JP3381753B2 - Air conditioning system - Google Patents

Air conditioning system

Info

Publication number
JP3381753B2
JP3381753B2 JP13858295A JP13858295A JP3381753B2 JP 3381753 B2 JP3381753 B2 JP 3381753B2 JP 13858295 A JP13858295 A JP 13858295A JP 13858295 A JP13858295 A JP 13858295A JP 3381753 B2 JP3381753 B2 JP 3381753B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
outdoor unit
indoor unit
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13858295A
Other languages
Japanese (ja)
Other versions
JPH08313002A (en
Inventor
昇 小林
剛 奥村
誠一郎 藤巻
敏春 清水
伸二 頓宮
康敏 吉田
望 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Yazaki Corp
Toho Gas Co Ltd
Sinko Industries Ltd
Original Assignee
Takenaka Corp
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Yazaki Corp
Toho Gas Co Ltd
Sinko Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Yazaki Corp, Toho Gas Co Ltd, Sinko Industries Ltd filed Critical Takenaka Corp
Priority to JP13858295A priority Critical patent/JP3381753B2/en
Publication of JPH08313002A publication Critical patent/JPH08313002A/en
Application granted granted Critical
Publication of JP3381753B2 publication Critical patent/JP3381753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷房時に室外機から室内
機へ冷媒を循環させる方式の空調システムに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning system of a type in which a refrigerant is circulated from an outdoor unit to an indoor unit during cooling.

【0002】[0002]

【従来の技術】この種の空調システムにおいては、図2
に示すように、冷房時に凝縮器として動作する室外機1
から、蒸発器として動作する室内機2へ液体冷媒を重力
により流下させ、あるいはポンプを用いて圧送し、各室
内機2の蒸発コイル7で蒸発させて冷媒蒸気として室外
機1へ還流させており、各室内機2の上流側に介装した
膨張弁4の開度を、室外機2の入口及び出口に設けた冷
媒温度センサ5a及び5bで検出される温度差(過熱度
=Tb−Ta)が一定値となるように制御している。こ
れは、冷媒液の状態変化を蒸発コイル7内の適正位置で
行わせることによって熱交換を有効に行わせると共に、
室内負荷の大きい室内機2内では冷媒の蒸発が盛んにな
るために、冷媒の流通抵抗が増加して室内負荷の小さい
室内機2へ冷媒が偏流してしまうのを防止するためであ
る。
2. Description of the Related Art In this type of air conditioning system, FIG.
As shown in FIG. 1, the outdoor unit 1 that operates as a condenser during cooling
, The liquid refrigerant is gravity flowed down to the indoor unit 2 that operates as an evaporator, or is pressure-fed using a pump, is evaporated in the evaporation coil 7 of each indoor unit 2 and is returned to the outdoor unit 1 as a refrigerant vapor. , The opening degree of the expansion valve 4 interposed on the upstream side of each indoor unit 2, the temperature difference detected by the refrigerant temperature sensors 5a and 5b provided at the inlet and outlet of the outdoor unit 2 (superheat degree = Tb-Ta). Is controlled to be a constant value. This allows the heat exchange to be effectively performed by changing the state of the refrigerant liquid at an appropriate position in the evaporation coil 7, and
This is to prevent the refrigerant from becoming unevenly distributed to the indoor unit 2 having a small indoor load due to an increase in the flow resistance of the refrigerant due to the active evaporation of the refrigerant in the indoor unit 2 having a large indoor load.

【0003】室内機2の蒸発コイル7内の冷媒の状態を
過熱度すなわち出入口の温度センサ5a,5bによる温
度差によって監視している理由は、通常コイル7内で正
常に状態変化している場合の出入口の温度差(Tb−T
a)は5℃程度であるが、室外機1がオンオフ制御され
るために、室外機1から送られてくる冷媒の温度の変動
幅は例えば7±5℃と比較的大きく、従って出口の温度
のみではコイル7内における状態変化の有無乃至液面位
置を正確には検出することができないからである。また
上述のように蒸発コイル7の入口側の温度の変動幅が大
きいために、上記温度差の目標値も大きめに設定するの
が普通である。
The reason why the state of the refrigerant in the evaporation coil 7 of the indoor unit 2 is monitored by the degree of superheat, that is, the temperature difference between the inlet and outlet temperature sensors 5a and 5b is that the state inside the coil 7 normally changes. Temperature difference between the entrance and the exit (Tb-T
Although a) is about 5 ° C., since the outdoor unit 1 is on / off controlled, the fluctuation range of the temperature of the refrigerant sent from the outdoor unit 1 is relatively large, for example, 7 ± 5 ° C., and therefore the outlet temperature This is because it is not possible to accurately detect the presence or absence of a state change in the coil 7 or the liquid surface position only with the coil. Further, since the variation width of the temperature on the inlet side of the evaporation coil 7 is large as described above, it is usual to set the target value of the temperature difference to a large value.

【0004】[0004]

【発明が解決しようとする課題】上記システムにおい
て、冷房負荷の変化に対して室外機1はオンオフ運転を
行ているが、複数の室内機2のうちの一部が稼働してい
る部分負荷時において、室外機1が「オフ」から「低」
あるいは「低」から「高」に切り換えられた場合、室外
機1の出口温度及び圧力が低下するために、各室内機2
の膨張弁4前の圧力も低下する。しかしその際に、室内
機2の出入口の温度差は急には変化しないので膨張弁4
の開度は変化せず、その結果室内機2へ供給される冷媒
量が膨張弁前の圧力低下によって不足し、室内機2の能
力が低下することになる。
In the above system, when the outdoor unit 1 is on / off operated in response to a change in the cooling load, a partial load operation is performed when some of the plurality of indoor units 2 are operating. The outdoor unit 1 is "off" to "low"
Alternatively, when the temperature is switched from “low” to “high”, the outlet temperature and pressure of the outdoor unit 1 decrease, so that each indoor unit 2
The pressure in front of the expansion valve 4 also decreases. However, at that time, the temperature difference between the inlet and outlet of the indoor unit 2 does not change suddenly, so the expansion valve 4
Does not change, and as a result, the amount of refrigerant supplied to the indoor unit 2 becomes insufficient due to the pressure drop before the expansion valve, and the capacity of the indoor unit 2 decreases.

【0005】勿論このような場合には、出入口の温度セ
ンサ5a,5bで検出される温度差(Tb−Ta)が目
標過熱度よりも大きくなるので、これを補正するために
膨張弁4が開方向に制御されるが、それは温度センサ5
a,5bが温度差の上昇を検出したのちのことであり、
しかも膨張弁4の開度の修正も僅かずつしか行われない
ので、冷媒送出圧力の急変には追従できず、室温が正常
に戻るまでには相当の時間遅れが生じるという問題があ
った。本発明は上述の問題点を解消して、室内機1の過
熱度制御が室外機の負荷の急変に伴う冷媒圧力の不連続
変化にも追従できるようなこの種の空調システムを提供
することを目的とするものである。
Of course, in such a case, the temperature difference (Tb-Ta) detected by the temperature sensors 5a and 5b at the inlet and outlet becomes larger than the target superheat degree, so the expansion valve 4 is opened to correct this. Directionally controlled, which is temperature sensor 5
a, 5b after detecting the rise in temperature difference,
Moreover, since the opening degree of the expansion valve 4 is only corrected little by little, a sudden change in the refrigerant delivery pressure cannot be followed, and there is a problem that a considerable time delay occurs until the room temperature returns to normal. The present invention solves the above problems and provides an air conditioning system of this type in which the superheat control of the indoor unit 1 can follow a discontinuous change in the refrigerant pressure due to a sudden change in the load of the outdoor unit. It is intended.

【0006】[0006]

【課題を解決するための手段】本発明は、図1及び表1
に示すように、室外機1で凝縮させた冷媒を複数の室内
機2へ送り、各室内機2で冷媒を蒸発させて室外機1へ
還流させると共に、各室内機2の上流側の分岐冷媒配管
3に介装した膨張弁4の開度を、室内機2の出入口にお
ける冷媒の温度差(Tb−Ta)が所定の値になるよう
に制御するようにした空調システムにおいて、室外機1
の出口に設けた冷媒温度センサ12又は冷媒圧力センサ
によって検出される温度又は圧力(請求項1)に応じ
て、要すれば一定の遅れ時間経過後(請求項2)に、あ
るいは検出された温度又は圧力の時間変化率(請求項
3)に応じて、上記温度差(Tb−Ta)の制御目標値
を複数段に切り換える手段を設けたものである。
The present invention is based on FIG. 1 and Table 1.
As shown in FIG. 3, the refrigerant condensed in the outdoor unit 1 is sent to the plurality of indoor units 2, the refrigerant is evaporated in each indoor unit 2 and returned to the outdoor unit 1, and the branch refrigerant on the upstream side of each indoor unit 2 In the air conditioning system, the opening degree of the expansion valve 4 provided in the pipe 3 is controlled so that the temperature difference (Tb-Ta) of the refrigerant at the inlet and outlet of the indoor unit 2 becomes a predetermined value.
Depending on the temperature or pressure (Claim 1) detected by the refrigerant temperature sensor 12 or the refrigerant pressure sensor provided at the outlet of the outlet, if necessary, after a certain delay time (Claim 2) or the detected temperature. Alternatively, a means for switching the control target value of the temperature difference (Tb-Ta) to a plurality of stages according to the time rate of change in pressure (claim 3) is provided.

【0007】[0007]

【作用】図2の従来構成においては、例えば複数の室内
機2の一つが無負荷になる等の理由で負荷が急変した場
合、室外機1が冷媒液の送出温度Tあるいは圧力により
これを検知し、表4において冷凍機入力が「高」から
「低」、あるいは「低」から「オフ」に切り換えられる
が、目標過熱度(出入口温度差)は6.0℃と一定であ
り、冷媒液の温度Tが変化しても温度差(Tb−Ta)
は急には変化しないために、膨張弁4の開度がある程度
修正されるまでには相当な時間遅れがあり、従って冷媒
が必要以上に流れて室内空気は一時的に過冷却となり、
室温が正常に復するまでに時間がかかるという欠点があ
った。それに対して図1の本発明構成によれば、表1に
示すように、負荷の急変時に室外機1の冷凍入力を「オ
フ」「低」「高」のように不連続に変化させると同時
に、膨張弁4の制御目標である過熱度も切り換えられる
ので、その時点での冷媒の温度差(Tb−Ta)は目標
過熱度から大きく逸脱することになり、従って膨張弁4
の開度は直ちに且つ大幅に修正されて、負荷の急変に対
応することができるのである。
In the conventional configuration of FIG. 2, when the load suddenly changes due to, for example, one of the plurality of indoor units 2 becoming unloaded, the outdoor unit 1 detects this by the delivery temperature T or pressure of the refrigerant liquid. Then, in Table 4, the refrigerator input is switched from “high” to “low” or from “low” to “off”, but the target superheat degree (difference between inlet and outlet temperatures) is 6.0 ° C. and is constant. Temperature difference (Tb-Ta) even if the temperature T changes
Since there is no sudden change, there is a considerable time delay until the opening degree of the expansion valve 4 is corrected to some extent, so that the refrigerant flows more than necessary and the indoor air is temporarily supercooled.
There was a drawback that it took time to restore the room temperature to normal. On the other hand, according to the configuration of the present invention in FIG. 1, as shown in Table 1, the refrigeration input of the outdoor unit 1 is discontinuously changed to “OFF”, “Low”, “High” at the same time when the load suddenly changes. Since the superheat degree which is the control target of the expansion valve 4 is also switched, the temperature difference (Tb-Ta) of the refrigerant at that time largely deviates from the target superheat degree, and therefore the expansion valve 4
The degree of opening can be corrected immediately and significantly to cope with a sudden change in load.

【0008】また請求項2の構成は、冷媒温度あるいは
圧力の変化は慣性が大きく、実際に負荷が急変し室外機
の冷凍入力を切り換えてから、その影響が出口温度Tあ
るいは圧力の変化となって現われるまでには若干の時間
を要するので、システムの規模等の条件によっては膨張
弁4を開閉するタイミングが早すぎることがあり、これ
を調整するために遅れ時間を設けたものである。更に請
求項3の構成は、上記遅れ時間を考慮する必要がなく、
しかも膨張弁4開閉のタイミングを逸しないように、温
度の時間的変化率がある値を超えた時点で、一定時間後
に温度曲線の山あるいは谷がくるのを予測して、予め目
標過熱度を切り換えるようにしたものである。
According to the second aspect of the invention, the change in the refrigerant temperature or the pressure has a large inertia, and after the load is changed suddenly and the refrigerating input of the outdoor unit is switched, the effect thereof is the change in the outlet temperature T or the pressure. Since it takes some time to appear, the timing for opening and closing the expansion valve 4 may be too early depending on the conditions such as the system scale, and a delay time is provided to adjust this. Further, according to the configuration of claim 3, it is not necessary to consider the delay time,
Moreover, in order not to miss the timing of opening and closing the expansion valve 4, when the time rate of change in temperature exceeds a certain value, it is predicted that a peak or a trough of the temperature curve will come after a certain time, and the target superheat degree is set in advance. It is designed to be switched.

【0009】[0009]

【実施例】図1は本発明による空調システムの一実施例
を示したもので、室外機1は、例えば吸収式冷凍機1a
と冷却塔1bとで構成され、ビルの屋上のように複数の
室内機2のどれよりも高い場所に設置されており、この
室外機1の凝縮器で凝縮された冷媒液(例えばR22,
R134a等)を、送り側の冷媒配管8を通って複数の
室内機2へ自重により自然流下させ、各室内機2で冷媒
を蒸発させて、戻り側の冷媒配管7を通って室外機1へ
還流させるようになっている。また各室内機2では、フ
ァン6により吸い込んだ室内空気を、蒸発コイル7で冷
却して室内に吹き出すようになっており、蒸発コイル7
の出入口に設けられている冷媒温度センサ5a,5bに
よって、蒸発コイル内での温度上昇(Tb−Ta)を監
視し、この検出出力で膨張弁4の開度を比例制御するこ
とによって、蒸発コイル7内の適当な箇所で冷媒の蒸発
が完了するように制御している。10は室内機2の制御
装置である。
FIG. 1 shows an embodiment of an air conditioning system according to the present invention. The outdoor unit 1 is, for example, an absorption refrigerator 1a.
And a cooling tower 1b, which is installed at a position higher than any of the plurality of indoor units 2 such as on the roof of a building, and the refrigerant liquid condensed by the condenser of this outdoor unit 1 (for example, R22,
R134a) is allowed to naturally flow down to the plurality of indoor units 2 through the refrigerant pipe 8 on the sending side by its own weight to evaporate the refrigerant in each indoor unit 2 and to the outdoor unit 1 through the refrigerant pipe 7 on the returning side. It is designed to be refluxed. In each indoor unit 2, the indoor air sucked by the fan 6 is cooled by the evaporation coil 7 and blown out into the room.
The temperature rise (Tb-Ta) in the evaporation coil is monitored by the refrigerant temperature sensors 5a and 5b provided at the inlet and outlet of the evaporator, and the opening degree of the expansion valve 4 is proportionally controlled by this detection output, whereby the evaporation coil It is controlled so that the evaporation of the refrigerant is completed at an appropriate position within 7. Reference numeral 10 is a control device for the indoor unit 2.

【0010】一方室外機1から送出される冷媒の温度T
は、室外機1の出口付近の冷媒配管8に設けられた冷媒
温度センサ12の出力によって、冷凍機のガスバーナ1
4へ燃料ガスを供給する燃料制御弁13を「高」「低」
「オフ」の3段階に制御することにより、一定範囲に維
持されているが、この3段階の制御信号は、燃料制御弁
13へ送られると同時に、室外機1の制御装置11から
室内機2の制御装置10へも送られて、膨張弁4の制御
目標となる過熱度を3段階に切り換える信号としても使
用されている。表1は、室外機1の冷媒送出温度Tと、
吸収冷凍機1aの入力である燃料供給量及び室内機2の
膨張弁4の目標過熱度(Tb−Ta)との関係を示した
ものである。
On the other hand, the temperature T of the refrigerant sent from the outdoor unit 1
Is output from a refrigerant temperature sensor 12 provided in the refrigerant pipe 8 near the outlet of the outdoor unit 1, and the gas burner 1 of the refrigerator is
Fuel control valve 13 for supplying fuel gas to No. 4 is set to "high""low"
By controlling in three stages of “OFF”, the control signals are maintained in a certain range. The control signals of these three stages are sent to the fuel control valve 13 and, at the same time, from the control device 11 of the outdoor unit 1 to the indoor unit 2. It is also sent to the control device 10 of FIG. 1 and used as a signal for switching the superheat degree, which is the control target of the expansion valve 4, in three steps. Table 1 shows the refrigerant delivery temperature T of the outdoor unit 1,
It shows the relationship between the fuel supply amount that is the input of the absorption refrigerator 1a and the target superheat degree (Tb-Ta) of the expansion valve 4 of the indoor unit 2.

【0011】表1において、室外機1の負荷があまり変
動しない場合には、冷凍機1aは例えば「低」の燃料供
給量で冷凍を行っており、このとき室内機2では室温の
変化に対して、冷媒温度センサ5a,5bの出力変化
(過熱度6.0℃からのずれ)に比例した膨張弁4の開
度変化によって、室温が一定値を維持するように温度調
節されている。ここで他の部屋の室内機2が一斉に運転
を開始し、室外機1の負荷がある範囲を超えて上昇し
て、例えば温度センサ12の温度Tが7℃を超えた場合
には、制御装置11は室外機入力すなわち冷凍機の燃料
制御弁13を「高」に切り換えると同時に、制御装置1
0にも信号を送って膨張弁4を制御するための目標過熱
度すなわち温度センサ5a,5bの温度差(Tb−T
a)の目標値を5.0℃に切り換える。従って膨張弁4
は、いままで過熱度6.0℃の近辺で制御されていた開
度が、一挙に1.0℃に相当する分だけ開方向に制御さ
れ、室外機1から送られてくる冷媒の温度Tの急上昇に
いち早く対応する。
In Table 1, when the load of the outdoor unit 1 does not fluctuate much, the refrigerator 1a is refrigerating with a "low" fuel supply amount, and at this time, the indoor unit 2 responds to changes in room temperature. Then, the temperature of the room temperature is adjusted so as to maintain a constant value by the change in the opening degree of the expansion valve 4 in proportion to the change in the outputs of the refrigerant temperature sensors 5a and 5b (deviation from the superheat degree of 6.0 ° C.). Here, when the indoor units 2 in the other rooms all simultaneously start operating and the load of the outdoor unit 1 rises above a certain range and, for example, the temperature T of the temperature sensor 12 exceeds 7 ° C., control is performed. The device 11 switches the outdoor unit input, that is, the fuel control valve 13 of the refrigerator to "high", and at the same time, the control device 1
The target degree of superheat for controlling the expansion valve 4, that is, the temperature difference between the temperature sensors 5a and 5b (Tb-T).
The target value of a) is switched to 5.0 ° C. Therefore expansion valve 4
The opening degree, which has been controlled in the vicinity of the superheat degree of 6.0 ° C. until now, is controlled in the opening direction by the amount corresponding to 1.0 ° C. at a stroke, and the temperature T of the refrigerant sent from the outdoor unit 1 is controlled. Respond swiftly to the sudden rise in.

【0012】この点、目標過熱度の切り換えが行われな
い従来方式(表4)では、室外機1の負荷の増加によっ
て室内機2へ入る冷媒の温度が上昇し始め、蒸発コイル
7内の蒸発点が入口側へ移動するので、過熱度は6.0
℃を超えて増加するが、切り換え直後は6.0℃からの
ずれが未だ僅かであるために、膨張弁4の変化もきわめ
て僅かであって、負荷の急変に追従できない。しかるに
本発明方式によれば、切り換え直後から目標過熱度が
5.0℃に切り換わるので、目標からのずれが一挙に増
加して、膨張弁4は温度センサ5bの温度上昇を待つま
でもなく直ちに応答し、負荷の急変に対応することがで
きるのである。なおシステムの規模が大きくなると、負
荷の急変の影響が室内機2に現われるまでの時間も長く
なって、目標過熱度を切り換えるタイミングが早過ぎる
ということも起こり得る。そのような場合には、制御装
置11を構成するマイコンの計時機構等を利用して、室
外機入力の切り換え時点と目標過熱度の切り換え時点と
の間に一定の遅れ時間を設けてやればよい。
In this respect, in the conventional method (Table 4) in which the target superheat degree is not switched, the temperature of the refrigerant entering the indoor unit 2 starts to rise due to the increase in the load of the outdoor unit 1, and the evaporation in the evaporation coil 7 is increased. Since the point moves to the inlet side, the degree of superheat is 6.0.
Although the temperature increases above 0 ° C., the change from the expansion valve 4 is very small because the deviation from 6.0 ° C. is still small immediately after switching, and the sudden change in load cannot be followed. However, according to the method of the present invention, since the target degree of superheat switches to 5.0 ° C. immediately after switching, the deviation from the target increases at once, and the expansion valve 4 does not have to wait for the temperature of the temperature sensor 5b to rise. It can respond immediately and respond to sudden changes in load. It should be noted that as the scale of the system increases, the time until the effect of the sudden change in load appears in the indoor unit 2 also increases, and the timing of switching the target superheat degree may occur too early. In such a case, a certain delay time may be provided between the switching time point of the outdoor unit input and the switching time point of the target superheat degree by utilizing the timekeeping mechanism of the microcomputer constituting the control device 11. .

【0013】表2は本発明の他の実施例を示したもの
で、室内機2の目標過熱度すなわち温度センサ5a,5
bによって検出される温度差(Tb−Ta)の制御目標
値を、室外機1の出口に設けた冷媒温度センサ12によ
って検出されるの温度Tの時間変化率(dT/dt)に
応じて複数段に切り換える手段を設けたものである。こ
れは、室外機1からの冷媒送出温度の制御は慣性が大き
く、冷媒送出温度Tが7℃を超えて室外機入力が「高」
に切り換わったのちも、なおしばらくは送出温度Tの上
昇が続き、負荷の変動が激しい場合などには例えば12
℃まで上昇してしまうことがあるので、冷媒送出温度の
上昇又は下降の勾配が一定以上になったときに予め室内
機2へ目標過熱度切り換えの信号を送り、膨張弁4の修
正動作を開始させるようにしたものである。この構成に
よれば、冷凍機入力の切り換えの影響が実際に出口温度
に現われるのを待って目標過熱度を切り換えているの
で、前述のような遅れ時間を考慮する必要がない。なお
上記温度の時間変化率(dT/dt)は、例えば温度セ
ンサ12の出力を30秒間隔で読み取って、前回データ
との差をとることにより容易に得られる。
Table 2 shows another embodiment of the present invention. The target degree of superheat of the indoor unit 2, that is, the temperature sensors 5a, 5
A plurality of control target values of the temperature difference (Tb-Ta) detected by b are determined according to the time change rate (dT / dt) of the temperature T detected by the refrigerant temperature sensor 12 provided at the outlet of the outdoor unit 1. It is provided with a means for switching between stages. This is because the control of the refrigerant delivery temperature from the outdoor unit 1 has a large inertia, the refrigerant delivery temperature T exceeds 7 ° C., and the outdoor unit input is “high”.
After switching to, the sending temperature T continues to rise for a while, and if the load fluctuates significantly, for example, 12
Since the temperature may rise to ℃, when the gradient of rise or fall of the refrigerant delivery temperature becomes a certain level or more, a signal for switching the target superheat degree is sent to the indoor unit 2 in advance, and the correction operation of the expansion valve 4 is started. It was made to let. According to this configuration, the target superheat degree is switched after waiting for the effect of the switching of the refrigerator input to actually appear in the outlet temperature, so it is not necessary to consider the delay time as described above. The time rate of change (dT / dt) of the temperature can be easily obtained by, for example, reading the output of the temperature sensor 12 at intervals of 30 seconds and taking the difference from the previous data.

【0013】表3は更に他の実施例を示したもので、室
内機2のファン6の風量は、室内温度すなわち室内機2
への空気吸込口に設けられている温度センサ(図示せ
ず)の出力によって自動的に、但し手動切換スイッチが
操作されたときは強制的に、「強」「中」「弱」の3段
階に切り換えられるようになっており、このファン風量
の切り換えによっても室内機2の負荷が急変して、蒸発
コイル7内の蒸発点が移動し、熱交換効率が低下したり
戻り冷媒配管9内に液状の冷媒が混入して冷媒の循環を
阻害したりするので、目標過熱度の切り換えを、前述の
室外機1の冷媒送出温度による3段階の各段毎に、室内
機2のファン風量により3段階に行えるようにしたもの
である。
Table 3 shows still another embodiment. The air volume of the fan 6 of the indoor unit 2 is the indoor temperature, that is, the indoor unit 2
3 levels of "strong""medium""weak" automatically by the output of a temperature sensor (not shown) provided at the air intake port, but when the manual switch is operated. The switching of the fan air volume causes a sudden change in the load of the indoor unit 2 to move the evaporation point in the evaporation coil 7, which lowers the heat exchange efficiency and reduces the heat exchange efficiency in the return refrigerant pipe 9. Since the liquid refrigerant mixes and hinders the circulation of the refrigerant, the switching of the target superheat degree is performed by the fan air flow rate of the indoor unit 2 in each of the three stages depending on the refrigerant delivery temperature of the outdoor unit 1 described above. It can be done in stages.

【0011】[0011]

【発明の効果】本発明の構成によれば上述のように、室
外機1の負荷が急変した場合には、同時に膨張弁4の制
御目標である過熱度も切り換えられるので、その時点で
の冷媒の温度差は制御目標値(目標過熱度)から大きく
逸脱することになり、従って膨張弁4の開度は直ちに且
つ大幅に修正されて、室外機1の負荷の急変に対応する
ことができるという利点がある。なお上述の実施例で
は、室外機1の負荷変動を室外機1の出口に設けた冷媒
温度センサ12によって検出するようにしたが、温度と
共に変化する圧力によって検出するようにしても同様の
効果が得られる。
As described above, according to the configuration of the present invention, when the load of the outdoor unit 1 suddenly changes, the superheat degree which is the control target of the expansion valve 4 is also switched at the same time, so the refrigerant at that time is changed. That is, the temperature difference of 1 largely deviates from the control target value (target superheat degree). Therefore, the opening degree of the expansion valve 4 can be corrected immediately and greatly to cope with a sudden change in the load of the outdoor unit 1. There are advantages. In the above-described embodiment, the load fluctuation of the outdoor unit 1 is detected by the refrigerant temperature sensor 12 provided at the outlet of the outdoor unit 1, but the same effect can be obtained by detecting the pressure change with the temperature. can get.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の概略系統図。FIG. 1 is a schematic system diagram of an embodiment of the present invention.

【図2】従来例の概略系統図。FIG. 2 is a schematic system diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 室外機 2 室内機 3 分岐冷媒配管 4 膨張弁 5a 室内機入口の温度センサ 5b 室内機出口の温度センサ 6 ファン 7 蒸発コイル 8 送り側冷媒配管 9 戻り側冷媒配管 10 室内機の制御装置 11 室外機の制御装置 12 室外機出口の温度センサ 13 燃料制御弁 14 ガスバーナ 1 outdoor unit 2 Indoor unit 3 branch refrigerant piping 4 expansion valve 5a Temperature sensor at indoor unit inlet 5b Indoor unit outlet temperature sensor 6 fans 7 evaporation coil 8 Feeding side refrigerant piping 9 Return side refrigerant piping 10 Indoor unit control device 11 Outdoor unit control device 12 Temperature sensor at outdoor unit outlet 13 Fuel control valve 14 gas burner

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 390003333 新晃工業株式会社 大阪府大阪市北区南森町1丁目4番5号 (73)特許権者 000003621 株式会社竹中工務店 大阪府大阪市中央区本町4丁目1番13号 (72)発明者 小林 昇 大阪市中央区平野町四丁目1番2号 大 阪瓦斯株式会社内 (72)発明者 奥村 剛 大阪市中央区平野町四丁目1番2号 大 阪瓦斯株式会社内 (72)発明者 藤巻 誠一郎 東京都港区海岸一丁目5番20号 東京瓦 斯株式会社内 (72)発明者 清水 敏春 名古屋市熱田区桜田町19番18号 東邦瓦 斯株式会社内 (72)発明者 頓宮 伸二 東京都港区三田一丁目4番28号 矢崎総 業株式会社内 (72)発明者 吉田 康敏 大阪市北区南森町一丁目4番5号 新晃 工業株式会社内 (72)発明者 楠本 望 大阪市中央区本町四丁目1番13号 株式 会社竹中工務店内 (56)参考文献 特開 平3−195838(JP,A) 特開 平7−4758(JP,A) 特開 平3−181727(JP,A) 特開 平3−186128(JP,A) 特開 平2−89940(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24F 5/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (73) Patent holder 390003333 Shinko Industrial Co., Ltd. 1-4-5 Minamimorimachi, Kita-ku, Osaka-shi, Osaka (73) Patent holder 000003621 Takenaka Corporation Central Osaka-shi, Osaka 4-1-1, Honcho, Ku (72) Noboru Kobayashi 4-1-2, Hirano-cho, Chuo-ku, Osaka City In Osaka Osaka Gas Co., Ltd. (72) Takeshi Okumura 4-1-1, Hirano-cho, Chuo-ku, Osaka No. 2 Osaka Gas Co., Ltd. (72) Inventor Seiichiro Fujimaki 1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas Co., Ltd. (72) Inventor Toshiharu Shimizu 19-18 Sakurada-cho, Atsuta-ku, Nagoya Toho Gas Co., Ltd. (72) Inventor Shinji Tonmiya 1-42 Mita, Minato-ku, Tokyo Yazaki Corporation (72) Inventor Yasutoshi Yoshida 1-4-5 Minamimorimachi, Kita-ku, Osaka Shinko Industrial stock In-house (72) Inventor Nozomu Kusumoto 4-1-1-13 Honmachi, Chuo-ku, Osaka Inside Takenaka Corporation (56) References JP-A-3-195838 (JP, A) JP-A-7-4758 (JP, A) ) JP-A-3-181727 (JP, A) JP-A-3-186128 (JP, A) JP-A-2-89940 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F24F 5/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 室外機で凝縮させた冷媒を複数の室内機
へ送り、各室内機で冷媒を蒸発させて室外機へ還流させ
ると共に、各室内機の上流側の分岐冷媒配管に介装した
膨張弁の開度を、室内機の出入口に設けた冷媒温度セン
サで検出される温度差が所定の値になるように制御する
ようにした空調システムにおいて、室外機の出口に設け
た冷媒温度センサ又は冷媒圧力センサによって検出され
る温度又は圧力に応じて、室外機の冷凍入力を複数段に
切り換えると共に、上記温度差の制御目標値を複数段に
切り換える手段を設けて成る空調システム。
1. A refrigerant condensed in an outdoor unit is sent to a plurality of indoor units, and the refrigerant is evaporated in each indoor unit to be returned to the outdoor unit, and is also installed in a branch refrigerant pipe on the upstream side of each indoor unit. In an air conditioning system in which the opening of the expansion valve is controlled so that the temperature difference detected by the refrigerant temperature sensor provided at the inlet / outlet of the indoor unit becomes a predetermined value, the refrigerant temperature sensor provided at the outlet of the outdoor unit Alternatively, according to the temperature or pressure detected by the refrigerant pressure sensor, the refrigerating input of the outdoor unit is switched to a plurality of stages, and a means for switching the control target value of the temperature difference to a plurality of stages is provided.
【請求項2】 上記室外機の冷凍入力の切り換え時点と
上記温度差の制御目標値の切り換え時点との間に一定の
遅れ時間を設けて成る請求項1記載の空調システム。
2. The air conditioning system according to claim 1, wherein a constant delay time is provided between a switching time point of the refrigeration input of the outdoor unit and a switching time point of the control target value of the temperature difference.
【請求項3】 室外機で凝縮させた冷媒を複数の室内機
へ送り、各室内機で冷媒を蒸発させて室外機へ還流させ
ると共に、各室内機の上流側の分岐冷媒配管に介装した
膨張弁の開度を、室内機の出入口における冷媒の温度差
が所定の値になるように制御するようにした空調システ
ムにおいて、上記温度差の制御目標値を室外機の出口に
設けた冷媒温度センサ又は冷媒圧力センサによって検出
される温度又は圧力の時間変化率に応じて複数段に切り
換える手段を設けて成る空調システム。
3. The refrigerant condensed in the outdoor unit is sent to a plurality of indoor units, the refrigerant is evaporated in each indoor unit to be returned to the outdoor unit, and the refrigerant is interposed in the branch refrigerant pipe on the upstream side of each indoor unit. In an air-conditioning system that controls the opening of the expansion valve so that the temperature difference between the refrigerant at the inlet and outlet of the indoor unit becomes a predetermined value, the control target value of the temperature difference is the refrigerant temperature at the outlet of the outdoor unit. An air conditioning system provided with means for switching to a plurality of stages according to a time change rate of temperature or pressure detected by a sensor or a refrigerant pressure sensor.
JP13858295A 1995-05-13 1995-05-13 Air conditioning system Expired - Fee Related JP3381753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13858295A JP3381753B2 (en) 1995-05-13 1995-05-13 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13858295A JP3381753B2 (en) 1995-05-13 1995-05-13 Air conditioning system

Publications (2)

Publication Number Publication Date
JPH08313002A JPH08313002A (en) 1996-11-29
JP3381753B2 true JP3381753B2 (en) 2003-03-04

Family

ID=15225494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13858295A Expired - Fee Related JP3381753B2 (en) 1995-05-13 1995-05-13 Air conditioning system

Country Status (1)

Country Link
JP (1) JP3381753B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966954A (en) * 1996-12-04 1999-10-19 Sanyo Electronic Co., Ltd. Air conditioning system

Also Published As

Publication number Publication date
JPH08313002A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
US6298677B1 (en) Reversible heat pump system
JP3381753B2 (en) Air conditioning system
JP3206245B2 (en) Air conditioner
JPH0552441A (en) Method and device for controlling absorption type heater cooler
JP2011027347A (en) Air conditioner
JPH07332795A (en) Multiroom type air-conditioning system
JPH1038398A (en) Controller of electric expansion valve
JPH02223757A (en) Air conditioner
JP3306455B2 (en) Air conditioner
JP3381752B2 (en) Air conditioning system
JP2508528Y2 (en) Air conditioner
JP2649986B2 (en) Clean room using a direct expansion type heat exchanger
JP2839347B2 (en) Air conditioner
JP3231081B2 (en) Refrigerant heating air conditioner
JPH06174345A (en) Defrosting device for outdoor heat exchanger for heat pump type air conditioner
JP3546102B2 (en) Engine driven air conditioner
JPH0387549A (en) Air conditioner
JP3046885B2 (en) Air conditioner
JPH0599519A (en) Heat pump type air conditioner
JP2867792B2 (en) Heating and cooling machine
JP3310712B2 (en) Water-cooled air conditioner
JPH06213541A (en) Heating-and-cooling machine
JPH03217767A (en) Air conditioner
JPH06180165A (en) Heating and cooling machine
JPH0328678B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021101

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees