JPH10104040A - Mass flowmeter converter - Google Patents

Mass flowmeter converter

Info

Publication number
JPH10104040A
JPH10104040A JP8258814A JP25881496A JPH10104040A JP H10104040 A JPH10104040 A JP H10104040A JP 8258814 A JP8258814 A JP 8258814A JP 25881496 A JP25881496 A JP 25881496A JP H10104040 A JPH10104040 A JP H10104040A
Authority
JP
Japan
Prior art keywords
difference
tube
instrumental
inner tube
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8258814A
Other languages
Japanese (ja)
Other versions
JP2966356B2 (en
Inventor
Daiichi Kitami
大一 北見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Corp
Original Assignee
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Corp filed Critical Oval Corp
Priority to JP25881496A priority Critical patent/JP2966356B2/en
Priority to US08/788,119 priority patent/US5796012A/en
Priority to TW089201041U priority patent/TW530940U/en
Priority to KR1019970006604A priority patent/KR100240261B1/en
Priority to EP97104394A priority patent/EP0831306A1/en
Priority to AU17783/97A priority patent/AU691773B2/en
Priority to CN97110566A priority patent/CN1115548C/en
Publication of JPH10104040A publication Critical patent/JPH10104040A/en
Application granted granted Critical
Publication of JP2966356B2 publication Critical patent/JP2966356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform the simple correction of an instrumental error without the complicated operation of a vibrating system. SOLUTION: A coaxial double vibrating pipe 10 is constituted of an inner tube 1 and an outer tube 2. A vibrator 5 is provided at the center of the coaxial double vibrating pipe 10, and sensors 6 and 7 are provided at the symmetrical positions from the center. When the vibrator 5 is driven at the resonant frequency with a driving circuit 20, a mass flow rate Q in proportion to a phase difference signal ΔT at the sensors 6 and 7 is obtained. An instrumental-difference change ΔE, which is generated from the change in temperature (t) and density ρ of fluid to be measured flowing in the inner tube 1 with respect to the obtained mass flow rate, is determined as the sum of the following instrumental differences: the first instrumental-difference correcting value Ct from the temperature difference of the reference temperature and the actually measured temperature of the inner tube, the second instrumental- difference correcting value Cdt based on the temperature difference of the inner tube 1 and the outer tube 2 and third instrumental-difference correcting value Cf obtained with the instrumental error by the density difference of the fluid to be measured as the frequency difference. The mass flow rate Qa to be corrected is determined as Q(1+ΔE).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、質量流量計変換器
に関し、より詳細には、同軸二重直管式のコリオリ流量
計において被測定流体の温度、密度変化により生ずる器
差を簡易に補正する質量流量計変換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mass flow meter converter, and more particularly, to a method for easily correcting an instrumental difference caused by a change in temperature and density of a fluid to be measured in a coaxial double straight tube type Coriolis flow meter. Mass flow meter converter.

【0002】[0002]

【従来の技術】周知のように、コリオリ流量計は、被測
定流体が流れる測定管を両端で支持し、支持された測定
管の中央部を測定管の支持線に対し直角な方向に交番駆
動したとき、測定管の両端支持部と中央部との間の対称
位置に生ずるコリオリの力に比例した位相差信号を検出
し、コリオリの力に比例した質量流量を求める直接型の
質量流量計である。このように、位相差信号は質量流量
に比例している量であり、駆動周波数を一定にすると、
位相差は測定管の対称位置における時間差として検出す
ることができる。
2. Description of the Related Art As is well known, a Coriolis flowmeter supports a measuring tube through which a fluid to be measured flows at both ends, and alternately drives a central portion of the supported measuring tube in a direction perpendicular to a supporting line of the measuring tube. Then, a direct type mass flow meter that detects a phase difference signal proportional to the Coriolis force generated at a symmetrical position between both ends of the measuring tube at both ends and the central part and obtains a mass flow rate proportional to the Coriolis force is obtained. is there. Thus, the phase difference signal is an amount proportional to the mass flow rate, and when the drive frequency is fixed,
The phase difference can be detected as a time difference at a symmetric position of the measuring tube.

【0003】測定管を駆動する駆動周波数を測定管の固
有振動数と等しくすると、測定管や被測定流体の密度に
応じた一定の駆動周波数が得られ、小さい駆動エネルギ
で駆動することが可能となることから、測定管を固有振
動数で駆動するのが一般的となっており、位相差信号は
時間差信号として検出される。
If the driving frequency for driving the measuring tube is made equal to the natural frequency of the measuring tube, a constant driving frequency corresponding to the density of the measuring tube and the fluid to be measured can be obtained, and it is possible to drive with a small driving energy. Therefore, it is general to drive the measuring tube at the natural frequency, and the phase difference signal is detected as a time difference signal.

【0004】本出願人は、さきに、被測定流体が流れる
測定管を内側チューブとし、該内側チューブと、内側チ
ューブの外側に両端支持された外側チューブとからなる
同軸二重直管を構成し、外側チューブ中央に内側チュー
ブの固有振動数と等しい固有振動数とするためのバラン
スウェイトを取り付けた同軸二重直管(二重振動管)方
式のコリオリ流量計を提案した。
The applicant of the present invention has previously constructed a coaxial double straight tube comprising an inner tube as a measuring tube through which a fluid to be measured flows, and an outer tube supported at both ends outside the inner tube. We have proposed a Coriolis flow meter with a coaxial double straight pipe (double vibrating pipe) equipped with a balance weight at the center of the outer tube to make the natural frequency equal to the natural frequency of the inner tube.

【0005】[0005]

【発明が解決しようとする課題】同軸二重直管式のコリ
オリ流量計は、外部配管と内側チューブとが同軸に接続
されるので内壁に付着した異物の除去が容易であり、し
かも小形で、外部配管に対し外形が僅かに大きくなるだ
けで設置空間が小さくなる長所を有している。しかし、
同軸な二重直管の内側チューブには被測定流体が流れ、
一般に被測定流体は多様であり温度、密度が各々異なる
場合が想定されるので、これら被測定流体の物性により
固有振動数が変化し位相差計測を前提とした計測方式で
は結果的に器差が変化する。このため、同軸二重直管式
のコリオリ流量計においては、被測定流体の物性により
生ずる器差を補正する必要がある。
The coaxial double straight pipe type Coriolis flowmeter is configured such that the external piping and the inner tube are coaxially connected, so that foreign matter adhering to the inner wall can be easily removed. There is an advantage that the installation space is reduced by only slightly increasing the outer shape with respect to the external piping. But,
The fluid to be measured flows through the inner tube of the coaxial double straight pipe,
In general, the fluids to be measured are diverse, and it is assumed that the temperature and density are different from each other.Therefore, the natural frequency changes due to the physical properties of these fluids to be measured. Change. Therefore, in the coaxial double straight tube type Coriolis flowmeter, it is necessary to correct an instrumental difference caused by the physical properties of the fluid to be measured.

【0006】本発明は、上述した実情に鑑みてなされた
もので、被測定流体の温度や密度の変化により生ずる同
軸二重直管式のコリオリ流量計の器差を、実質的に生じ
る器差に加え上記温度や密度により生ずる各々の器差の
補正を行うため、各々の器差補正量は、予め校正されか
つ基準化された流体での測定値を基準とし、常にこれと
比較して求めることにより簡易に器差補正が可能な質量
流量計演算器を提供することを目的とするものである。
The present invention has been made in view of the above-mentioned circumstances, and substantially eliminates the instrumental error of a coaxial double straight pipe type Coriolis flowmeter caused by a change in the temperature or density of a fluid to be measured. In addition, in order to perform correction of each instrumental error caused by the above-mentioned temperature and density, each instrumental error correction amount is determined based on a measured value of a fluid which has been calibrated and standardized in advance, and is always compared with the measured value. Accordingly, it is an object of the present invention to provide a mass flow meter computing device capable of easily correcting instrumental differences.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、被測
定流体が流れる内側チューブおよび該内側チューブの外
側に両端が固着された外側チューブとからなる同軸な二
重直管からなり、前記外側チューブに該外側チューブの
固有振動数を、前記内側チューブの固有振動数と等しく
する重量をもったバランスウェイトが取り付けられた二
重振動管と、該二重振動管を一定振幅の共振周波数で駆
動する駆動手段と、前記駆動により前記二重振動管に作
用するコリオリの力に比例した位相変位を検知する一対
のセンサと、該センサの出力に基づいて質量流量を求め
るコリオリ流量計の質量流量計変換器において、前記内
側チューブおよび外側チューブに各々該内側チューブお
よび外側チューブの温度を検出する温度検出手段を有
し、前記内側チューブの温度変化に基づく器差を補正す
る内側チューブ温度補正手段と、前記内側チューブと前
記外側チューブの温度差に基づく器差を補正する温度差
補正手段と、被測定流体を流したときの前記二重振動管
の共振周波数と基準密度の流体を流したときの前記二重
振動管の予め知られた共振周波数との周波数差による器
差を補正する共振周波数補正手段とを有し、前記温度補
正手段と、前記温度差補正手段と、前記共振周波数補正
手段の各々の器差補正量を加算し、該加算された器差補
正量に基づいて器差補正する器差補正手段を有するので
ある。
According to a first aspect of the present invention, there is provided a coaxial double straight tube comprising an inner tube through which a fluid to be measured flows, and an outer tube having both ends fixed to the outside of the inner tube. A double vibrating tube attached to the outer tube with a balance weight having a weight that makes the natural frequency of the outer tube equal to the natural frequency of the inner tube; and Driving means for driving, a pair of sensors for detecting a phase displacement proportional to the Coriolis force acting on the double vibrating tube by the driving, and a mass flow rate of a Coriolis flow meter for obtaining a mass flow rate based on an output of the sensor In the meter converter, the inner tube and the outer tube have temperature detecting means for detecting the temperatures of the inner tube and the outer tube, respectively, Temperature correction means for correcting an instrumental difference based on a temperature change of the inner tube, temperature difference correcting means for correcting an instrumental difference based on a temperature difference between the inner tube and the outer tube, and Resonance frequency correction means for correcting an instrumental difference due to a frequency difference between a resonance frequency of the heavy vibration tube and a previously known resonance frequency of the double vibration tube when flowing a fluid having a reference density, wherein the temperature correction is performed. Means, a temperature difference correcting means, and an instrumental error correction means for adding the instrumental error correction amounts of the resonance frequency correcting means, and correcting the instrumental error based on the added instrumental error correction amount.

【0008】[0008]

【発明の実施の形態】請求項1の発明は、同軸な二重直
管式のコリオリ流量計の器差を被測定流体の温度変化に
より内側チューブが熱変形し、この熱変形により発生す
る第1の器差補正量と、内側チューブと外側チューブの
温度差により生ずる第2の器差補正量と、被測定流体の
密度変化に基づく共振周波数の周波数差による第3の器
差補正量に分類し、前記第1の器差補正量を、基準温度
(例えば、0℃)に対する内側チューブの計測時の温度
との温度差に、予め定められた1℃当りの補正係数を乗
算した器差補正量とし、前記第2の器差補正量を予め定
められた内側チューブと外側チューブとの温度差により
生ずる器差補正量とし、前記第3の器差補正量を内側チ
ューブを流れる被測定流体の密度の違いにより生じる器
差補正量で、予め校正されかつ基準化された流体の共振
周波数と被測定流体の共振周波数の周波数差により生ず
る器差補正量と、被測定流体の温度と基準温度(例えば
0℃)との温度差により生ずる器差補正量とを合わせた
器差補正量とし、各々求めた第1の器差補正量と、第2
の器差補正量と、第3の器差補正量を加算して器差補正
を行うものである。
DETAILED DESCRIPTION OF THE INVENTION According to the first aspect of the present invention, the inner tube is thermally deformed due to a change in the temperature of the fluid to be measured due to the instrumental difference of the coaxial double straight tube type Coriolis flowmeter. It is classified into an instrumental error correction amount of 1, a second instrumental error correction amount caused by a temperature difference between the inner tube and the outer tube, and a third instrumental error correction amount by a frequency difference of a resonance frequency based on a density change of the fluid to be measured. The first instrumental error correction amount is obtained by multiplying a temperature difference between a reference temperature (for example, 0 ° C.) and a temperature at the time of measurement of the inner tube by a predetermined correction coefficient per 1 ° C. The second instrumental error correction amount is an instrumental error correction amount caused by a predetermined temperature difference between the inner tube and the outer tube, and the third instrumental error correction amount is the amount of the fluid to be measured flowing through the inner tube. The instrumental error correction amount caused by the difference in density The instrument difference correction amount caused by the frequency difference between the corrected and standardized resonance frequency of the fluid and the resonance frequency of the measured fluid, and the instrument difference caused by the temperature difference between the temperature of the measured fluid and a reference temperature (for example, 0 ° C.). The correction amount and the combined instrumental difference amount are defined as the first instrumental difference correction amount and the second
And the third instrumental error correction amount is added to perform the instrumental error correction.

【0009】図1は、本発明による質量流量計変換器を
説明するための図である。図中、1は内側チューブ、2
は外側チューブ、3,4は環状フランジ、5は加振器、
6,7はセンサ、8はバランスウェイト、9a,9bは
温度センサ、10は同軸二重振動管(以下、二重振動管
と記す)、20は駆動回路、30は共振周波数検出回
路、40は器差補正回路、50は質量流量演算回路、5
1は出力端子、60は質量流量計変換器である。二重振
動管10は、内側チューブ1と、外側チューブ2と、バ
ランスウェイト8とで構成される。内側チューブ1は、
被測定流体が流れる軸0−0を中心とした直管であり、
外側チューブ2は、両端に環状フランジ3,4を有し、
内側チューブ1の外側に環状フランジ3,4を介し、軸
0−0と同軸に固着されており、同軸二重直管を構成し
ている。また、バランスウェイト8は外側チューブ2の
外壁中央に固着されている。バランスウェイト8は、外
側チューブ2の固有振動数を内側チューブ1の固有振動
数と等しくするための重錘である。
FIG. 1 is a diagram for explaining a mass flow meter converter according to the present invention. In the figure, 1 is an inner tube, 2
Is an outer tube, 3 and 4 are annular flanges, 5 is a shaker,
6, 7 are sensors, 8 is a balance weight, 9a and 9b are temperature sensors, 10 is a coaxial double vibrating tube (hereinafter, referred to as a double vibrating tube), 20 is a drive circuit, 30 is a resonance frequency detecting circuit, and 40 is a resonant frequency detecting circuit. Instrument error correction circuit, 50 is a mass flow calculation circuit, 5
1 is an output terminal, 60 is a mass flow meter converter. The double vibration tube 10 includes an inner tube 1, an outer tube 2, and a balance weight 8. The inner tube 1
A straight pipe around the axis 0-0 through which the fluid to be measured flows,
The outer tube 2 has annular flanges 3 and 4 at both ends,
It is coaxially fixed to the axis 0-0 via the annular flanges 3 and 4 outside the inner tube 1 to form a coaxial double straight pipe. The balance weight 8 is fixed to the center of the outer wall of the outer tube 2. The balance weight 8 is a weight for making the natural frequency of the outer tube 2 equal to the natural frequency of the inner tube 1.

【0010】なお、バランスウェイト8の重量は、二重
振動管10を駆動する加振器5およびセンサ6,7の重
量を含めて定められた固有振動数に対応して調整され
る。また、二重振動管10の内側チューブ1の外壁に該
内側チューブ1の温度を検出する温度センサ9a、外側
チューブ2の外壁に該外側チューブ2の温度を検出する
温度センサ9bが装着され、共に外側チューブ2の透孔
(図示せず)又は接続端子(図示せず)を通り器差補正
回路40に接続されている。
The weight of the balance weight 8 is adjusted in accordance with the determined natural frequency including the weight of the vibrator 5 for driving the double vibrating tube 10 and the weights of the sensors 6 and 7. A temperature sensor 9a for detecting the temperature of the inner tube 1 is mounted on the outer wall of the inner tube 1 of the double vibrating tube 10, and a temperature sensor 9b for detecting the temperature of the outer tube 2 is mounted on the outer wall of the outer tube 2. The outer tube 2 is connected to the instrument difference correction circuit 40 through a through hole (not shown) or a connection terminal (not shown).

【0011】加振器5は、例えば、外側チューブ2に設
けられたコイル5aと内側チューブ1にコイル5aと同
軸に設けられたコア5bとからなり、コイル5aは後述
する何れか一方のセンサ(図1においてはセンサ6)の
信号が入力された駆動回路20により駆動され、内側チ
ューブ1と外側チューブ2とからなる二重振動管10を
一定振幅の共振周波数で駆動する。
The vibrator 5 includes, for example, a coil 5a provided on the outer tube 2 and a core 5b provided coaxially with the coil 5a on the inner tube 1. The coil 5a is connected to one of the sensors (described later). In FIG. 1, the signal from the sensor 6) is driven by the driving circuit 20 to drive the double vibration tube 10 including the inner tube 1 and the outer tube 2 at a resonance frequency of a constant amplitude.

【0012】センサ6と7とは同一規格のもので、二重
直管上で加振器5に対して対称位置に設置されており、
例えば、外側チューブ2に設けられたコイル6a,7a
と内側チューブ1にコイル6a,7aと同軸に設けられ
た磁石6b,7bとからなり、共に、質量流量演算回路
50に接続され内側チューブ1と外側チューブ2との相
対速度変位から求められた検出位置における位相信号が
検知されその位相差信号から質量流量が求められる。
The sensors 6 and 7 are of the same standard, and are installed at symmetric positions with respect to the vibrator 5 on a double straight pipe.
For example, the coils 6a, 7a provided on the outer tube 2
And magnets 6b and 7b provided on the inner tube 1 coaxially with the coils 6a and 7a, both of which are connected to the mass flow calculation circuit 50 and detected from the relative velocity displacement between the inner tube 1 and the outer tube 2. A phase signal at the position is detected and a mass flow is determined from the phase difference signal.

【0013】質量流量計変換器60は、駆動回路20
と、共振周波数検出回路30と器差補正回路40および
質量流量演算回路50とから構成されている。
The mass flow meter converter 60 is connected to the drive circuit 20.
And a resonance frequency detection circuit 30, an instrument difference correction circuit 40, and a mass flow rate calculation circuit 50.

【0014】駆動回路20は、前述のように加振器5を
駆動して二重振動管10を一定振幅の共振周波数で加振
する回路で、一対のセンサ6,7の何れかのセンサ、例
えばセンサ6の信号を検出して増幅し、加振器5を駆動
する閉ルーブを形成した共振駆動系を構成しており、共
振周波数は被測定流体の密度や温度そして据付状態によ
り大きく変化し、本発明に係わる器差補正を決定づける
大きなファクターであり共振周波数検出回路30により
検知される。
The drive circuit 20 drives the vibrator 5 to vibrate the double vibrating tube 10 at a resonance frequency of a constant amplitude as described above. For example, a resonance drive system in which a signal from the sensor 6 is detected and amplified to form a closed lube for driving the vibrator 5 is formed. The resonance frequency varies greatly depending on the density, temperature, and installation state of the fluid to be measured. This is a large factor that determines the instrumental difference correction according to the present invention, and is detected by the resonance frequency detection circuit 30.

【0015】器差補正回路40は、本発明による質量流
量計変換器60に不可欠な特徴をもった要部となるもの
である。一本の測定管を両端支持して一定振幅で駆動し
たと仮定した場合、駆動周波数は被測定流体の温度変化
による熱応力の影響や、圧力および密度、更には測定管
材料の弾性率により変化するが、二重振動管10の場合
も同様に、内側チューブ1は被測定流体の温度、圧力お
よび密度、更には、弾性率の変化により共振周波数が変
化する。更に、二重振動管10の場合は、内側チューブ
1と外側チューブ2との温度差および温度差により生ず
る熱応力差や、各々の材質、形状の相異による内側チュ
ーブ1と外側チューブ2の固有振動数の変化が生じ、一
定振幅で駆動した場合において、内側チューブ1と外側
チューブ2との振幅比が変化する。
The instrument difference correction circuit 40 is a main part having essential features of the mass flow meter converter 60 according to the present invention. Assuming that one measuring tube is supported at both ends and driven at a constant amplitude, the driving frequency varies depending on the influence of thermal stress due to the temperature change of the fluid to be measured, the pressure and density, and the elastic modulus of the measuring tube material. However, also in the case of the double vibrating tube 10, the resonance frequency of the inner tube 1 is changed by the change of the temperature, pressure and density of the fluid to be measured, and furthermore, the change of the elastic modulus. Furthermore, in the case of the double vibrating tube 10, a temperature difference between the inner tube 1 and the outer tube 2 and a thermal stress difference caused by the temperature difference, and a characteristic of the inner tube 1 and the outer tube 2 due to a difference in each material and shape. When the frequency changes and the motor is driven at a constant amplitude, the amplitude ratio between the inner tube 1 and the outer tube 2 changes.

【0016】このように、二重振動管10の場合は、直
管単体の場合に比較し複雑な振動現象があらわれる。共
振振動系において、二重振動管10のもつ振動モード
は、上述した被測定流体の物性や状態量および二重振動
管10を構成する材質、形状等により定まる複雑な振動
となり器差変化をもたらすが、本発明においては、器差
変化要因を、内側チューブ1の温度と、内側チューブ1
と外側チューブ2との温度差、および二重振動管10の
共振周波数とに着目し、複雑な振動計算に基づいて生ず
る器差を、前記内側チューブ1の温度変化による第1の
器差補正量、内側チューブ1と外側チューブ2との温度
差による第2の器差補正量、共振周波数差による第3の
器差補正量とに区分し、器差変化の内容を簡略化して、
これらの器差補正量を加算して器差を補正するようにし
たものである。
As described above, in the case of the double vibrating tube 10, a complicated vibration phenomenon appears as compared with the case of the single straight tube. In the resonance vibration system, the vibration mode of the double vibrating tube 10 is a complex vibration determined by the above-described physical properties and state quantities of the fluid to be measured and the material and shape of the double vibrating tube 10 and causes a change in instrumental difference. However, in the present invention, the instrumental difference change factors are determined by the temperature of the inner tube 1 and the inner tube 1.
Focusing on the temperature difference between the inner tube 1 and the outer tube 2 and the resonance frequency of the double vibrating tube 10, the instrumental difference generated based on the complicated vibration calculation is corrected by the first instrumental error correction amount due to the temperature change of the inner tube 1. , A second instrument difference correction amount based on a temperature difference between the inner tube 1 and the outer tube 2, and a third instrument difference correction amount based on a resonance frequency difference, and the content of the instrument error change is simplified,
The instrumental error correction amount is added to correct the instrumental error.

【0017】すなわち、内側チューブ1の温度変化によ
る第1の器差補正量は、内側チューブ1自体の熱膨張の
みによる器差を仮定して総合器差から分離したもので、
基準流体の基準温度、(例えば、0℃)を定めて、被測
定流体の温度(実測温度)の前記基準温度に対する温度
差に比例した器差を定めるもので、第1の器差補正量を
Ct、実測温度をTx、基準温度をTa、予め定められ
た比例定数をK1とすると、第1の器差補正量Ctを、 Ct=K1(Tx−Ta) …(1) としたものである。
That is, the first instrumental error correction amount due to the temperature change of the inner tube 1 is separated from the total instrumental error on the assumption that the instrumental error is caused only by the thermal expansion of the inner tube 1 itself.
A reference temperature of the reference fluid (for example, 0 ° C.) is determined, and an instrumental error proportional to a temperature difference between the temperature of the fluid to be measured (actually measured temperature) and the reference temperature is determined. ct, the measured temperature Tx, the reference temperature Ta, a proportionality constant predetermined and K 1, which the first instrumental error correction amount Ct, and the Ct = K 1 (Tx-Ta ) ... (1) It is.

【0018】内側チューブ1と外側チューブ2との温度
差△tに基づく第2の器差補正量Cdtは、内側チュー
ブ1と外側チューブ2との温度差により生ずる熱応力が
各々の軸方向の荷重変化をもたらし、荷重変化が振動モ
ードを変えて生ずる器差を仮定して総合器差から分離し
たもので、第2の器差Cdtは前記温度差△tを変数と
した関係式とその関係式に適用される係数Ka,Kb,
Kcに基づいて決定される。すなわち、第2の器差補正
量Cdtを、 Cdt=Ka△t2+Kb△t+Kc …(2) としたものである。
The second instrumental difference correction amount Cdt based on the temperature difference Δt between the inner tube 1 and the outer tube 2 is obtained by calculating the thermal stress generated by the temperature difference between the inner tube 1 and the outer tube 2 by the load in each axial direction. The second instrumental error Cdt is a relational expression using the temperature difference Δt as a variable, and a relational expression using the temperature difference Δt as a variable. Coefficients Ka, Kb, applied to
It is determined based on Kc. That is, the second instrumental error correction amount Cdt is expressed as follows: Cdt = Ka △ t 2 + Kb △ t + Kc (2)

【0019】二重振動管10の共振周波数差△fによる
第3の器差補正量は、内側チューブ1に密度の異なる流
体が流れると内側チューブ1の固有振動数が異なり、固
有振動数一定な外側チューブ2とで構成される連成周波
数すなわち共振周波数が変化し、この変化により生ずる
器差を補正するものである。すなわち内側チューブ1内
を流れる被測定流体の密度差により生ずる器差は被測定
流体の密度差による内側チューブ1と外側チューブ2の
振幅比に基づくものである。しかし、被測定流体の密度
差による器差は複雑な振動計算により定められ、これが
実行できる回路を変換器内に組込むことは困難である。
このため、本発明では、結果的に発生する器差が共振周
波数差△fに関連し、なお内側チューブ1の温度変化に
基づく固有振動数を補正するために、単に実測共振周波
数fxと、内側チューブ1のバネ定数βと基準温度Tw
と実測温度Txとの温度差に基づく校正されかつ基準化
された流体の周波数ftとの周波数差に比例し、例え
ば、周波数ftを0℃に換算したときの周期をPwとす
ると、Pwに反比例した誤差と定めたものである。すな
わち、第3の器差補正量Cfは、
The third instrument difference correction amount based on the resonance frequency difference Δf of the double vibrating tube 10 is such that when fluids having different densities flow through the inner tube 1, the natural frequency of the inner tube 1 is different and the natural frequency is constant. The resonance frequency, that is, the coupling frequency formed with the outer tube 2 changes, and the instrumental error caused by the change is corrected. That is, the instrumental difference caused by the density difference of the fluid to be measured flowing in the inner tube 1 is based on the amplitude ratio between the inner tube 1 and the outer tube 2 due to the density difference of the fluid to be measured. However, the instrumental difference due to the density difference of the fluid to be measured is determined by a complicated vibration calculation, and it is difficult to incorporate a circuit capable of executing this in the converter.
For this reason, in the present invention, the resulting instrumental difference is related to the resonance frequency difference Δf. Spring constant β of tube 1 and reference temperature Tw
Is proportional to the frequency difference between the calibrated and standardized frequency ft of the fluid based on the temperature difference between the measured temperature Tx and the measured fluid temperature Tx. It is determined that the error has occurred. That is, the third instrument difference correction amount Cf is:

【0020】[0020]

【数1】 (Equation 1)

【0021】となる。## EQU1 ##

【0022】従って総合した器差△Eは、内側チューブ
1の温度による第1の器差補正量Ctと、内側チューブ
1と外側チューブ2との温度差△tによる第2の器差補
正量Cdt、および被測定流体の密度差△ρによる器差
を、共振周波数差△fによる第3の器差補正量Cfとを
加算したもので、器差補正回路40から出力される総合
的な器差△Eは、 器差△E=Ct+Cdt+Cf …(5) となる。
Accordingly, the total instrument error ΔE is obtained by the first instrument error correction amount Ct based on the temperature of the inner tube 1 and the second instrument error correction amount Cdt based on the temperature difference Δt between the inner tube 1 and the outer tube 2. , And the instrumental error due to the density difference Δρ of the fluid to be measured is added to the third instrumental error correction amount Cf due to the resonance frequency difference Δf, and the total instrumental error output from the instrumental error correction circuit 40 is obtained. ΔE is: ΔE = Ct + Cdt + Cf (5)

【0023】質量流量演算回路50は、センサ6とセン
サ7から出力されたコリオリの力に比例した位相差信号
△Tを求めて位相差信号△Tに比例した質量流量Qaを
求めるので、質量流量Qaは(5)式による器差△Eを
補正したものである。すなわち、質量流量Qaを求める
位相差信号△Tの比例定数をKaとすると、 Qa=Ka(1+△E)△T =Ka(1+Ct+Cdt+Cf)△T …(6) であり、端子51から上述の器差△Eを補正した質量流
量Qaが出力される。
The mass flow rate calculation circuit 50 obtains a phase difference signal ΔT proportional to the Coriolis force output from the sensors 6 and 7, and obtains a mass flow rate Qa proportional to the phase difference signal ΔT. Qa is obtained by correcting the instrumental error ΔE according to the equation (5). That is, assuming that the proportionality constant of the phase difference signal ΔT for obtaining the mass flow rate Qa is Ka, Qa = Ka (1 + ΔE) △ T = Ka (1 + Ct + Cdt + Cf) △ T (6) The mass flow rate Qa corrected for the difference ΔE is output.

【0024】[0024]

【発明の効果】請求項1の発明によると、同軸二重直管
式のコリオリ流量計において、被測定流体の温度および
密度変化により、外側チューブ2の固有振動数と内側チ
ューブ1の固有振動数が変化し器差が変化するのを、単
純な内側チューブの熱膨張に基づく第1の器差補正量C
tと、内側チューブ1と外側チューブ2との温度差によ
る第2の器差補正量Cdtおよび、被測定流体の共振周
波数に対する校正されかつ基準化された流体の周波数の
周波数差△fから求めた第3の器差補正量Cfとを加算
して総合器差を補正するようにしたもので、複雑な演算
式による補正をすることがなく、簡単安価で高精度な質
量流量を求めることができる。
According to the first aspect of the present invention, the natural frequency of the outer tube 2 and the natural frequency of the inner tube 1 in the coaxial double straight tube type Coriolis flowmeter are changed by the temperature and density change of the fluid to be measured. Is changed and the instrumental error is changed by a first instrumental error correction amount C based on a simple thermal expansion of the inner tube.
t, the second instrumental difference correction amount Cdt due to the temperature difference between the inner tube 1 and the outer tube 2, and the frequency difference Δf of the calibrated and standardized fluid frequency with respect to the resonance frequency of the fluid to be measured. The total instrumental error is corrected by adding the third instrumental error correction amount Cf, and a simple, inexpensive, and high-precision mass flow rate can be obtained without performing correction using a complicated arithmetic expression. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による質量流量計変換器を説明するた
めの図である。
FIG. 1 is a diagram for explaining a mass flowmeter converter according to the present invention.

【符号の説明】[Explanation of symbols]

1…内側チューブ、2…外側チューブ、3,4…環状フ
ランジ、5…加振器、6,7…センサ、8…バランスウ
ェイト、9a,9b…温度センサ、10…同軸二重振動
管(二重振動管)、20…駆動回路、30…共振周波数
検出回路、40…器差補正回路、50…質量流量演算回
路、51…出力端子、60…質量流量計変換器。
DESCRIPTION OF SYMBOLS 1 ... Inner tube, 2 ... Outer tube, 3, 4 ... Annular flange, 5 ... Exciter, 6, 7 ... Sensor, 8 ... Balance weight, 9a, 9b ... Temperature sensor, 10 ... Coaxial double vibrating tube (2 Heavy vibration tube), 20: drive circuit, 30: resonance frequency detection circuit, 40: instrumental difference correction circuit, 50: mass flow calculation circuit, 51: output terminal, 60: mass flow meter converter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定流体が流れる内側チューブおよび
該内側チューブの外側に両端が固着された外側チューブ
とからなる同軸な二重直管からなり、前記外側チューブ
に該外側チューブの固有振動数を、前記内側チューブの
固有振動数と等しくする重量をもったバランスウェイト
が取り付けられた二重振動管と、該二重振動管を一定振
幅の共振周波数で駆動する駆動手段と、前記駆動により
前記二重振動管に作用するコリオリの力に比例した位相
変位を検知する一対のセンサと、該センサの出力に基づ
いて質量流量を求めるコリオリ流量計の質量流量計変換
器において、前記内側チューブおよび外側チューブに各
々該内側チューブおよび外側チューブの温度を検出する
温度検出手段を有し、前記内側チューブの温度変化に基
づく器差を補正する温度補正手段と、前記内側チューブ
と前記外側チューブの温度差に基づく器差を補正する温
度差補正手段と、被測定流体を流したときの前記二重振
動管の共振周波数と校正されかつ基準化された流体を流
したときの前記二重振動管の共振周波数との周波数差に
よる器差を補正する共振周波数補正手段とを有し、前記
温度補正手段と、前記温度差補正手段と、前記共振周波
数補正手段の各々の器差補正量を加算し、該加算された
器差補正量に基づいて器差補正する器差補正手段を有す
ることを特徴とする質量流量計変換器。
1. A coaxial double straight pipe comprising an inner tube through which a fluid to be measured flows and an outer tube having both ends fixed to the outside of the inner tube, wherein the outer tube has a natural frequency of the outer tube. A double vibrating tube to which a balance weight having a weight equal to the natural frequency of the inner tube is attached; driving means for driving the double vibrating tube at a resonance frequency of a constant amplitude; A pair of sensors for detecting a phase displacement proportional to a Coriolis force acting on the heavy vibrating tube, and a mass flowmeter converter of a Coriolis flowmeter for obtaining a mass flow rate based on an output of the sensor, wherein the inner tube and the outer tube Has temperature detecting means for detecting the temperatures of the inner tube and the outer tube, respectively, and corrects an instrumental difference based on a temperature change of the inner tube. Temperature correction means, temperature difference correction means for correcting an instrumental difference based on a temperature difference between the inner tube and the outer tube, and a resonance frequency of the double vibrating tube when the fluid to be measured flows is calibrated and standardized. Resonance frequency correction means for correcting an instrumental difference due to a frequency difference from a resonance frequency of the double vibrating tube when flowing the fluid, the temperature correction means, the temperature difference correction means, the resonance A mass flow meter converter, comprising: instrumental error correction means for adding the instrumental error correction amounts of the frequency correcting means and correcting the instrumental error based on the added instrumental error correction amount.
JP25881496A 1996-09-19 1996-09-30 Mass flow meter converter Expired - Fee Related JP2966356B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP25881496A JP2966356B2 (en) 1996-09-30 1996-09-30 Mass flow meter converter
US08/788,119 US5796012A (en) 1996-09-19 1997-01-23 Error correcting Coriolis flowmeter
TW089201041U TW530940U (en) 1996-09-19 1997-02-04 Coriolis flowmeter
KR1019970006604A KR100240261B1 (en) 1996-09-19 1997-02-28 Coriolis flowmeter
EP97104394A EP0831306A1 (en) 1996-09-19 1997-03-14 Coriolis flowmeter
AU17783/97A AU691773B2 (en) 1996-09-19 1997-04-08 Coriolis flowmeter
CN97110566A CN1115548C (en) 1996-09-19 1997-04-18 Coriolis flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25881496A JP2966356B2 (en) 1996-09-30 1996-09-30 Mass flow meter converter

Publications (2)

Publication Number Publication Date
JPH10104040A true JPH10104040A (en) 1998-04-24
JP2966356B2 JP2966356B2 (en) 1999-10-25

Family

ID=17325418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25881496A Expired - Fee Related JP2966356B2 (en) 1996-09-19 1996-09-30 Mass flow meter converter

Country Status (1)

Country Link
JP (1) JP2966356B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039164A1 (en) * 1998-01-29 1999-08-05 Micro Motion, Inc. System for validating calibration of a coriolis flowmeter
DE19840782A1 (en) * 1998-09-08 2000-03-30 Krohne Messtechnik Kg Mass flow meter
JP2011501123A (en) * 2007-10-15 2011-01-06 マイクロ モーション インコーポレイテッド Vibrating flow meter and method for determining fluid temperature of flow material
JP2013231737A (en) * 2013-07-24 2013-11-14 Micro Motion Inc Instrument electronic device and method for geometric heat compensation of flowmeter
JP2015111142A (en) * 2015-02-06 2015-06-18 マイクロ・モーション・インコーポレーテッドMicro MotionIncorporated Meter electronic device and method for geometric thermal compensation in flow meter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039164A1 (en) * 1998-01-29 1999-08-05 Micro Motion, Inc. System for validating calibration of a coriolis flowmeter
US6092409A (en) * 1998-01-29 2000-07-25 Micro Motion, Inc. System for validating calibration of a coriolis flowmeter
DE19840782A1 (en) * 1998-09-08 2000-03-30 Krohne Messtechnik Kg Mass flow meter
DE19840782C2 (en) * 1998-09-08 2001-09-06 Krohne Messtechnik Kg Mass flow meter
JP2011501123A (en) * 2007-10-15 2011-01-06 マイクロ モーション インコーポレイテッド Vibrating flow meter and method for determining fluid temperature of flow material
US8302491B2 (en) 2007-10-15 2012-11-06 Micro Motion, Inc. Vibratory flow meter and method for determining a fluid temperature of a flow material
JP2013231737A (en) * 2013-07-24 2013-11-14 Micro Motion Inc Instrument electronic device and method for geometric heat compensation of flowmeter
JP2015111142A (en) * 2015-02-06 2015-06-18 マイクロ・モーション・インコーポレーテッドMicro MotionIncorporated Meter electronic device and method for geometric thermal compensation in flow meter

Also Published As

Publication number Publication date
JP2966356B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
KR100240261B1 (en) Coriolis flowmeter
US5728952A (en) Vibration measuring instrument
US7258025B2 (en) Coriolis flowmeter
US7040179B2 (en) Process meter
RU2502963C2 (en) Method and device to determine zero shift in vibration flow metre
US20070186684A1 (en) Vibrating tube mass flow meter
US4957005A (en) Coriolis-type flowmeter
US7831400B2 (en) Diagnostic apparatus and methods for a coriolis flow meter
EP3129754B1 (en) Apparatus and method for detecting asymmetric flow in vibrating flowmeters
JP3565588B2 (en) Vibration type measuring instrument
JP3265859B2 (en) Mass flow meter
JP5578819B2 (en) Coriolis mass flow meter and correction method thereof
US6227059B1 (en) System and method for employing an imaginary difference signal component to compensate for boundary condition effects on a Coriolis mass flow meter
JP2966356B2 (en) Mass flow meter converter
JP3327325B2 (en) Coriolis mass flowmeter
EP3129755B1 (en) Improved vibrating flowmeter and related methods
JP2966355B2 (en) Coriolis flow meter
JP2786829B2 (en) Coriolis flow meter
JP2977114B2 (en) Coriolis flow meter
RU224296U1 (en) VIBRATION FLOWMETER WITH TWO STRAIGHT HIGH PRESSURE MEASURING PIPES
JP3834144B2 (en) Counter balance tube type Coriolis flow meter
JP3757559B2 (en) Coriolis mass flow meter
JP2840578B2 (en) Coriolis flow meter
JP3134984B2 (en) Vibration type measuring instrument
JP2002168672A (en) Method for calibrating coriori flowmeter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees