JPH08312999A - Air conditioning system - Google Patents

Air conditioning system

Info

Publication number
JPH08312999A
JPH08312999A JP13857995A JP13857995A JPH08312999A JP H08312999 A JPH08312999 A JP H08312999A JP 13857995 A JP13857995 A JP 13857995A JP 13857995 A JP13857995 A JP 13857995A JP H08312999 A JPH08312999 A JP H08312999A
Authority
JP
Japan
Prior art keywords
pump
liquid
refrigerant
liquid level
level switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13857995A
Other languages
Japanese (ja)
Inventor
Noboru Kobayashi
昇 小林
Masataka Matsushita
憂隆 松下
Seiichiro Fujimaki
誠一郎 藤巻
Hideo Kawaguchi
秀夫 河口
Shinji Tonmiya
伸二 頓宮
Yasutoshi Yoshida
康敏 吉田
Nozomi Kusumoto
望 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Osaka Gas Co Ltd
Takenaka Komuten Co Ltd
Tokyo Gas Co Ltd
Yazaki Corp
Toho Gas Co Ltd
Sinko Industries Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Osaka Gas Co Ltd
Takenaka Komuten Co Ltd
Tokyo Gas Co Ltd
Yazaki Corp
Toho Gas Co Ltd
Sinko Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd, Osaka Gas Co Ltd, Takenaka Komuten Co Ltd, Tokyo Gas Co Ltd, Yazaki Corp, Toho Gas Co Ltd, Sinko Industries Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP13857995A priority Critical patent/JPH08312999A/en
Publication of JPH08312999A publication Critical patent/JPH08312999A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE: To make a refrigerant circulation type heating system small in its size. CONSTITUTION: A conventional liquid receiving tank is dispensed with, a level switch 9 is installed on a bypass pipe 8 provided in parallel to an evaporating coil 2, and an output of the level switch 9 controls a pump 7 for returning of a liquid refrigerant. Thus a liquid receiving tank conventionally considered to be essential is omitted, an equipment can be made small-sized, and an amount of the refrigerant as required can be considerably saved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空調システムの暖房時
における冷媒の制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to control of refrigerant during heating of an air conditioning system.

【0002】[0002]

【従来の技術】図4は従来のこの種の空調システムを示
したもので、室外機1は冷房運転時に重力による自然循
環を行わせるために高所に設置され、暖房時にはこの室
外機1の蒸発コイル2から、複数の室内機3の凝縮コイ
ル4に冷媒蒸気を送るようになっており、すべての室内
機3よりも低位置に、凝縮した冷媒液を受ける液溜め槽
5を設ける一方、蒸発コイル2よりも高位置に液受け槽
15を設けて、液溜め槽5に溜った冷媒液を一旦ポンプ
7によって液受け槽15に汲み上げたのち、液受け槽1
5から蒸発コイル2へ自重により流下させている。この
液受け槽15には上限と下限の液面を検知する液面スイ
ッチ9を設けて、この液面スイッチ9でポンプ7をオン
オフ制御しており、それによって液受け槽15よりも蒸
発コイル2の抵抗に相当する落差分だけ低位に設けられ
ている蒸発コイル2内の液面を所定範囲内に維持するよ
うにしている。
2. Description of the Related Art FIG. 4 shows a conventional air-conditioning system of this type. An outdoor unit 1 is installed at a high place for natural circulation by gravity during cooling operation, and this outdoor unit 1 is heated during heating. Refrigerant vapor is sent from the evaporation coil 2 to the condenser coils 4 of the plurality of indoor units 3, and a liquid storage tank 5 for receiving condensed refrigerant liquid is provided at a position lower than all the indoor units 3. The liquid receiving tank 15 is provided at a position higher than the evaporation coil 2, and the refrigerant liquid accumulated in the liquid storing tank 5 is once pumped up to the liquid receiving tank 15 by the pump 7, and then the liquid receiving tank 1
5 to the evaporation coil 2 by its own weight. The liquid receiving tank 15 is provided with a liquid level switch 9 for detecting the upper and lower liquid levels, and the pump 7 is controlled to be turned on and off by the liquid level switch 9, whereby the evaporation coil 2 is provided more than the liquid receiving tank 15. The liquid surface in the evaporation coil 2 which is provided at a lower position by a drop difference corresponding to the resistance of is maintained within a predetermined range.

【0003】[0003]

【発明が解決しようとする課題】しかし上述の従来構成
は、液受け槽15として蒸発コイル2の1/2程度の容
量のタンク(例えば20リットル)を必要とし、従って
使用冷媒量も多くなる上に、配管抵抗に相当する落差
(約1〜3m)を要するために室外機1の全高が高くな
るために、設備コストが高くつき、装置も大型化すると
いう欠点があった。本発明はこのような問題点を解消
し、液受け槽15を省略することによってコストダウン
と装置の小型化を図ることを目的とするものである。
However, the above-described conventional structure requires a tank (for example, 20 liters) having a capacity about half that of the evaporating coil 2 as the liquid receiving tank 15, so that the amount of refrigerant used increases. In addition, since the height (about 1 to 3 m) corresponding to the pipe resistance is required, the total height of the outdoor unit 1 becomes high, which causes a high equipment cost and a large device. An object of the present invention is to solve such problems and to reduce the cost and the size of the apparatus by omitting the liquid receiving tank 15.

【0004】[0004]

【課題を解決するための手段】請求項1の発明による空
調システムは、図1に示すように、暖房運転時に高所に
設置された室外機1の蒸発コイル2から複数の室内機3
の凝縮コイル4に冷媒を循環させ、すべての室内機3よ
りも低位置に冷媒液を受ける液溜め槽5を設けると共
に、液溜め槽5から室外機1に至る戻り冷媒配管6にポ
ンプ7を介装した空調システムにおいて、上記蒸発コイ
ル2と並列に設けたバイパス配管8に液面スイッチ9を
介装し、この液面スイッチ9の出力で上記ポンプ7を制
御することにより、蒸発コイル2内の冷媒の液面を所定
の範囲内に維持するようにし、それによって液受け槽1
5を省略したものであり、また請求項2の発明は、ポン
プ制御手段として上述のバイパス配管8と液面スイッチ
9を用いる代わりに、図2に示すように、蒸発コイル2
の出口付近の冷媒配管10に液面スイッチ9を介装し
て、この液面スイッチ9の上限出力で上記ポンプ7を停
止させると共に、ポンプ7停止後一定時間計時するタイ
マ11の出力によりポンプ7を起動させるようにし、そ
れによって図1における液面スイッチ9と蒸発コイル2
間の落差hを不要とし、室外機1の一層の小型化を図っ
たものである。
As shown in FIG. 1, an air conditioning system according to the invention of claim 1 comprises a plurality of indoor units 3 from an evaporation coil 2 of an outdoor unit 1 installed at a high place during heating operation.
The condenser coil 4 is circulated with the refrigerant, and the liquid reservoir tank 5 for receiving the refrigerant liquid is provided at a position lower than all the indoor units 3, and the pump 7 is provided in the return refrigerant pipe 6 from the liquid reservoir tank 5 to the outdoor unit 1. In the interposed air conditioning system, the liquid level switch 9 is interposed in the bypass pipe 8 provided in parallel with the evaporation coil 2, and the pump 7 is controlled by the output of the liquid level switch 9 The liquid surface of the refrigerant is kept within a predetermined range, whereby the liquid receiving tank 1
5 is omitted, and in the invention of claim 2, instead of using the bypass pipe 8 and the liquid level switch 9 as the pump control means, as shown in FIG.
A liquid level switch 9 is provided in the refrigerant pipe 10 near the outlet of the pump 7, and the pump 7 is stopped by the upper limit output of the liquid level switch 9, and the pump 7 is stopped by the output of a timer 11 which measures a fixed time after the pump 7 is stopped. To activate the liquid level switch 9 and the evaporation coil 2 in FIG.
This eliminates the need for a drop h between the outdoor unit 1 and further miniaturizes the outdoor unit 1.

【0005】[0005]

【作用】図1の本発明構成は、図3の従来構成におい
て、蒸発コイル2と直列の液受け槽15を蒸発コイル2
と並列のバイパス配管8に置き換えて、このバイパス配
管8に液面スイッチ9を設けたものに相当する。このよ
うに容量の小さいバイパス配管8で液受け槽15を置換
することができたのは、バイパス配管8が容量の大きい
蒸発コイル2と並列に接続されており、バイパス配管8
の液面スイッチ9が蒸発コイル2の実効的な液面を検知
することによって、液受け槽15の液面スイッチ9と同
等の機能を果たしているからであり、それによって負荷
の急変に対しても液面が急変してハンチングを起こした
りするおそれがなく、また液面スイッチ9の液面は沸騰
している蒸発コイル2内とは異なり静止しているので、
チャタリングを起こすこともなく、安定した制御を行う
ことができるのである。
The configuration of the present invention shown in FIG. 1 is different from the conventional configuration shown in FIG.
It is equivalent to the bypass pipe 8 provided with a liquid level switch 9 in place of the bypass pipe 8 in parallel. Thus, the liquid receiving tank 15 can be replaced by the bypass pipe 8 having a small capacity because the bypass pipe 8 is connected in parallel with the evaporation coil 2 having a large capacity.
This is because the liquid level switch 9 of FIG. 6 performs the same function as the liquid level switch 9 of the liquid receiving tank 15 by detecting the effective liquid level of the evaporating coil 2, so that even when the load suddenly changes. There is no risk of hunting due to a sudden change in the liquid level, and the liquid level of the liquid level switch 9 is stationary unlike the boiling evaporation coil 2, so that
Stable control can be performed without causing chattering.

【0006】また図2に示した請求項2の発明によれ
ば、液面スイッチ9が蒸発コイル2の出口付近に設けら
れているので、図1の場合のように液面スイッチ9をコ
イルの抵抗に相当する落差分hだけ高位置に設ける必要
がなく、従って室外機1を小型化することができる。ま
た蒸発コイル2内の液面はほぼその高さの約1/2から
上端までの範囲で制御する必要があり、且つ液面付近は
沸騰により気液混合状態となっているが、本発明におい
ては、コイル2内の液面が上昇して気泡混じりの液がコ
イル2の上端位置で検知されると、直ちにポンプ7を停
止するようにし、またポンプ停止時におけるコイル内液
面が低下する速度はほぼ一定であることから、液面が1
/2程度まで低下する時間を予め測定してタイマ11に
設定しておき、この設定時間が経過すると再びポンプ7
を起動するようにしたので、蒸発コイル2内の液面を実
質的に上記範囲内に維持することができる。
Further, according to the second aspect of the invention shown in FIG. 2, since the liquid level switch 9 is provided near the outlet of the evaporation coil 2, the liquid level switch 9 is connected to the coil as in the case of FIG. Since it is not necessary to provide it at a high position by the drop difference h corresponding to the resistance, the outdoor unit 1 can be downsized. Further, the liquid level in the evaporation coil 2 needs to be controlled within a range from about 1/2 of its height to the upper end, and the vicinity of the liquid level is in a gas-liquid mixed state due to boiling. Is the speed at which the pump 7 is stopped immediately when the liquid level in the coil 2 rises and liquid containing bubbles is detected at the upper end position of the coil 2, and the liquid level in the coil drops when the pump is stopped. Is almost constant, the liquid level is 1
The time to fall to about 1/2 is measured in advance and set in the timer 11, and when the set time elapses, the pump 7 is restarted.
Is activated, the liquid level in the evaporation coil 2 can be maintained substantially within the above range.

【0007】[0007]

【実施例】図1は本発明システムの一実施例を示したも
ので、吸収式冷凍機よりなる室外機1はビルの屋上等に
設置され、冬期は暖房装置として、夏期は冷房装置とし
て使用するものであり、冬期にはこの室外機1の蒸発コ
イル2から複数の室内機3へ冷媒(R134a等)蒸気
を循環させて、室内機3の凝縮コイル4で室内空気に熱
を与えて凝縮させ、すべての室内機3よりも低位置に設
けられた液溜め槽5で凝縮した冷媒液を受けると共に、
この冷媒液を戻り冷媒配管6に介装されたポンプ7によ
り液溜め槽5から室外機1へ圧送する。室外機1におい
ては蒸発コイル2と並列にバイパス配管8が設けられて
おり、このバイパス配管8に介装された液面スイッチ9
の上限位置9aの検出出力によりポンプ7が停止し、液
面スイッチ9の下限位置9bの検出出力でポンプ7が起
動するように制御されており、それによって蒸発コイル
2内の冷媒の液面が所定の範囲内に維持される。なお図
中12及び13は冷房運転時に液溜め槽5及びポンプ7
を系から切り離して重力による自然循環を行わせるため
の電磁弁及び逆止弁である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the system of the present invention, in which an outdoor unit 1 consisting of an absorption chiller is installed on the rooftop of a building and used as a heating device in winter and as a cooling device in summer. In the winter, the refrigerant (R134a or the like) vapor is circulated from the evaporation coil 2 of the outdoor unit 1 to the plurality of indoor units 3, and the condensation coil 4 of the indoor unit 3 applies heat to the indoor air to condense it. Then, while receiving the refrigerant liquid condensed in the liquid storage tank 5 provided at a position lower than all the indoor units 3,
This refrigerant liquid is pumped from the liquid reservoir 5 to the outdoor unit 1 by the pump 7 provided in the return refrigerant pipe 6. In the outdoor unit 1, a bypass pipe 8 is provided in parallel with the evaporation coil 2, and the liquid level switch 9 interposed in the bypass pipe 8 is provided.
Is controlled so that the pump 7 is stopped by the detection output of the upper limit position 9a and the pump 7 is started by the detection output of the lower limit position 9b of the liquid level switch 9, whereby the liquid level of the refrigerant in the evaporation coil 2 is changed. It is maintained within a predetermined range. In the figure, 12 and 13 are the liquid storage tank 5 and the pump 7 during the cooling operation.
Is a solenoid valve and a check valve for separating the system from the system and allowing natural circulation by gravity.

【0008】ポンプ7によって送られてきた冷媒液は、
室外機1の蒸発コイル2で加熱されて蒸発し、蒸気の状
態で送り配管10を通って各室内機3に送られる。室内
機3に送られた冷媒蒸気は、凝縮コイル4とファン14
により冷却されて凝縮し、液の状態で流下して液溜め槽
5に溜められたのち、ポンプ7により室外機1へ送られ
る。蒸発コイル2で冷媒液が蒸発する際に、実際にはあ
る範囲で気液混合状態となり、この状態を経て液から蒸
気へ変化するのであるが、この実効的な液面が蒸発コイ
ル2の上端を超えると、送り配管10へ冷媒液が混入し
て蒸気の流れを阻害する上に、液溜め槽5の冷媒液が不
足して動作不良の原因となり、また液面が蒸発コイル2
の下端に近付くと熱交換効率が低下する。従ってこの液
面を一定の範囲に維持するために、液面スイッチ9の出
力によってポンプ7がオンオフ制御されている。
The coolant liquid sent by the pump 7 is
It is heated by the evaporation coil 2 of the outdoor unit 1 to evaporate, and is sent to each indoor unit 3 through the feed pipe 10 in a vapor state. The refrigerant vapor sent to the indoor unit 3 is condensed by the condenser coil 4 and the fan 14.
The liquid is cooled and condensed by the above, and flows down in a liquid state to be stored in the liquid storage tank 5, and then sent to the outdoor unit 1 by the pump 7. When the refrigerant liquid evaporates in the evaporation coil 2, a gas-liquid mixed state actually occurs in a certain range, and after this state, the liquid changes to vapor, but this effective liquid level is the upper end of the evaporation coil 2. If the temperature exceeds the limit, the refrigerant liquid mixes into the feed pipe 10 to impede the flow of steam, and the refrigerant liquid in the liquid storage tank 5 becomes insufficient to cause malfunction.
The heat exchange efficiency decreases as it approaches the lower end. Therefore, in order to maintain this liquid level within a certain range, the pump 7 is on / off controlled by the output of the liquid level switch 9.

【0009】図1の実施例では、ポンプ7制御用の液面
スイッチ9が蒸発コイル2と並列に接続されたバイパス
配管8に設けられており、その液面は蒸発コイル2の液
面の上下動に応じて変動するので、バイパス配管9自体
は口径が小さくても、従来例における容量の大きい液受
け槽15内の液面スイッチ9と同様に、変動幅が小さく
安定した制御を行うことができる。なおこの場合、バイ
パス配管8の上端位置はポンプ圧に対する蒸発コイル2
内の抵抗を考慮して、蒸発コイル2の上側ヘッド部2a
よりh=50cm程度高くし、バイパス配管8の下端位
置はポンプ圧がゼロとなり上記抵抗は関与しないので、
蒸発コイル2の上下端ヘッド部2a,2b間の間隔の6
0〜90%の高さとする。
In the embodiment shown in FIG. 1, a liquid level switch 9 for controlling the pump 7 is provided in a bypass pipe 8 connected in parallel with the evaporation coil 2, and the liquid level is above and below the liquid level of the evaporation coil 2. Even if the diameter of the bypass pipe 9 itself is small, it is possible to perform stable control with a small fluctuation range, like the liquid level switch 9 in the liquid receiving tank 15 having a large capacity in the conventional example, because it fluctuates according to the movement. it can. In this case, the upper end position of the bypass pipe 8 is located at the evaporation coil 2 against the pump pressure.
In consideration of the internal resistance, the upper head portion 2a of the evaporation coil 2
Since the pump pressure is zero at the lower end position of the bypass pipe 8 and the above resistance is not involved,
The space between the upper and lower end heads 2a and 2b of the evaporation coil 2 is 6
The height is 0 to 90%.

【0010】また図2の実施例は、ポンプ7の制御手段
として、蒸発コイル2の出口付近の冷媒配管10に液面
スイッチ9を介装し、この液面スイッチ9の上限出力で
上記ポンプ7を停止させると共に、ポンプ7停止後一定
時間を計時するタイマ11の出力によりポンプ7を起動
させるようにしたものである。これは、蒸発コイル2内
では実効的な液面の上下に一定範囲の気液混合状態が存
在しているので、その上端を蒸発コイル2の出口の液面
スイッチ9で検出することによって、液面が上側のコイ
ルヘッドに達する前にポンプ7を停止させることが可能
であり、またポンプ7を停止したのち冷媒の蒸発によっ
て液面が下降する時間はほぼ一定(例えば30秒〜1
分)しているので、液面の下限位置に液面スイッチ9が
設けられていなくても、タイマ10の出力でポンプ7を
起動させることによって、図1と性能的にあまり変わら
ないポンプの制御ができるからであり、この構成によっ
て、図1のバイパス配管8を設ける必要がなくなった上
に、液面スイッチ9の上限側接点と蒸発コイル2の上端
との間の落差hも不要となり、室外機1の一層の小型化
とコストダウンが可能となったものである。
In the embodiment shown in FIG. 2, a liquid level switch 9 is provided in the refrigerant pipe 10 near the outlet of the evaporation coil 2 as a control means for the pump 7, and the pump 7 is driven by the upper limit output of the liquid level switch 9. In addition to stopping the pump 7, the pump 7 is started by the output of the timer 11 that measures a certain time after the pump 7 is stopped. This is because there is a certain range of gas-liquid mixed state above and below the effective liquid level in the evaporation coil 2, so that the liquid level switch 9 at the outlet of the evaporation coil 2 detects the upper end of the mixed state. It is possible to stop the pump 7 before the surface reaches the upper coil head, and after stopping the pump 7, the time during which the liquid level is lowered by evaporation of the refrigerant is almost constant (for example, 30 seconds to 1).
Therefore, even if the liquid level switch 9 is not provided at the lower limit position of the liquid level, by starting the pump 7 with the output of the timer 10, the control of the pump that is not much different in performance from FIG. This configuration eliminates the need for providing the bypass pipe 8 of FIG. 1 and also eliminates the need for a drop h between the upper limit contact of the liquid level switch 9 and the upper end of the evaporation coil 2 to allow outdoor use. The machine 1 can be further downsized and the cost can be reduced.

【0011】図3のフローチャートは更に他の実施例を
示したもので、図2の構成において上記実施例ではポン
プ7をオンとオフの2段階に切り換えていたものを、例
えば高速回転、低速回転、オフの3段階に切り換えるよ
うにすると共に、制御装置16において、液面スイッチ
9が液溢れを検出するとポンプ7を一段低速側に切り換
え、タイマ11が一定時間(例えば30秒)を計時する
とポンプ7の回転数を高速側へ復帰させるようにし、こ
の一定時間内に再び液面スイッチ9が作動したときは、
更にもう一段低速側にポンプ7の回転数を切り換えるよ
うにしたものである。このように構成すれば、冷媒温度
の過大な変動によるハンチングを防止することができ
る。
The flowchart of FIG. 3 shows still another embodiment. In the configuration of FIG. 2, the pump 7 is switched between two stages of on and off in the above embodiment, for example, high speed rotation, low speed rotation. When the liquid level switch 9 in the control device 16 detects liquid overflow, the pump 7 is switched to the next lower speed side, and when the timer 11 measures a fixed time (for example, 30 seconds), the pump is turned on. The rotation speed of 7 is returned to the high speed side, and when the liquid level switch 9 is activated again within this fixed time,
Further, the rotation speed of the pump 7 is switched to the lower speed side. According to this structure, it is possible to prevent hunting due to excessive fluctuation of the refrigerant temperature.

【0012】[0012]

【発明の効果】請求項1の発明によれば、従来不可欠と
されていた液受け槽15を省略して、容量の小さいバイ
パス配管8に置き換えることができたので、設備が小型
化できる上に、所要冷媒量も大幅に節減することができ
るという利点があり、また請求項2の発明によれば、蒸
発コイル2の出口付近で液面の上限位置を検出できるの
で、請求項1の発明に加えて、更に液面スイッチ9と蒸
発コイル2との間にのコイルの抵抗に相当する落差hを
設ける必要がなくなり、室外機1の一層の小型化が可能
になるという利点がある。
According to the first aspect of the present invention, the liquid receiving tank 15 which has been indispensable in the past can be omitted and replaced with the bypass pipe 8 having a small capacity, so that the equipment can be downsized. In addition, there is an advantage that the amount of required refrigerant can be significantly reduced. Further, according to the invention of claim 2, since the upper limit position of the liquid surface can be detected near the outlet of the evaporation coil 2, the invention of claim 1 is achieved. In addition, there is no need to provide a drop h corresponding to the resistance of the coil between the liquid level switch 9 and the evaporation coil 2, and there is an advantage that the outdoor unit 1 can be further downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の概略系統図。FIG. 1 is a schematic system diagram of an embodiment of the present invention.

【図2】同上の他の実施例の概略系統図。FIG. 2 is a schematic system diagram of another embodiment of the above.

【図3】同上の更に他の実施例を示すフローチャート。FIG. 3 is a flowchart showing still another embodiment of the above.

【図4】従来例の概略系統図。FIG. 4 is a schematic system diagram of a conventional example.

【符号の説明】 1 室外機 2 蒸発コイル 3 室内機 4 凝縮コイル 5 液溜め槽 6 戻り冷媒配管 7 ポンプ 8 バイパス配管 9 液面スイッチ 10 送り冷媒配管 11 タイマ 12 電磁弁 13 逆止弁 14 ファン 15 液受け槽 16 制御装置[Explanation of Codes] 1 Outdoor unit 2 Evaporation coil 3 Indoor unit 4 Condensing coil 5 Liquid reservoir 6 Return refrigerant pipe 7 Pump 8 Bypass pipe 9 Liquid level switch 10 Feed refrigerant pipe 11 Timer 12 Solenoid valve 13 Check valve 14 Fan 15 Liquid receiving tank 16 Control device

───────────────────────────────────────────────────── フロントページの続き (71)出願人 390003333 新晃工業株式会社 大阪府大阪市北区南森町1丁目4番5号 (71)出願人 000003621 株式会社竹中工務店 大阪府大阪市中央区本町4丁目1番13号 (72)発明者 小林 昇 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 松下 憂隆 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 藤巻 誠一郎 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 (72)発明者 河口 秀夫 名古屋市熱田区桜田町19番18号 東邦瓦斯 株式会社内 (72)発明者 頓宮 伸二 東京都港区三田一丁目4番28号 矢崎総業 株式会社内 (72)発明者 吉田 康敏 大阪市北区南森町一丁目4番5号 新晃工 業株式会社内 (72)発明者 楠本 望 大阪市中央区本町四丁目1番13号 株式会 社竹中工務店内 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 390003333 Shinko Industrial Co., Ltd. 1-4-5 Minamimorimachi, Kita-ku, Osaka-shi, Osaka (71) Applicant 000003621 Takenaka Corporation, Honmachi, Chuo-ku, Osaka-shi, Osaka 4-1-13-1 (72) Inventor Noboru Kobayashi 4-1-2 Hirano-cho, Chuo-ku, Osaka City Osaka Gas Co., Ltd. (72) Inventor Yutaka Takashi 4-1-2, Hirano-cho, Chuo-ku, Osaka Osaka Gas Co., Ltd. (72) Inventor Seiichiro Fujimaki 1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas Co., Ltd. (72) Inventor Hideo Kawaguchi 19-18 Sakurada-cho, Atsuta-ku, Nagoya City Toho Gas Co., Ltd. (72) Inventor Shinji Tonmiya 4-28 Mita, Minato-ku, Tokyo Within Yazaki Corporation (72) Inventor Yasutoshi Yoshida 1-4-5 Minamimorimachi, Kita-ku, Osaka Shinko Industrial Co., Ltd. Inside the company (72) Inventor Nozomu Kusumoto 4-13 Hommachi, Chuo-ku, Osaka City Takenaka Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 暖房運転時に、高所に設置された室外機
の蒸発コイルから、複数の室内機の凝縮コイルに冷媒を
循環させ、すべての室内機よりも低位置に冷媒液を受け
る液溜め槽を設けると共に、液溜め槽から室外機に至る
戻り冷媒配管にポンプを介装した空調システムにおい
て、蒸発コイルと並列に設けたバイパス配管に液面スイ
ッチを介装し、該液面スイッチの出力で上記ポンプを制
御することにより、蒸発コイル内の冷媒の液面を所定の
範囲内に維持するようにして成る空調システム。
1. A liquid sump for circulating a refrigerant from an evaporation coil of an outdoor unit installed at a high place to a condenser coil of a plurality of indoor units during heating operation to receive the refrigerant liquid at a position lower than all indoor units. In an air conditioning system in which a tank is provided and a pump is provided in the return refrigerant pipe from the liquid reservoir to the outdoor unit, a bypass switch provided in parallel with the evaporation coil is provided with a liquid level switch, and the output of the liquid level switch The air conditioning system configured to maintain the liquid level of the refrigerant in the evaporating coil within a predetermined range by controlling the above-mentioned pump.
【請求項2】 暖房運転時に、高所に設置された室外機
の蒸発コイルから、複数の室内機の凝縮コイルに冷媒を
循環させ、すべての室内機よりも低位置に冷媒液を受け
る液溜め槽を設けると共に、該液溜め槽から室外機に至
る戻り冷媒配管にポンプを介装して成る空調システムに
おいて、室外機の蒸発コイルの出口付近の冷媒配管に液
面スイッチを介装し、該液面スイッチの出力で上記ポン
プを停止させると共に、ポンプ停止後一定時間計時する
タイマの出力によりポンプを起動させることにより、蒸
発コイル内の冷媒の液面を所定の範囲内に維持するよう
にして成る空調システム。
2. A liquid sump for circulating a refrigerant from an evaporation coil of an outdoor unit installed at a high place to a condenser coil of a plurality of indoor units during heating operation to receive the refrigerant liquid at a position lower than all the indoor units. In an air conditioning system in which a tank is provided and a pump is provided in the return refrigerant pipe from the liquid storage tank to the outdoor unit, a liquid level switch is provided in the refrigerant pipe near the outlet of the evaporation coil of the outdoor unit, The pump is stopped by the output of the liquid level switch, and the pump is started by the output of the timer that measures the fixed time after the pump is stopped, so that the liquid level of the refrigerant in the evaporation coil is maintained within a predetermined range. Air conditioning system consisting of.
【請求項3】 暖房運転時に、高所に設置された室外機
の蒸発コイルから、複数の室内機の凝縮コイルに冷媒を
循環させ、すべての室内機よりも低位置に冷媒液を受け
る液溜め槽を設けると共に、該液溜め槽から室外機に至
る戻り冷媒配管にポンプを介装して成る空調システムに
おいて、室外機の蒸発コイルの出口付近の冷媒配管に液
面スイッチを介装すると共に、上記ポンプの回転数を複
数段に切り換える手段と該回転数切り換え後一定時間計
時するタイマを設け、上記液面スイッチの出力でポンプ
を一段低速側に切り換えて、一定時間経過後ポンプ回転
数を高速側へ復帰させるようにし、上記一定時間内に液
面スイッチが作動したときは、更にもう一段低速側にポ
ンプ回転数を切り換えるようにして成る空調システム。
3. A liquid sump for circulating a refrigerant from an evaporation coil of an outdoor unit installed at a high place to a condenser coil of a plurality of indoor units during heating operation and receiving the refrigerant liquid at a position lower than all the indoor units. In addition to providing a tank, in an air-conditioning system in which a pump is installed in the return refrigerant pipe from the liquid storage tank to the outdoor unit, a liquid level switch is installed in the refrigerant pipe near the outlet of the evaporation coil of the outdoor unit, A means for switching the number of revolutions of the pump to a plurality of stages and a timer for measuring a certain period of time after the number of revolutions is provided are provided, and the pump is switched to the one stage lower speed side by the output of the liquid level switch, and the number of revolutions of the pump becomes high after a certain period of time The air-conditioning system is configured to return to the side, and when the liquid level switch operates within the fixed time, the pump rotation speed is switched to the lower speed side.
JP13857995A 1995-05-13 1995-05-13 Air conditioning system Pending JPH08312999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13857995A JPH08312999A (en) 1995-05-13 1995-05-13 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13857995A JPH08312999A (en) 1995-05-13 1995-05-13 Air conditioning system

Publications (1)

Publication Number Publication Date
JPH08312999A true JPH08312999A (en) 1996-11-26

Family

ID=15225426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13857995A Pending JPH08312999A (en) 1995-05-13 1995-05-13 Air conditioning system

Country Status (1)

Country Link
JP (1) JPH08312999A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232062A (en) * 1997-02-19 1998-09-02 Yazaki Corp Control for heating operation for absorption type heating and cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232062A (en) * 1997-02-19 1998-09-02 Yazaki Corp Control for heating operation for absorption type heating and cooling device

Similar Documents

Publication Publication Date Title
CA1288606C (en) Heat pump system with hot water device
JP3393601B2 (en) Heat pump water heater
US3938352A (en) Water to air heat pump employing an energy and condensate conservation system
CA2192423C (en) Heat pump with liquid refrigerant reservoir
CN106573195B (en) Dehumidifying device
JP5659560B2 (en) Refrigeration cycle equipment
US4246761A (en) Absorption heat pump control system
JP2001263831A (en) Refrigerating cycle system
JPH08312999A (en) Air conditioning system
US2257915A (en) Air conditioning system
JP5404231B2 (en) Air conditioner
US3769808A (en) Refrigeration systems with elevated receivers
JP3225142B2 (en) Heat transport device
JP3381752B2 (en) Air conditioning system
JPH025319Y2 (en)
JP5842718B2 (en) Refrigeration cycle equipment
JP3381753B2 (en) Air conditioning system
JP3513286B2 (en) Engine driven air conditioner
JP3451538B2 (en) Absorption type cold heat generator
JP2001165518A (en) Air-conditioning device
JP3594453B2 (en) Operating method of air conditioner
KR0164883B1 (en) Airconditioner with refrigerating cycle by non-azeotropic mixture of high and low boiling coolants
JPH0599519A (en) Heat pump type air conditioner
JPS6027322Y2 (en) air conditioner
JP3281438B2 (en) Air conditioner