015-03-25 2019-09-17 Micro Motion, Inc. Apparatus and method for reducing braze joint stress in a vibrating flowmeter
US10488239B2 (en) 2015-03-25 2019-11-26 Micro Motion, Inc. Apparatus for reducing braze joint stress in a vibrating flowmeter
CN107430020B (en) * 2015-03-25 2020-06-16 高准公司 Apparatus and method for reducing braze joint stress in a vibratory flowmeter

Similar Documents

Publication Publication Date Title
US7258025B2 (en) Coriolis flowmeter
EP0701107B1 (en) Vibration measuring instrument
JPH0353131A (en) Mass flowmeter operating under coriolis principle
US5918285A (en) Coriolis mass flow meter having a thick-walled measuring tube
JP3565588B2 (en) Vibration type measuring instrument
JP3327325B2 (en) Coriolis mass flowmeter
JPH08193864A (en) Coriolis mass flowmeter
JP3058094B2 (en) Mass flow meter
JP2000046613A (en) Coriolis mass flowmeter
JPH10104040A (en) Mass flowmeter converter
JP3937220B2 (en) Coriolis mass flow meter
JPH11108723A (en) Coriolis mass flow meter
JP3555652B2 (en) Coriolis mass flowmeter
JPH08313321A (en) Coriolis mass flow meter
US20230073402A1 (en) Mode splitting resonator for coriolis flowmeter balance bar
JP3757559B2 (en) Coriolis mass flow meter
JPH1123341A (en) Coriolis mass flowmeter
JPS58117416A (en) Flowmeter
JPH0499918A (en) Mass flowmeter
JP2000055710A (en) Coriolis mass flowmeter
JP3227691B2 (en) Coriolis mass flowmeter
JPH0712612A (en) Coliolis type massflowmeter
JPH08219840A (en) Coriolis mass flow meter
JPH06147948A (en) Coriolis mass flow meter
JPH0783718A (en) Coriolis mass flowmeter