JPH0830949A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0830949A
JPH0830949A JP15830694A JP15830694A JPH0830949A JP H0830949 A JPH0830949 A JP H0830949A JP 15830694 A JP15830694 A JP 15830694A JP 15830694 A JP15830694 A JP 15830694A JP H0830949 A JPH0830949 A JP H0830949A
Authority
JP
Japan
Prior art keywords
film
magnetic
recording medium
magnetic recording
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15830694A
Other languages
Japanese (ja)
Inventor
Hidetoshi Hagiwara
英俊 萩原
Masahiro Tobiyo
飛世  正博
Kohei Ito
康平 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP15830694A priority Critical patent/JPH0830949A/en
Publication of JPH0830949A publication Critical patent/JPH0830949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To enhance coercive force, to reduce noise and to obtain a magnetic recording medium fit for high density recording by interposing a metallic intermediate film for controlling the fine structure of an under film between a glass substrate and the under film. CONSTITUTION:A metallic intermediate film 12 of Cr for controlling the fine structure of an under film 13 is interposed between a glass substrate 11 and the under film 13 of Cr, etc., and a magnetic film 14 consisting of 7-12at.% Cr, 18-28at.% Ni and the balance Co with inevitable impurities is formed on the under film 13. The intermediate film 12 affects the crystal growth of the films 13, 14 laminated in succession, enhances the coercive force of the magnetic film 14 by controlling the fine structure of the film 14 and reduces noise. The thickness of the intermediate film 12 is preferably regulated to 50-500Angstrom so as to bring the under film 11 into crystal growth favorable for the production of the objective magnetic recording medium fit for high density recording.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、情報を記録する磁気デ
ィスク装置に用いられる磁気記録媒体に関し、詳しくは
磁性層下に改良された下地層を有し、ガラス基板上にC
oNiCrを積層して高保磁力を得られるようにしたも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium used in a magnetic disk device for recording information, and more specifically, it has an improved underlayer under the magnetic layer and has a C layer on a glass substrate.
This is a laminate of oNiCr so that a high coercive force can be obtained.

【0002】[0002]

【従来の技術】非磁性基板上に、スパッタ法等の方法で
Cr,W,Moまたはこれらを主成分とする合金膜を下
地膜として形成し、該下地膜上にCo−Cr−Ta、C
o−Ni−Cr、Co−Cr−Pt等の合金膜を形成し
た磁気記録媒体が、高密度記録可能な磁気記録媒体とし
て現在用いられている。コンピューター用磁気ディスク
装置では、近年その大容量化が強く求められているが、
大容量化を図るためには磁気記録媒体における記録密度
を高めることが必要である。記録密度を高めるために
は、磁気ヘッドの低浮上量化を可能とするために平滑な
表面を有する基板、および磁気記録媒体の高保磁力化、
低ノイズ化が求められている。ところで、従来磁気記録
媒体用基板としてはNiPメッキを施したアルミ基板が
用いられているが、近年、磁気ディスク用基板としてガ
ラス基板が注目されている。ガラス基板は、その表面の
平滑性が優れ、硬く、変形抵抗が大きく、かつ表面欠陥
が少ないことから、高密度磁気ディスク用基板として注
目されている(例えば、特開昭49−122707号、
特開昭52−18002号)。磁気記録媒体の構成は、
NiPメッキを施したアルミ基板を用いた場合にはCr
等の下地膜上にCoCrTa,CoNiPt,CoCr
Pt,CoNiCr等の磁性膜、C,SiO2等の保護
膜が順次積層されている。ガラス基板を用いた場合アル
ミ基板と同様にガラス基板上に直接下地膜を成膜し、磁
性膜、保護膜を順次積層した場合には、アルミ基板を用
いた場合に比べ保磁力が低くなり、同等の保磁力を得る
ためには下地膜の膜厚を厚くしなければならない。そこ
で、特開平2−29923号公報にはガラス基板と下地
膜の間に、ガラス基板から放出されるガスを封じ込めう
る非磁性中間膜を設けて磁気特性を改善したものが開示
されている。
2. Description of the Related Art Cr, W, Mo or an alloy film containing them as a main component is formed as a base film on a non-magnetic substrate by a method such as a sputtering method, and Co-Cr-Ta, C is formed on the base film.
A magnetic recording medium having an alloy film such as o-Ni-Cr or Co-Cr-Pt formed is currently used as a magnetic recording medium capable of high density recording. In magnetic disk devices for computers, there is a strong demand for large capacity in recent years.
In order to increase the capacity, it is necessary to increase the recording density of the magnetic recording medium. In order to increase the recording density, a substrate having a smooth surface to enable the flying height of the magnetic head to be lowered, and a high coercive force of the magnetic recording medium,
Low noise is required. By the way, conventionally, a NiP-plated aluminum substrate has been used as a magnetic recording medium substrate, but in recent years, a glass substrate has attracted attention as a magnetic disk substrate. A glass substrate has attracted attention as a substrate for a high-density magnetic disk because it has excellent surface smoothness, is hard, has a large deformation resistance, and has few surface defects (for example, JP-A-49-122707).
JP-A-52-18002). The structure of the magnetic recording medium is
When using an aluminum substrate plated with NiP, Cr
CoCrTa, CoNiPt, CoCr on the underlying film such as
A magnetic film of Pt, CoNiCr or the like and a protective film of C, SiO 2 or the like are sequentially laminated. When a glass substrate is used, a coercive force is lower than when an aluminum substrate is used when an underlayer film is directly formed on the glass substrate as in the case of an aluminum substrate, and a magnetic film and a protective film are sequentially laminated. In order to obtain the same coercive force, it is necessary to increase the thickness of the underlayer film. In view of this, Japanese Patent Laid-Open No. 29923/1990 discloses a nonmagnetic intermediate film provided between a glass substrate and a base film to contain gas released from the glass substrate to improve magnetic properties.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
従来技術に開示される磁気記録媒体では、下地層の膜厚
を厚くすることなく磁性層の保磁力を大きくできるとい
う利点を有するが、得られる保磁力は前記の公報に開示
されているように1100Oe〜1390Oe程度であ
り、高保磁力を要求される磁気記録媒体としては必ずし
も要求を満たすものではないという問題があった。そこ
で本発明は、ガラス基板を用いた磁気記録媒体のCoN
iCr合金磁性膜の組成及び磁気特性、記録再生特性を
検討し、保磁力を高め、ノイズを低減し、高密度記録に
適する磁気記録媒体を提供することを目的とする。
However, the magnetic recording medium disclosed in the above prior art has the advantage that the coercive force of the magnetic layer can be increased without increasing the thickness of the underlayer. The coercive force is about 1100 Oe to 1390 Oe as disclosed in the above-mentioned publication, and there is a problem that it does not always meet the requirement as a magnetic recording medium required to have a high coercive force. Therefore, the present invention is directed to CoN of a magnetic recording medium using a glass substrate.
The purpose of the present invention is to provide a magnetic recording medium suitable for high-density recording by examining the composition, magnetic characteristics, and recording / reproducing characteristics of the iCr alloy magnetic film, increasing coercive force, reducing noise.

【0004】[0004]

【課題を解決するための手段】発明者らは、ガラス基板
を用い、CoNiCr磁性膜合金の組成、及び作製条件
を磁気特性、記録再生特性向上のために鋭意研究し、本
発明をするに至った。本発明は、ガラス基板上とCr等
の下地膜の間に下地膜の微細構造を制御するCrからな
る金属中間膜をもうけた磁気記録媒体において、磁性膜
を7at%以上12at%以下のCr、18at%以上
28at%以下のNi、残部Co及び不可避的不純物か
らなることを特徴とする磁気記録媒体である。Crから
なる金属中間膜を設けた理由は次のとおりである。磁性
膜の磁気特性、記録再生特性は、磁性膜の結晶粒径、配
向等の微細構造に依存する。そして、磁性膜の結晶成長
は下地膜の結晶成長により変化する。したがって、磁気
特性、記録再生特性の優れた磁性膜を作製するために
は、下地膜の結晶組織を良くしなければならない。ガラ
ス基板にCrからなる金属中間膜を設けると、基板加熱
時にCr中間膜を設けない場合に比べ基板温度が上昇す
る。また、Cr中間膜を設けた場合には、Cr下地膜と
同じ材料を用いているためガラス表面に直接Cr下地膜
を成膜するよりも均一な結晶成長を行わせることが可能
となる。以上のようにCr中間膜を用いることにより、
その上に順次積層されるに際して下地膜、磁性膜の結晶
成長に影響を及ぼし、磁性膜の微細構造を制御すること
が可能となり、磁性膜の保磁力を高め、かつノイズを小
さくすることができる。さらに上記磁気記録媒体におい
て、高密度記録に適した磁気記録媒体を得る上でCr下
地膜が好都合に結晶成長するためには、上記Cr金属中
間膜の膜厚は50A以上500オングストローム以下で
あることが望ましい。金属中間膜の膜厚が50オングス
トロームより薄いと下地膜および磁性膜の結晶成長を制
御することが困難になり、また500オングストローム
より厚いと下地層の結晶粒径が大きくなり好ましくな
い。磁性膜の組成を上記組成にした理由は次のとおりで
ある。Crは合金の保磁力を高める効果があるので7a
t%〜12at%含有する。Cr7at%未満では高い
保磁力が得られない。一方、Crが12at%を越える
とBrが減少し出力が低下する。保磁力およびノイズは
Ni濃度にも依存し、高保磁力かつ低ノイズの媒体を得
るために18at%〜28at%含有させる。18at
%未満では高い保磁力が得られず、またノイズも大き
い。また、28at%以上においても保磁力が低下して
しまう。さらに上記磁気記録媒体において、磁性膜合金
の平均結晶粒径は200オングストロームから350オ
ングストロームであることが好ましい。磁性膜合金の平
均結晶粒径が200オングストローム未満では保磁力が
小さくなる傾向があり、350オングストロームを越え
ると磁性膜のノイズが大きくなり、S/Nが低下し、高
密度記録に適さなくなるからである。
Means for Solving the Problems The inventors of the present invention have conducted earnest research on the composition and manufacturing conditions of a CoNiCr magnetic film alloy using a glass substrate in order to improve magnetic characteristics and recording / reproducing characteristics, and completed the present invention. It was The present invention provides a magnetic recording medium having a metal intermediate film made of Cr for controlling the fine structure of an underlayer between a glass substrate and an underlayer of Cr or the like. A magnetic recording medium comprising 18 at% or more and 28 at% or less Ni, the balance Co, and inevitable impurities. The reason for providing the metal intermediate film made of Cr is as follows. The magnetic characteristics and recording / reproducing characteristics of the magnetic film depend on the fine structure such as the crystal grain size and orientation of the magnetic film. The crystal growth of the magnetic film changes due to the crystal growth of the underlayer film. Therefore, in order to produce a magnetic film having excellent magnetic characteristics and recording / reproducing characteristics, the crystal structure of the underlayer must be improved. When the metal intermediate film made of Cr is provided on the glass substrate, the substrate temperature rises as compared with the case where the Cr intermediate film is not provided at the time of heating the substrate. Further, when the Cr intermediate film is provided, since the same material as the Cr underlayer film is used, more uniform crystal growth can be performed than when the Cr underlayer film is directly formed on the glass surface. By using the Cr intermediate film as described above,
When sequentially stacked on top of it, it influences the crystal growth of the underlying film and the magnetic film, it becomes possible to control the fine structure of the magnetic film, the coercive force of the magnetic film can be increased, and the noise can be reduced. . Further, in the above magnetic recording medium, in order to conveniently perform crystal growth of the Cr underlayer in order to obtain a magnetic recording medium suitable for high density recording, the thickness of the Cr metal intermediate film should be 50 A or more and 500 angstroms or less. Is desirable. If the thickness of the metal intermediate film is thinner than 50 Å, it becomes difficult to control the crystal growth of the underlayer and the magnetic film, and if it is thicker than 500 Å, the grain size of the underlayer becomes large, which is not preferable. The reason why the composition of the magnetic film is set to the above is as follows. Since Cr has the effect of increasing the coercive force of the alloy, it is 7a.
Contains t% to 12 at%. If the Cr content is less than 7 at%, a high coercive force cannot be obtained. On the other hand, when Cr exceeds 12 at%, Br decreases and the output decreases. The coercive force and noise depend on the Ni concentration, and are contained at 18 at% to 28 at% in order to obtain a medium with high coercive force and low noise. 18 at
If it is less than%, a high coercive force cannot be obtained, and noise is large. Further, the coercive force is also reduced at 28 at% or more. Further, in the above magnetic recording medium, the average crystal grain size of the magnetic film alloy is preferably 200 angstroms to 350 angstroms. If the average crystal grain size of the magnetic film alloy is less than 200 angstroms, the coercive force tends to be small, and if it exceeds 350 angstroms, the noise of the magnetic film increases and the S / N decreases, which makes it unsuitable for high density recording. is there.

【0005】[0005]

【作用】本発明にかかるCrからなる金属中間膜は、そ
の上に順次積層される下地膜および磁性膜が形成される
に際して結晶成長に影響を及ぼし、磁性膜の保磁力を高
め、かつノイズが小さくなる。また、磁性膜の組成を7
at%以上12at%以下のCr、18at%以上28
at%以下のNi、残部Co及び不可避的不純物とする
ことにより、高保磁力でかつノイズの小さな磁気記録媒
体を得ることが出来る。
The metal intermediate film made of Cr according to the present invention influences crystal growth when the underlying film and the magnetic film, which are sequentially stacked on the Cr intermediate film, are formed, the coercive force of the magnetic film is increased, and noise is generated. Get smaller. In addition, the composition of the magnetic film is set to 7
Cr of at% or more and 12 at% or less, 18 at% or more of 28
A magnetic recording medium with high coercive force and small noise can be obtained by using at% or less of Ni, the balance Co, and inevitable impurities.

【0006】[0006]

【実施例】以下、添付図面を参照しつつ、本発明の好ま
しい実施例による磁気記録媒体について説明する。図1
は本発明の一実施例となる磁気記録媒体の断面図を示し
たものである。図において11は化学強化ガラス、結晶
化ガラス等のガラス基板、12は前記基板上に形成され
た厚さ50オングストローム以上500オングストロー
ム以下のCrからなる金属中間膜、13はCr膜等の下
地膜、14はCoNiCrからなる磁性膜、15はC,
SiO2,ZrO2等からなる保護膜、16は潤滑膜で
ある。図2は比較例の磁気記録媒体の一部断面図で、2
1は化学強化ガラス、結晶化ガラス等のガラス基板、2
2はCr膜等の下地膜、23はCoNiCrからなる磁
性膜、24はC,SiO2,ZrO2等からなる保護膜、
25は潤滑膜である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A magnetic recording medium according to a preferred embodiment of the present invention will be described below with reference to the accompanying drawings. FIG.
FIG. 3 is a cross-sectional view of a magnetic recording medium that is an embodiment of the present invention. In the figure, 11 is a glass substrate such as chemically strengthened glass or crystallized glass, 12 is a metal intermediate film made of Cr having a thickness of 50 angstroms or more and 500 angstroms or less formed on the substrate, 13 is a base film such as a Cr film, 14 is a magnetic film made of CoNiCr, 15 is C,
A protective film 16 made of SiO2, ZrO2 or the like is a lubricating film. FIG. 2 is a partial sectional view of a magnetic recording medium of a comparative example.
1 is a glass substrate such as chemically strengthened glass or crystallized glass, 2
2 is a base film such as a Cr film, 23 is a magnetic film made of CoNiCr, 24 is a protective film made of C, SiO 2 , ZrO 2, etc.
Reference numeral 25 is a lubricating film.

【0007】(実施例1)外径65mm、内径20m
m、厚さ0.635mmのガラス基板を洗浄後、DCマ
グネトロンスパッタ装置を用い、1×10-6Torr以
下に排気後ガラス基板を300℃において10分間加熱
した後、Arガスを導入し、放電時のガス圧を10mT
orrに保持し、投入電力2kW,成膜速度を750オ
ングストローム/分の条件でCr中間膜の膜厚を30オ
ングストローム,50オングストローム,100オング
ストローム,300オングストローム,500オングス
トローム,700オングストローム,1000オングス
トロームと膜厚を変化させてガラス基板上に成膜した。
次にCr中間膜を成膜した基板をそれぞれDCマグネト
ロンスパッタ装置を用い、1×10-6Torr以下に排
気後基板を300℃において10分間加熱後、Arガス
を導入し、放電時のガス圧を10mTorrに保持し、
Cr下地膜を500オングストローム、Co67Ni2
2Cr11磁性膜を500オングストローム、保護膜2
50オングストロームを連続的に成膜した。
Example 1 Outer diameter 65 mm, inner diameter 20 m
After cleaning a glass substrate having a thickness of m and a thickness of 0.635 mm, it was evacuated to 1 × 10 −6 Torr or less using a DC magnetron sputtering device, and the glass substrate was heated at 300 ° C. for 10 minutes, and then Ar gas was introduced to discharge it. Gas pressure of 10mT
The film thickness of the Cr intermediate film is 30 angstroms, 50 angstroms, 100 angstroms, 300 angstroms, 500 angstroms, 700 angstroms, and 1000 angstroms. Was changed to form a film on the glass substrate.
Next, the substrates on which the Cr intermediate films were formed were each evacuated to 1 × 10 −6 Torr or less using a DC magnetron sputtering device, the substrates were heated at 300 ° C. for 10 minutes, Ar gas was introduced, and the gas pressure during discharge was set. Is held at 10 mTorr,
Cr underlayer of 500 Å, Co67Ni2
2Cr11 magnetic film 500 angstrom, protective film 2
A film of 50 Å was continuously formed.

【0008】(比較例1)中間膜を成膜していないガラ
ス基板をDCマグネトロンスパッタ装置を用い、1×1
-6Torr以下に排気後基板を300℃において10
分間加熱後、Arガスを導入し、放電時のガス圧を10
mTorrに保持し、Cr下地膜を1000オングスト
ローム、Co67Ni22Cr11磁性膜を500オン
グストローム、C保護膜250オングストロームを連続
的に成膜した。上記実施例1および比較例1で作製した
磁気記録媒体について、Cr中間膜の膜厚が保磁力、デ
ィスクノイズにどのような影響があるかを調べた。Cr
中間膜厚と保磁力、ディスクノイズの関係を図3に示し
た。図3から分かるように、Cr中間膜厚を厚くしてい
くと保磁力は増加していき、50オングストローム以上
のCr中間膜を用いることにより1600Oe以上の保
磁力を得ることができ、500オングストローム以上で
保磁力は飽和する。ディスクノイズはCr中間膜を用い
ると一旦減少するが、Cr中間膜の膜厚が500オング
ストロームを越えるとディスクノイズが増加しているこ
とが分かる。以上よりCr中間膜の膜厚を50オングス
トローム以上500オングストローム以下とすることに
より高密度記録に適した磁気記録媒体を得ることが出来
る。
(Comparative Example 1) A glass substrate having no intermediate film formed thereon was subjected to 1 × 1 using a DC magnetron sputtering apparatus.
After evacuating to below 0 -6 Torr, the substrate is heated at 300 ° C for 10
After heating for a minute, Ar gas was introduced to adjust the gas pressure during discharge to 10
While holding at mTorr, a Cr underlayer of 1000 Å, a Co67Ni22Cr11 magnetic layer of 500 Å, and a C protective layer of 250 Å were successively formed. With respect to the magnetic recording media manufactured in Example 1 and Comparative Example 1 described above, it was examined how the film thickness of the Cr intermediate film affects coercive force and disk noise. Cr
The relationship between the intermediate film thickness, the coercive force, and the disk noise is shown in FIG. As can be seen from FIG. 3, the coercive force increases as the Cr intermediate film thickness increases, and a coercive force of 1600 Oe or more can be obtained by using a Cr intermediate film of 50 Å or more and 500 Å or more. The coercive force is saturated at. It can be seen that the disk noise decreases once the Cr intermediate film is used, but the disk noise increases when the thickness of the Cr intermediate film exceeds 500 angstroms. From the above, by setting the thickness of the Cr intermediate film to be 50 angstroms or more and 500 angstroms or less, a magnetic recording medium suitable for high density recording can be obtained.

【0009】(比較例2)中間膜に用いる金属膜をT
i、Mo、Wとする以外は実施例1と同じ方法で磁気記
録媒体を作製し、比較例2とした。作製した磁気記録媒
体の保磁力を測定した結果を実施例1の結果とあわせて
図4に示した。Ti中間膜は保磁力の増加に効果はある
ものの、その効果はCr中間膜に比べて小さい。また、
Mo、Wでは保磁力向上の効果はほとんど見られなかっ
た。したがって、中間膜としてはCr膜が最も良いこと
がわかった。
(Comparative Example 2) The metal film used as the intermediate film is T
A magnetic recording medium was manufactured in the same manner as in Example 1 except that i, Mo, and W were used, and Comparative Example 2 was obtained. The result of measuring the coercive force of the manufactured magnetic recording medium is shown in FIG. 4 together with the result of Example 1. Although the Ti intermediate film has an effect of increasing the coercive force, the effect is smaller than that of the Cr intermediate film. Also,
With Mo and W, the effect of improving the coercive force was hardly seen. Therefore, it was found that the Cr film is the best as the intermediate film.

【0010】(実施例2)実施例1で作製した磁気記録
媒体において、Cr中間膜厚が300オングストローム
の磁気記録媒体と、比較例1で作製したCr中間膜のな
い磁気記録媒体の磁性膜の透過電子顕微鏡像を図5に示
す。中間膜を用いない磁気記録媒体の磁性膜の平均結晶
粒径は380オングストローム、300オングストロー
ムのCr中間膜を用いた磁気記録媒体の磁性膜の平均結
晶粒径は300オングストロームであり、中間膜を用い
ることにより、平均結晶粒径は小さくなっていることが
わかる。また中間膜を用いた磁気記録媒体の磁性膜の結
晶粒は中間膜のない場合に比べ、一つ一つの結晶粒が明
確になっているとともに結晶粒内の欠陥が少なく良好な
結晶成長をしていることがわかる。これらの差が実施例
1で述べたディスクノイズを低下させた原因であると考
えられる。さらにCr中間膜の膜厚が500オングスト
ローム、700オングストローム、1000オングスト
ロームの磁気記録媒体の磁性膜も透過電子顕微鏡より観
察し、平均結晶粒径を求め表1に示した。50オングス
トローム以上500オングストローム以下のCr中間膜
を用いることにより、平均結晶粒径は300オングスト
ロームから350オングストロームとなりCr中間膜を
用いない場合に比べ小さくなり、さらにCr中間膜厚を
厚くするとしだいに平均結晶粒径が大きくなる傾向がみ
られCr中間膜の膜厚が700オングストロームでは平
均結晶粒径が380オングストローム、Cr中間膜厚が
1000オングストロームのときは平均結晶粒径が40
0オングストロームとなった。図3に示したディスクノ
イズの測定結果と合わせると、ディスクノイズの変化は
磁性膜の平均結晶粒径の変化とほぼ一致し、Cr中間膜
の膜厚が500オングストロームより大きいとノイズが
大きくなり、高密度記録に適さなくなる。以上より、C
r中間膜の膜厚は50オングストローム以上500オン
グストローム以下とすることにより、高密度記録に適し
た磁気記録媒体を得ることができる。
(Example 2) In the magnetic recording medium manufactured in Example 1, the magnetic recording medium having a Cr intermediate film thickness of 300 angstroms and the magnetic film of the magnetic recording medium having no Cr intermediate film prepared in Comparative Example 1 were used. A transmission electron microscope image is shown in FIG. The average crystal grain size of the magnetic film of the magnetic recording medium not using the intermediate film is 380 angstroms, and the average crystal grain size of the magnetic film of the magnetic recording medium using the Cr intermediate film of 300 angstroms is 300 angstroms. Therefore, it can be seen that the average crystal grain size is small. In addition, the crystal grains of the magnetic film of the magnetic recording medium using the intermediate film have individual crystal grains clearer than those without the intermediate film, and there are few defects in the crystal grains, resulting in good crystal growth. You can see that It is considered that these differences are the cause of reducing the disk noise described in the first embodiment. Further, the magnetic films of the magnetic recording media having Cr intermediate film thicknesses of 500 Å, 700 Å and 1000 Å were also observed with a transmission electron microscope, and the average crystal grain size was determined and shown in Table 1. By using a Cr intermediate film of 50 angstroms or more and 500 angstroms or less, the average crystal grain size is reduced from 300 angstroms to 350 angstroms as compared with the case where the Cr intermediate film is not used, and when the Cr intermediate film thickness is further increased, the average crystal size gradually increases. There is a tendency for the grain size to increase, and when the Cr intermediate film thickness is 700 Å, the average crystal grain size is 380 Å, and when the Cr intermediate film thickness is 1000 Å, the average crystal grain size is 40 Å.
It became 0 angstrom. When combined with the measurement result of the disk noise shown in FIG. 3, the change of the disk noise almost coincides with the change of the average crystal grain size of the magnetic film, and the noise increases when the film thickness of the Cr intermediate film is larger than 500 Å, Not suitable for high density recording. From the above, C
When the thickness of the r intermediate film is 50 angstroms or more and 500 angstroms or less, a magnetic recording medium suitable for high density recording can be obtained.

【表1】 中間膜膜厚(オングストローム) 平均結晶粒径(オングストローム) 0 380 30 370 50 300 100 330 300 300 500 350 700 380 1000 400Table 1 Intermediate film thickness (angstrom) Average crystal grain size (angstrom) 0 380 30 370 50 50 300 100 100 330 300 300 300 500 350 350 700 380 1000 400

【0011】(実施例3)CoNiCr磁性膜の組成が
磁気特性、S/N特性に及ぼす影響を調べるためにCo
NiCr磁性膜の組成が異なる種々の磁気記録媒体をC
r中間膜を500、オングストロームCr下地膜厚を1
000オングストロームとする以外実施例1と同様の方
法で作製した。作製した磁気記録媒体の組成と保磁力と
残留磁束密度(Br)、線記録密度48kFCIでのS
/Nの測定結果を表2に示した。
(Example 3) In order to investigate the influence of the composition of the CoNiCr magnetic film on the magnetic characteristics and S / N characteristics, Co
Various magnetic recording media having different NiCr magnetic film compositions were used as C
r intermediate film is 500, Angstrom Cr base film thickness is 1
It was manufactured by the same method as in Example 1 except that the thickness was set to 000 angstrom. Composition, coercive force, residual magnetic flux density (Br) of the manufactured magnetic recording medium, S at linear recording density of 48 kFCI
The measurement results of / N are shown in Table 2.

【表2】 CoNiCrの組成と保磁力の測定結果 試料No. 組成(at%) Hc(Oe) Br(kG) S/N(dB) 1 CoNi22Cr5 (比較例) 1430 11.0 29 2 CoNi22Cr6(比較例) 1540 10.3 28 3 CoNi28Cr6(比較例) 1500 9.8 28 4 CoNi20Cr7(本発明) 1630 9.3 30 5 CoNi28Cr7(本発明) 1700 9.2 31 6 CoNi30Cr7(比較例) 1630 9.2 29 7 CoNi22Cr8(本発明) 1640 8.5 32 8 CoNi25Cr8(本発明) 1740 7.9 33 9 CoNi23Cr9(本発明) 1710 7.0 33 10 CoNi17Cr10(比較例) 1790 6.6 28 11 CoNi18Cr10(本発明) 1810 6.5 31 12 CoNi20Cr10(本発明) 1790 6.7 33 13 CoNi22Cr10(本発明) 1800 6.0 33 14 CoNi24Cr10(本発明) 1760 6.0 32 15 CoNi26Cr10(本発明) 1840 6.0 31 16 CoNi22Cr11(本発明) 1920 5.8 32 17 CoNi18Cr12(本発明) 1810 5.9 33 18 CoNi22Cr13(比較例) 1980 5.0 30 試料1〜試料3はCr濃度が低いために1600Oeの
保磁力が得られない。Cr濃度が7at%以上の組成で
は1600Oe以上の保磁力が得られ、保磁力はCr濃
度が増加するにしたがい増加していくことが分かる。一
方残留磁束密度BrはCr濃度が増加するにしたがい減
少し、Cr濃度が13at%では残留磁束密度が5kG
となり、再生出力が小さくなってしまう。試料6および
試料10は保磁力、残留磁束密度は大きな値を示した
が、S/Nが低く高密度記録に適した磁気記録媒体が得
られない。Cr濃度を10at%に固定した試料10か
ら試料15のS/Nの変化を見ると、Ni濃度が18a
t%より小さいとS/N急激に低下し、Ni濃度が20
at%から22at%でS/Nは最大となり、さらにN
i濃度が高くなるしたがいS/Nが小さくなっているこ
とが分かる。以上からCoNiCr磁性膜の組成は、7
at%以上12at%以下のCr、18at%以上28
at%以下のNiで高密度記録に適した磁気記録媒体が
得られることがわかる。 (実施例4)磁性膜としてCoNi20Cr10をもち
い、Cr中間膜の膜厚を500オングストローム、磁性
膜の膜厚を500オングストロームとし、Cr下地膜の
膜厚を変化させた磁気記録媒体を作製し、その保磁力、
S/N、平均結晶粒径を調べた結果を表3に示した。
[Table 2] CoNiCr composition and coercive force measurement results Sample No. Composition (at%) Hc (Oe) Br (kG) S / N (dB) 1 CoNi22Cr5 (Comparative example) 1430 11.0 29 2 CoNi22Cr6 (Comparative example) 1540 10.3 28 3 CoNi28Cr6 (Comparative example) 1500 9.8 28 4 CoNi20Cr7 (Invention) 1630 9.3 30 5 CoNi28Cr7 (Invention) 1700 9.2 31 6 CoNi30Cr7 (Comparative example) 1630 9.2 29 7 CoNi22Cr8 (Invention) 1640 8.5 32 8 CoNi25Cr8 (Invention) 1740 7.9 33 9 CoNi23Cr9 (Invention) 1710 7.0 33 10 CoNi17Cr10 (Comparative Example) 1790 6.6 28 11 CoNi18Cr10 (Invention) 1810 6.5 31 12 CoNi20Cr10 (Invention) 1790 6.7 33 13 CoNi22Cr10 (Invention) 1800 6.0 33 14 CoNi24Cr10 (invention) 1760 6.0 32 15 CoNi26Cr10 (invention) 1840 6.0 31 16 CoNi22Cr11 (invention) 1920 5.8 32 17 CoNi18Cr12 (invention) 1810 5.9 33 18 CoNi22Cr13 (comparative example) 1980 5.0 30 Sample 1 Sample 3 cannot obtain a coercive force of 1600 Oe because the Cr concentration is low. It can be seen that a coercive force of 1600 Oe or more is obtained with a composition having a Cr concentration of 7 at% or more, and the coercive force increases as the Cr concentration increases. On the other hand, the residual magnetic flux density Br decreases as the Cr concentration increases, and when the Cr concentration is 13 at%, the residual magnetic flux density is 5 kG.
And the reproduction output becomes small. Samples 6 and 10 had large coercive force and residual magnetic flux density, but the S / N was low and a magnetic recording medium suitable for high density recording could not be obtained. Looking at the change in S / N from Sample 10 with the Cr concentration fixed at 10 at% to Sample 15, the Ni concentration was 18a.
If it is less than t%, the S / N ratio drops sharply and the Ni concentration becomes 20%.
The S / N becomes maximum at at% to 22 at%, and N
It can be seen that the S / N decreases as the i concentration increases. From the above, the composition of the CoNiCr magnetic film is 7
Cr of at% or more and 12 at% or less, 18 at% or more of 28
It can be seen that a Ni content of at% or less can provide a magnetic recording medium suitable for high density recording. (Example 4) A magnetic recording medium was prepared in which CoNi20Cr10 was used as the magnetic film, the thickness of the Cr intermediate film was 500 angstroms, the thickness of the magnetic film was 500 angstroms, and the thickness of the Cr underlayer was changed. Coercive force,
The results of examining the S / N and average crystal grain size are shown in Table 3.

【表3】 Cr下地膜厚(A) 保磁力(Oe) S/N 平均結晶粒径(A) 0 450 測定不能 150 100 800 20 180 300 1400 28 280 500 1500 29 300 700 1700 30 300 1000 1800 32 290 1500 1850 31 340 2000 1900 27 360 表2よりCr下地膜厚が0オングストロームあるいは1
00オングストロームの場合平均結晶粒径が200オン
グストロームより小さく保磁力はそれぞれ450Oe、
800Oeと小さいことがわかる。Cr下地膜厚を30
0オングストローム以上とすると平均結晶粒径はおよそ
300オングストロームとなり、保磁力も1400Oe
以上が得られるようになり、Cr下地膜厚が1000オ
ングストローム以上では保磁力はほぼ一定となる。Cr
下地膜厚を2000オングストロームとさらに厚くする
と平均結晶粒径は360オングストロームと大きくな
り、S/Nが低下してしまうことがわかる。
Table 3 Cr Underlayer film thickness (A) Coercive force (Oe) S / N Average crystal grain size (A) 0 450 Unmeasurable 150 100 100 800 20 180 180 300 1400 28 280 500 1500 1500 29 300 700 700 1700 30 300 300 1000 1800 32 290 1500 1850 31 340 2000 2000 1900 27 360 Table 2 shows that the Cr underlayer has a thickness of 0 angstrom or 1
In the case of 00 angstrom, the average crystal grain size is smaller than 200 angstrom and the coercive force is 450 Oe, respectively.
It turns out that it is as small as 800 Oe. Cr underlayer thickness of 30
When the thickness is 0 Å or more, the average crystal grain size becomes about 300 Å and the coercive force is 1400 Oe.
As described above, the coercive force becomes almost constant when the Cr underlayer film thickness is 1000 Å or more. Cr
It can be seen that when the underlayer film thickness is further increased to 2000 angstroms, the average crystal grain size is increased to 360 angstroms and the S / N is lowered.

【0012】[0012]

【発明の効果】上記の磁気記録媒体はCr中間膜を備
え、磁性膜をCoNiCrとし、その組成を7at%以
上12at%以下のCr、18at%以上28at%以
下のNi、残部Co及び不可避的不純物とすることによ
り、保磁力を大きくできる。また、Cr中間膜50オン
グストローム以上を500オングストローム以下とする
ことで、保磁力を増加し、下地膜、磁性膜の結晶成長を
制御しノイズを低減できる。さらに磁性膜の平均結晶粒
径を200オングストローム以上350オングストロー
ム以下とすることで、保磁力を向上でき、ノイズを低減
することができる。上記の条件で作製した磁性膜の保磁
力を1600Oeとすることで高密度記録に適した磁気
記録媒体を得ることができる。
The above magnetic recording medium is provided with a Cr intermediate film, the magnetic film is CoNiCr, and the composition thereof is 7 at% to 12 at% Cr, 18 at% to 28 at% Ni, the balance Co and inevitable impurities. As a result, the coercive force can be increased. Further, by setting the Cr intermediate film 50 angstroms or more to 500 angstroms or less, the coercive force can be increased, the crystal growth of the base film and the magnetic film can be controlled, and noise can be reduced. Further, by setting the average crystal grain size of the magnetic film to be 200 angstroms or more and 350 angstroms or less, coercive force can be improved and noise can be reduced. By setting the coercive force of the magnetic film produced under the above conditions to 1600 Oe, a magnetic recording medium suitable for high density recording can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の磁気記録媒体の部分断面図で
ある。
FIG. 1 is a partial cross-sectional view of a magnetic recording medium according to an embodiment of the present invention.

【図2】比較例の磁気記録媒体の部分断面図である。FIG. 2 is a partial cross-sectional view of a magnetic recording medium of a comparative example.

【図3】Cr中間膜の膜厚と保磁力およびノイズの関係
を示す図である。
FIG. 3 is a diagram showing a relationship between a film thickness of a Cr intermediate film, a coercive force, and noise.

【図4】Cr中間膜(本発明)、Ti中間膜(比較
例)、W中間膜(比較例)、Mo中間膜(比較例)の膜
厚と保磁力の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a film thickness and a coercive force of a Cr intermediate film (present invention), a Ti intermediate film (comparative example), a W intermediate film (comparative example), and a Mo intermediate film (comparative example).

【図5】Cr中間膜がある場合(本発明)とCr中間膜
のない場合(比較例)の磁性膜の金属組織の電子顕微鏡
写真である。
FIG. 5 is an electron micrograph of a metal structure of a magnetic film with a Cr intermediate film (present invention) and without a Cr intermediate film (comparative example).

【符号の説明】[Explanation of symbols]

11 ガラス基板、12 Cr中間膜、13 Cr下地
膜、14 CoNiCr磁性膜、15 保護膜、16
潤滑膜、21 ガラス基板、22 下地膜、23磁性
膜、24 保護膜、25潤滑膜。
11 glass substrate, 12 Cr intermediate film, 13 Cr underlayer film, 14 CoNiCr magnetic film, 15 protective film, 16
Lubricating film, 21 glass substrate, 22 underlayer film, 23 magnetic film, 24 protective film, 25 lubricating film.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板上にCr等の下地膜と磁性膜
と保護膜を順次積層させてなる磁気記録媒体において、
前記ガラス基板と下地膜の間に下地膜の微細構造を制御
するCrからなる金属中間膜をもうけたことを特徴とす
る磁気記録媒体。
1. A magnetic recording medium comprising a glass substrate on which a base film of Cr or the like, a magnetic film and a protective film are sequentially laminated.
A magnetic recording medium comprising a metal intermediate film made of Cr for controlling a fine structure of the underlayer between the glass substrate and the underlayer.
【請求項2】 請求項1において、磁性膜が7at%以
上12at%以下のCr、18at%以上28at%以
下のNi、残部Co及び不可避的不純物からなることを
特徴とする磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the magnetic film is composed of 7 at% or more and 12 at% or less Cr, 18 at% or more and 28 at% or less Ni, the balance Co and inevitable impurities.
【請求項3】 請求項1において、金属中間膜の膜厚が
50オングストローム〜500オングストロームである
ことを特徴とする磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the film thickness of the metal intermediate film is 50 angstroms to 500 angstroms.
【請求項4】 磁性膜の平均結晶粒径が200オングス
トローム〜350オングストローム以下であることを特
徴とする請求項1記載の磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein the average crystal grain size of the magnetic film is 200 angstroms to 350 angstroms or less.
【請求項5】 保磁力が1600Oe以上である請求項
1記載の磁気記録媒体。
5. The magnetic recording medium according to claim 1, which has a coercive force of 1600 Oe or more.
JP15830694A 1994-07-11 1994-07-11 Magnetic recording medium Pending JPH0830949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15830694A JPH0830949A (en) 1994-07-11 1994-07-11 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15830694A JPH0830949A (en) 1994-07-11 1994-07-11 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0830949A true JPH0830949A (en) 1996-02-02

Family

ID=15668751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15830694A Pending JPH0830949A (en) 1994-07-11 1994-07-11 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0830949A (en)

Similar Documents

Publication Publication Date Title
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
JPH09190945A (en) Magnetic recording disk for horizontal recording and its manufacture
US6767651B2 (en) Magnetic recording medium, method for manufacturing a magnetic recording medium and magnetic recording device
US6844046B2 (en) Magnetic recording medium, production process thereof, magnetic recording and reproducing apparatus, and sputtering target
JP2911782B2 (en) Magnetic recording medium and method of manufacturing the same
JPH0830949A (en) Magnetic recording medium
JPH0877544A (en) Magnetic recording medium and its production
US6826825B2 (en) Method for manufacturing a magnetic recording medium
JP2920723B2 (en) Magnetic recording media
JP2819839B2 (en) Magnetic disk substrate and magnetic recording medium using the same
JP2911797B2 (en) Magnetic recording medium and method of manufacturing the same
JP2853529B2 (en) Magnetic recording medium substrate and magnetic recording medium using the same
JP2001331934A (en) Magnetic recording medium, method for producing the same, magnetic recording and reproducing unit and sputtering target
JPH05135343A (en) Magnetic recording medium
JPH0721543A (en) Magnetic recording medium
JP2000182233A (en) Magnetic recording medium
JPH06215348A (en) Magnetic recording medium
JP2002015417A (en) Magnetic recording medium and method for manufacturing the same
JPH11339244A (en) Magnetic recording medium and production thereof
JP2001110034A (en) Magnetic recording medium, method of manufacturing it, and magnetic recording device
JP2000348323A (en) Magnetic recording medium, production of same and magnetic memory device
JPH05258278A (en) Magnetic recording medium
JP2001243620A (en) Magnetic recording medium
JP2001291220A (en) Magnetic recording medium and magnetic storage device
JPH06140247A (en) Magnetic recording medium