JPH08305035A - Illumination device and exposure method using the same - Google Patents
Illumination device and exposure method using the sameInfo
- Publication number
- JPH08305035A JPH08305035A JP8048769A JP4876996A JPH08305035A JP H08305035 A JPH08305035 A JP H08305035A JP 8048769 A JP8048769 A JP 8048769A JP 4876996 A JP4876996 A JP 4876996A JP H08305035 A JPH08305035 A JP H08305035A
- Authority
- JP
- Japan
- Prior art keywords
- illumination
- light
- exposed
- mask
- exposure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70075—Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/7035—Proximity or contact printers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70358—Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば、半導体装置や
液晶表示装置の製造において用いられる露光に好適な照
明装置およびこれを用いた露光方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illuminator suitable for exposure used in the manufacture of semiconductor devices and liquid crystal display devices, and an exposure method using the same.
【0002】[0002]
【従来の技術】前記露光方法にいわゆる近接露光方法で
あるプロキシミティ露光方法がある。2. Description of the Related Art The exposure method includes a proximity exposure method which is a so-called proximity exposure method.
【0003】この露光方法は感光剤を塗布したガラス基
板またはウエハ(以後これらを単に基板という)とマス
クとを近接させた状態で支持し、マスク上方より照明光
を照射してマスクパターンを感光剤に転写するものであ
る。この露光方法は投影露光方法に比べると、複雑なレ
ンズ系や高精度なステージを必要としないので低コスト
化しやすい。またコンタクト露光方法と比べると、マス
クと基板が直接接触しないので感光剤の剥がれによる不
良が発生しにくい。In this exposure method, a glass substrate or a wafer coated with a photosensitizer (hereinafter simply referred to as a substrate) and a mask are supported in close proximity to each other, and illumination light is irradiated from above the mask to expose the mask pattern to the photosensitizer. Is to be transferred to. Compared with the projection exposure method, this exposure method does not require a complicated lens system or a highly accurate stage, so that the cost can be easily reduced. Further, as compared with the contact exposure method, since the mask and the substrate are not in direct contact with each other, a defect due to peeling of the photosensitive agent is less likely to occur.
【0004】従来提供されているプロキシミティ露光装
置は図4に示すように、水銀ランプaを光源としてこれ
からの光を集光ミラーbにより集光した後、コールドミ
ラーkにより光路を折り曲げて、あるいはそのままでフ
ライアイレンズcと非球面ミラーmとを経て積分するこ
とにより、所定の大きさでスポット照射する光強度分布
が均一な照明光束nとし、これを基板gの被露光面dの
局所にマスクeを介して投光するようにしている。この
局所への投光にて照明系側と、被露光面dおよびマスク
e側とを相対移動させることにより走査露光を行うこと
で、所定の領域を露光しマスクパターンを転写できるよ
うにする。As shown in FIG. 4, the conventional proximity exposure apparatus uses a mercury lamp a as a light source and collects light from the mercury mirror a by a condenser mirror b, and then bends an optical path by a cold mirror k, or As it is, it is integrated through the fly-eye lens c and the aspherical mirror m to form an illumination light flux n with a uniform light intensity distribution for spot irradiation with a predetermined size, which is locally applied to the exposed surface d of the substrate g. The light is projected through the mask e. Scanning exposure is performed by relatively moving the illumination system side and the exposed surface d and the mask e side by projecting light locally, so that a predetermined area is exposed and the mask pattern can be transferred.
【0005】ところで、このようなプロキシミティ露光
方法の解像度は、被露光面dとマスクeとのギャップに
依存している。解像できる最小線幅をds、光源の波長
をλ、マスクeと基盤gの被露光面dとのギャップをG
とすると、 ds=√(2λG) で表され、上記のように光源に水銀ランプaを用いて液
晶表示装置の製造等に必要とされる3μm程度の線幅を
解像しようとすると前記ギャップGを10μm程度とす
る必要がある。The resolution of such a proximity exposure method depends on the gap between the exposed surface d and the mask e. The minimum line width that can be resolved is ds, the wavelength of the light source is λ, and the gap between the mask e and the exposed surface d of the substrate g is G.
Then, it is represented by ds = √ (2λG), and when the line width of about 3 μm required for manufacturing a liquid crystal display device is resolved by using the mercury lamp a as the light source as described above, the gap G Needs to be about 10 μm.
【0006】しかし、基板gの被露光面dは一般的なも
ので10〜20μm程度のうねりがある。これに対処す
るのに図4の露光装置は基板gを平坦化チャックhにて
支持しておき、図に示す露光ステーションに隣接した図
示しない高さ測定ステーションに移動して基板gの被露
光面dの高さを計測し、この計測結果に基づいて平坦化
チャックh内の上下動素子iを調整することにより被露
光面dを平坦化する。However, the exposed surface d of the substrate g is a general one and has a waviness of about 10 to 20 μm. To deal with this, the exposure apparatus of FIG. 4 supports the substrate g by a flattening chuck h and moves it to a height measuring station (not shown) adjacent to the exposure station shown in the figure to move the exposed surface of the substrate g. The exposed surface d is flattened by measuring the height of d and adjusting the vertical movement element i in the flattening chuck h based on the measurement result.
【0007】これにより被露光面dとマスクeとのギャ
ップGが均一化し、後はzステージjを調整することに
より被露光面dとマスクeとのギャップGを必要な10
μm程度に設定した上で、図の露光ステーションに移動
し前記走査露光を行う。As a result, the gap G between the exposed surface d and the mask e is made uniform, and then the gap G between the exposed surface d and the mask e is required by adjusting the z stage j.
After setting to about μm, the scanning exposure is performed by moving to the exposure station shown in the figure.
【0008】このような走査露光によると、全面一括露
光方式の場合のように大口径の集光レンズは必要でなく
装置が低コスト化する。また倍率補正が容易になる利点
もある。According to such scanning exposure, a large-diameter condenser lens is not required as in the case of the whole surface collective exposure method, and the cost of the apparatus is reduced. There is also an advantage that magnification correction becomes easy.
【0009】[0009]
【発明が解決しようとする課題】しかし上記従来のもの
では、水銀ランプaからの光を走査露光のための所定の
大きさでスポット照射する照明光束nにまで積分するの
に、フライアイレンズcと非球面ミラーmとを用いてお
り、これらは特殊な形状に高精度に製作される必要があ
るので照明装置はなお高価なものとなっている。また、
照明装置の前記フライアイレンズと非球面ミラーとから
なる積分系の光路長は比較的長くなり照明装置全体が大
型化する原因になっている。さらに、照明装置を小型化
するにはフライアイレンズcを小型化すればよいが、こ
の場合フライアイレンズcが細かくなり過ぎて実用性は
ない。However, in the above-mentioned prior art, the fly-eye lens c is used to integrate the light from the mercury lamp a to the illumination light beam n for spot irradiation with a predetermined size for scanning exposure. And the aspherical mirror m are used, and these need to be manufactured with high precision in a special shape, so that the illumination device is still expensive. Also,
The optical path length of the integrating system including the fly-eye lens and the aspherical mirror of the illuminating device is relatively long, which causes an increase in the size of the entire illuminating device. Further, the fly-eye lens c may be downsized in order to downsize the illumination device, but in this case, the fly-eye lens c becomes too fine and is not practical.
【0010】したがって、これらの問題を解消すること
ができる照明装置が望まれるが、これを満足するものは
未だ提供されていない。Therefore, a lighting device capable of solving these problems is desired, but a device satisfying this is not yet provided.
【0011】本発明者等はこれにつき種々に研究し、実
験を繰り返し行ったところ、小さく単純な光学部材が必
要な積分機能を発揮することを知見した。The inventors of the present invention have conducted various studies and repeated experiments, and as a result, have found that a small and simple optical member exhibits the required integral function.
【0012】本発明は、上記従来のような問題を解消す
ることを課題とし、光学積分要素を採用して通常の投影
光学系と組み合わせることにより、小型かつ安価な装置
により所定の大きさでかつ十分に均一な光強度分布を持
ってスポット照明できる照明装置とこれを用いた露光方
法を提供することを目的とするものである。An object of the present invention is to solve the above-mentioned problems of the related art, and by adopting an optical integrating element and combining it with a normal projection optical system, a compact and inexpensive device can be provided with a predetermined size. An object of the present invention is to provide an illuminating device capable of spot illuminating with a sufficiently uniform light intensity distribution and an exposure method using the same.
【0013】[0013]
【課題を解決するための手段】上記のような目的を達成
するために、本発明の照明装置は、照明光源からの光を
集光する集光反射部材と、この集光反射部材を経た光を
一端から受入れて積分し他端から出射するロッド状の光
学インテグレータと、この光学インテグレータの出射面
を被照射面に所定の大きさで投影することにより被照射
面に照明光束を照明する投影レンズ系とを備えたことを
特徴とするものである。In order to achieve the above-mentioned object, the illumination device of the present invention has a condensing / reflecting member for condensing light from an illuminating light source and a light passing through the condensing / reflecting member. A rod-shaped optical integrator that receives the light from one end, integrates it, and emits it from the other end, and a projection lens that illuminates an illumination light beam on the illuminated surface by projecting the exit surface of this optical integrator on the illuminated surface in a predetermined size. It is characterized by having a system.
【0014】また、本発明の露光方法は、前記照明装置
によって照明光束の被照射面である被露光面の局所をマ
スクを介して照明し、照明装置側と、被露光面およびマ
スク側とを相対移動させることにより、被露光面の所定
の領域を走査して露光を行いマスクパターンを被露光面
に転写することを特徴とするものである。Further, in the exposure method of the present invention, the illumination device illuminates a local area of the exposure surface, which is an irradiation surface of the illumination light flux, through a mask, and the illumination device side and the exposure surface and the mask side are illuminated. By relatively moving, a predetermined area of the exposed surface is scanned and exposed, and the mask pattern is transferred to the exposed surface.
【0015】[0015]
【作用】本発明の照明装置の上記構成では、集光反射部
材によって集光した照明光源からの光はロッド状の光学
インテグレータにこれの一端から受入れられて他端から
出射される。このとき、光学インテグレータは前記ロッ
ド形状によって一端から受け入れた光を他端から出射す
るまでに側周内側にて種々な反射を繰り返させながら積
分し、光学インテグレータの出射面全域から均一な光強
度分布を持った光束として出射させるので、1つの小さ
く単純な光学部材だけで所定の大きさで均一にスポット
照射するのに適した照明光束とすることができ、光学イ
ンテグレータの出射面を投影レンズ系により被照射面に
所定の大きさで投影するだけで、所定の局所照明が高精
度に達成され、性能の低下なく装置を小型かつ安価なも
のとすることができる。In the above-described structure of the illuminating device of the present invention, the light from the illumination light source condensed by the condensing / reflecting member is received by the rod-shaped optical integrator from one end and emitted from the other end. At this time, the optical integrator integrates the light received from one end by the rod shape while repeating various reflections on the inside of the side circumference until the light is emitted from the other end, and the light intensity distribution is uniform over the entire emission surface of the optical integrator. Since it is emitted as a luminous flux having a certain size, it is possible to obtain an illumination luminous flux suitable for uniformly illuminating a spot with a predetermined size using only one small and simple optical member. The exit surface of the optical integrator can be formed by a projection lens system. Predetermined local illumination can be achieved with high accuracy only by projecting a predetermined size on the illuminated surface, and the device can be made small and inexpensive without degrading the performance.
【0016】また、本発明の露光方法は、前記照明装置
を用いることにより、この装置からの所定の大きさでス
ポット照射する均一な照明光束にて被照射面である被露
光面の局所をマスクを介して照明することになるし、照
明装置側と、被露光面およびマスク側とを相対移動させ
ることにより被露光面の所定の領域を走査して、前記均
一な局所照明が所定の領域の全域に及んで露光するの
で、どのように広い範囲の被露光面でも均一照明によっ
てむらなく露光しマスクパターンを高精度に転写するこ
とができる。しかも、照明装置が小型であるので、これ
の側の移動にて前記走査露光を行うことで、走査露光の
ための支持構造や駆動装置が小型化するし、照明装置が
被露光面範囲からまわりに大きくはみ出すようなことも
解消するので、装置全体が小さく安価なものとなる。Further, in the exposure method of the present invention, by using the illuminating device, a local area of the surface to be exposed, which is the surface to be exposed, is masked by a uniform illumination light beam for spot irradiation with a predetermined size from the device. The illumination device side and the exposure side and the mask side are moved relative to each other to scan a predetermined area of the exposure surface, and the uniform local illumination is applied to the predetermined area. Since the exposure is performed over the entire area, the mask pattern can be transferred with high accuracy by evenly exposing the exposed surface in a wide range by uniform illumination. Moreover, since the illuminating device is small, by performing the scanning exposure by moving the illuminating device, the supporting structure and the driving device for the scanning exposure can be downsized, and the illuminating device can be moved from the exposed surface range. Since the problem that it greatly protrudes is also eliminated, the entire device becomes small and inexpensive.
【0017】[0017]
【実施例】本発明の照明装置およびこれを用いた露光方
法の一実施例につき、図面を参照しながら以下具体的に
説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an illuminating device of the present invention and an exposure method using the same will be specifically described below with reference to the drawings.
【0018】図1、図2は本発明の第1の実施例として
の照明装置A、およびこの照明装置Aを利用した露光装
置Bの全体を概略的に示している。1 and 2 schematically show an illumination apparatus A as a first embodiment of the present invention and an exposure apparatus B using the illumination apparatus A as a whole.
【0019】照明装置Aは図1に示すように、照明光源
としての水銀ランプ1からの光を集光する集光反射部材
である楕円ミラー2と、この楕円ミラー2を経た光を一
端から受入れて積分し他端から出射するロッド状の光学
インテグレータ3と、この光学インテグレータ3の出射
面を被照射面に所定の大きさで投影する投影レンズ系4
とを備えている。As shown in FIG. 1, the illuminating device A receives an elliptic mirror 2 which is a condensing / reflecting member for condensing light from a mercury lamp 1 as an illuminating light source, and the light passing through the elliptic mirror 2 from one end. Optical integrator 3 that integrates and emits from the other end, and a projection lens system 4 that projects the emission surface of the optical integrator 3 onto the illuminated surface in a predetermined size.
It has and.
【0020】用途や諸条件から水銀ランプ1以外の光源
を用いてもよいのは勿論である。そして本実施例では、
楕円ミラー2によって集光した光をコールドミラー5
と、光ファイバ6とによって光学インテグレータ3の一
端に入射させている。また投影レンズ系4は図1、図2
に示すようにレンズ群4aとレンズ群4bとの2群構成
になっており、これらの中間に反射ミラー7を設けて光
路を直角に折り曲げている。コールドミラー5や光ファ
イバ6、および反射ミラー7は省略することができる
し、他のものを採用することもできる。しかしコールド
ミラー5や光ファイバ6、および反射ミラー7は光路を
他との干渉を避けたり、所要部材を特定の範囲に集約し
て配置するのに適宜選択して使用すると便利である。Of course, a light source other than the mercury lamp 1 may be used depending on the application and various conditions. And in this embodiment,
Light collected by the elliptical mirror 2 is cold mirror 5
And an optical fiber 6 are made to enter one end of the optical integrator 3. The projection lens system 4 is shown in FIGS.
As shown in FIG. 3, the lens group 4a and the lens group 4b are composed of two groups, and a reflection mirror 7 is provided in the middle between them to bend the optical path at a right angle. The cold mirror 5, the optical fiber 6, and the reflection mirror 7 can be omitted, or another one can be adopted. However, it is convenient to appropriately select and use the cold mirror 5, the optical fiber 6, and the reflection mirror 7 in order to avoid the interference of the optical path with others and to arrange the required members collectively in a specific range.
【0021】照明装置A部で楕円ミラー2によって集光
した水銀ランプ1からの光は、コールドミラー5および
光ファイバ6を介してロッド状の光学インテグレータ3
にこれの一端から図1に示すように受入れられて他端か
ら図1、図2の(a)に示すように出射させられる。こ
のとき、光学インテグレータ3は前記ロッド形状である
ことによって一端から受け入れた光を他端から出射する
までに側周内側にて種々な反射を繰り返させながら積分
する。The light from the mercury lamp 1 condensed by the elliptical mirror 2 in the illuminating device A section passes through the cold mirror 5 and the optical fiber 6 and is rod-shaped optical integrator 3.
The light is received from one end as shown in FIG. 1 and is emitted from the other end as shown in FIGS. At this time, since the optical integrator 3 has the rod shape, it integrates the light received from one end while repeating various reflections inside the side circumference until the light exits from the other end.
【0022】このような積分機能によって光学インテグ
レータ3はこれの出射面全域から図3に示すような均一
な光強度分布Cを持った光束として出射させる。したが
って、ロッド状の光学インテグレータ3による1つの小
さく単純な光学部材だけで所定の大きさで均一にスポッ
ト照射するのに適した平行光束10とすることができ、
光学インテグレータ3の出射面を投影レンズ系4により
被照射面に所定の大きさで投影するだけで、所定の局所
照明が高精度に達成され、性能の低下なく装置を小型か
つ安価なものとすることができ、プロキシミティ露光や
その他の各種局所照明に適用して有効である。With such an integrating function, the optical integrator 3 emits a light beam having a uniform light intensity distribution C as shown in FIG. Therefore, it is possible to obtain the parallel light beam 10 suitable for uniformly irradiating a spot with a predetermined size by using only one small and simple optical member by the rod-shaped optical integrator 3.
By simply projecting the exit surface of the optical integrator 3 onto the illuminated surface by the projection lens system 4 in a predetermined size, predetermined local illumination can be achieved with high accuracy, and the device can be made small and inexpensive without degrading the performance. It is effective when applied to proximity exposure and various other types of local illumination.
【0023】図3に示す本実施例の実験データは、光学
インテグレータ3が正四角形な横断面形状をした場合の
もので、好適な結果が得られている。しかし、これに限
られることはなく横断面が三角形や長方形等の各種形状
のものを採用してもよいのは勿論である。The experimental data of this embodiment shown in FIG. 3 is for the case where the optical integrator 3 has a square cross-sectional shape, and favorable results are obtained. However, the present invention is not limited to this, and it is needless to say that the cross section may have various shapes such as a triangle and a rectangle.
【0024】この照明光束は最終的に整形マスク8によ
って所定の大きさおよび形状に整形するようにしてあ
る。これも必要に応じて設けられればよいものである。The illumination light flux is finally shaped by the shaping mask 8 into a predetermined size and shape. This may be provided if necessary.
【0025】光学インテグレータ3を形成する反射面が
平面であり、かつ、向かい合う面が互いに平行の場合、
光束が光学インテグレータ3に入射するときの各々の光
線の光軸に対する角度の絶対値は、光学インテグレータ
3を通過しても変わらない。When the reflecting surfaces forming the optical integrator 3 are flat surfaces and the facing surfaces are parallel to each other,
The absolute value of the angle of each light ray with respect to the optical axis when the light flux enters the optical integrator 3 does not change even when passing through the optical integrator 3.
【0026】したがって、投影レンズ系4により被照射
面に照射される照明光束10が持つ強度分布の角度依存
性は、光学インテグレータ3に入射する光束の持つそれ
にほぼ相似のものとなる。照明光束10が強度分布に角
度依存性を持つと、この照明装置を利用する際の性能に
悪影響を与えることがある。その場合は、光学インテグ
レータ3に入射する光の強度分布の角度依存性を減少さ
せるための角度分布平滑化手段を設けることが有効であ
る。その手段として、表面に凹凸を付けた透過面や反射
面を用いることができる。たとえば、表面に凹凸を持つ
板を光学インテグレータ3の直前に設置し、光を透過さ
せれば良い。また、光ファイバ6内を光は反射しながら
進むのであるが、光ファイバ6の自然な曲がりは凹凸の
役目をするので、光ファイバ6を通すのでもよい。Therefore, the angular dependence of the intensity distribution of the illumination light beam 10 irradiated on the surface to be illuminated by the projection lens system 4 is substantially similar to that of the light beam incident on the optical integrator 3. If the illumination luminous flux 10 has an angle dependence on the intensity distribution, it may adversely affect the performance when using this illumination device. In that case, it is effective to provide an angular distribution smoothing means for reducing the angular dependence of the intensity distribution of the light incident on the optical integrator 3. As a means therefor, a transmissive surface or a reflective surface having an uneven surface can be used. For example, a plate having irregularities on the surface may be installed immediately before the optical integrator 3 to transmit light. Although light travels in the optical fiber 6 while being reflected, the natural bending of the optical fiber 6 plays a role of unevenness, and therefore the light may pass through the optical fiber 6.
【0027】図1に示す上記の照明装置Aを用いた露光
装置Bは、照明光束10の被照射面であるガラス製の基
板11の感光剤が塗布された被露光面11aをこれに近
接したマスク12を介してプロキシミティ露光を行い、
マスクパターンを前記被露光面11aを形成する感光剤
に転写する場合を示してる。In the exposure apparatus B using the above-described illumination apparatus A shown in FIG. 1, the exposed surface 11a of the glass substrate 11, which is the irradiated surface of the illumination light flux 10, to which the photosensitive agent is applied is close to this. Proximity exposure is performed through the mask 12,
The case where the mask pattern is transferred to the photosensitive agent forming the exposed surface 11a is shown.
【0028】露光装置Bは、照明装置Aによって被露光
面11aの局所11bをマスク12を介して照明し、照
明装置A側と、被露光面11aおよびマスク12側とを
相対移動させることにより、被露光面11aの所定の領
域を走査して露光するようにしている。The exposure apparatus B illuminates the local area 11b of the exposed surface 11a through the mask 12 by the illumination apparatus A, and relatively moves the illumination apparatus A side and the exposed surface 11a and the mask 12 side, A predetermined area of the exposed surface 11a is scanned and exposed.
【0029】この走査露光のために、図示しない直交す
るXY2方向に架台上で移動できるXYθステージと、
この上でZ方向に移動できるZステージによって、基板
11を図に示す石英チャック13を介して支持し、照明
装置Aは図示しない架台上でY方向に移動できるYステ
ージと、このYステージの上でX方向に移動できる図に
示すXステージ14、およびこのXステージ14の上で
Z方向に移動できるZステージ15を介して支持するこ
とにより、前記露光のための各部の位置調節と、基板1
1の被露光面11aおよびマスク12間のギャップGの
調節と、前記露光のための走査とを行うようにしてあ
る。この走査は各局所11bにつき必要露光時間を満足
するように間欠的に行われる。For this scanning exposure, an XYθ stage (not shown) that can move on the gantry in orthogonal XY2 directions,
A substrate 11 is supported via a quartz chuck 13 shown in the figure by a Z stage which can be moved in the Z direction, and an illuminator A is a Y stage which can be moved in the Y direction on a mount (not shown). The X stage 14 shown in the figure which can be moved in the X direction and the Z stage 15 which can be moved in the Z direction on the X stage 14 support the position adjustment of each part for the exposure and the substrate 1
The gap G between the first exposed surface 11a and the mask 12 is adjusted and the scanning for the exposure is performed. This scanning is performed intermittently so as to satisfy the required exposure time for each local area 11b.
【0030】これにより、照明装置AはXステージのX
方向の移動と、YステージのY方向の移動とで、XY面
内で自由に移動でき、基板11の被露光面11aの所定
の露光帯域の全域に移動して走査露光することができ
る。そしてこの露光に際して、照明装置Aの走査に同期
してXYθステージを走査方向と同方向に微小に移動さ
せることによって誤差分配を図り、マスクパターンを倍
率補正して基板11に転写できる。As a result, the illuminator A has the X stage X
It is possible to freely move within the XY plane by moving the Y stage in the Y direction and moving in the Y direction, and it is possible to perform scanning exposure by moving over the entire predetermined exposure band of the exposed surface 11a of the substrate 11. During this exposure, the XYθ stage is slightly moved in the same direction as the scanning direction in synchronization with the scanning of the illuminating device A, so that error distribution can be achieved, and the mask pattern can be magnified and transferred to the substrate 11.
【0031】前記ギャップGの調節は、照明装置Aによ
って間欠的な走査により露光している局所11bごとに
行うようにしてある。これについて説明する。照明装置
Aの前記整形マスク8が設けられる照明光束10の出口
部は、図1に示すようなノズルになっており、空気配管
21を介して空気源22から供給される圧縮空気を噴出
するので、マスク12は局所的に変形させられる。ノズ
ル出口の圧力をP、ノズルの断面積をSとするとマスク
12に加えられる力はPSとなる。具体的に大きさが3
60mm×465mmで厚さが4mmのマスク、断面積
4cm2 のノズルを用いると、マスク12を数十μm撓
ませるのに圧力Pは数百g/cm2 必要となる。そして
ノズル出口の圧力Pはノズル先端とマスク12上面との
距離に依存し照明装置Aを下降させると大きくなりマス
ク12の変形量も大きくなる。The gap G is adjusted for each local area 11b exposed by the illumination device A by intermittent scanning. This will be described. The exit portion of the illumination light flux 10 provided with the shaping mask 8 of the illumination device A is a nozzle as shown in FIG. 1, and jets the compressed air supplied from the air source 22 through the air pipe 21. , The mask 12 is locally deformed. When the pressure at the nozzle outlet is P and the sectional area of the nozzle is S, the force applied to the mask 12 is PS. Specifically, the size is 3
When a mask having a size of 60 mm × 465 mm and a thickness of 4 mm and a nozzle having a cross-sectional area of 4 cm 2 is used, a pressure P of several hundred g / cm 2 is required to bend the mask 12 by several tens of μm. The pressure P at the nozzle outlet depends on the distance between the tip of the nozzle and the upper surface of the mask 12, and increases when the illumination device A is lowered, and the amount of deformation of the mask 12 also increases.
【0032】一方、基板11の被露光面11aとマスク
12とのギャップGは、レーザ反射型のギャップ計測手
段23で計測し、この計測の結果の出力信号と図示しな
い設定器で設定されるギャップ信号とから、双方の偏差
信号に応じた量だけ照明装置AのZステージ15を駆動
することによって、ギャップGが常に設定通りになるよ
うにする。これによって、走査露光が全域において高解
像度で達成される。On the other hand, the gap G between the exposed surface 11a of the substrate 11 and the mask 12 is measured by the laser reflection type gap measuring means 23, and the output signal of the result of this measurement and the gap set by a setting device (not shown). By driving the Z stage 15 of the illumination device A by an amount corresponding to both deviation signals from the signal, the gap G is always set as set. As a result, scanning exposure is achieved with high resolution over the entire area.
【0033】特に本実施例では、照明装置Aのノズルの
周囲にポートを形成し、真空配管31を介して真空源3
2を連結することにより吸引ポートを構成している。こ
れにより、この吸引ポートでマスク12の照明光束10
を照射する部分の周辺を負圧で引き上げることができ、
マスク12をより局所的に変形させてマスク12と基板
11の被露光面11aとをより近接させられ、さらに高
解像度が得られるようになっている。しかし、このよう
な構成も必要に応じて適用すればよい。Particularly in this embodiment, a port is formed around the nozzle of the illumination device A, and the vacuum source 3 is provided through the vacuum pipe 31.
A suction port is formed by connecting the two. As a result, the illumination light flux 10 of the mask 12 is obtained at this suction port.
You can pull up the area around the
By further locally deforming the mask 12, the mask 12 and the exposed surface 11a of the substrate 11 can be brought closer to each other, and a higher resolution can be obtained. However, such a configuration may be applied if necessary.
【0034】以上のように照明装置Aを用いて走査露光
すれば、この装置Aからの所定の大きさでスポット照射
する均一な照明光束10にて被露光面11aの局所11
bをマスク12を介して照明することになり、照明装置
A側と、被露光面11aおよびマスク12側とを相対移
動させることにより、被露光面11aの所定の領域を走
査して、前記均一な局所照明が所定の領域の全域に及ん
で露光するので、どのように広い範囲の被露光面11a
でも均一照明によってむらなく露光しマスクパターンを
被露光面11aに高精度に転写することができる。しか
も、照明装置Aが小型であるので、これの側の移動にて
前記走査露光を行うことで、走査露光のための支持構造
や駆動装置が小型化するし、照明装置Aが被露光面11
aの範囲からまわりに大きくはみ出すようなことも解消
するので、装置全体が小さく安価なものとなる。When scanning exposure is performed using the illumination device A as described above, the local illumination 11 on the surface 11a to be exposed is irradiated with a uniform illumination light beam 10 from the device A which illuminates the spot with a predetermined size.
b is illuminated through the mask 12, and by moving the illuminator A side and the exposed surface 11a and the mask 12 side relatively, a predetermined area of the exposed surface 11a is scanned and the uniform Since a wide range of local illumination exposes a predetermined area, the exposed surface 11a having a wide area
However, the mask pattern can be transferred to the exposed surface 11a with high accuracy by performing uniform exposure by uniform illumination. Moreover, since the illuminating device A is small, the scanning exposure is performed by moving the illuminating device A, so that the supporting structure and the driving device for the scanning exposure are downsized, and the illuminating device A is exposed to the exposed surface 11
Since a large protrusion around the range of a is also eliminated, the entire device becomes small and inexpensive.
【0035】[0035]
【発明の効果】本発明の照明装置によれば、1つの小さ
く単純な光学部材だけで所定の大きさで均一にスポット
照射するのに適した照明光束とし、光学インテグレータ
の出射面を投影レンズ系により被照射面に所定の大きさ
で投影するだけで、所定の局所照明が高精度に達成され
るので、性能の低下なく装置を小型かつ安価なものとす
ることができる。According to the illumination device of the present invention, an illumination light flux suitable for uniformly illuminating a spot with a predetermined size by using only one small and simple optical member, and the exit surface of the optical integrator is a projection lens system. With this, a predetermined local illumination can be achieved with high accuracy simply by projecting a predetermined size on the surface to be illuminated, so that the device can be made small and inexpensive without degrading the performance.
【0036】また、本発明の露光方法によれば、前記照
明装置からの所定の大きさでスポット照射する均一な照
明光束にて被露光面の所定の領域を走査して露光し、ど
のように広い範囲の被露光面でもマスクパターンを均一
照明に基づき高精度に転写することができる。しかも、
照明装置が小型であるので、これの側の移動にて前記走
査露光を行うことで、走査露光のための支持構造や駆動
装置が小型化するし、照明装置が被露光面範囲からまわ
りに大きくはみ出すようなことも解消するので、装置全
体が小さく安価なものとなる。Further, according to the exposure method of the present invention, a predetermined area of the surface to be exposed is scanned and exposed with a uniform illumination light beam which is spot-irradiated with a predetermined size from the illumination device. It is possible to transfer a mask pattern with high accuracy even on a wide range of exposed surfaces based on uniform illumination. Moreover,
Since the illuminating device is small, by performing the scanning exposure by moving on the side of the illuminating device, the supporting structure and the driving device for the scanning exposure can be downsized, and the illuminating device can be enlarged from the exposed surface range to the surroundings. Since the protrusion is also eliminated, the entire device becomes small and inexpensive.
【図1】本発明の一実施例としての照明装置およびこれ
を用いた露光装置を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an illumination device and an exposure apparatus using the same as one embodiment of the present invention.
【図2】図1の照明装置の積分系および投影系を示し、
(a)はその縦断正面図、(b)はその平面図である。2 shows an integration system and a projection system of the lighting device of FIG.
(A) is the vertical cross-sectional front view, (b) is the top view.
【図3】図1の照明装置により得られる平行光束の断面
図と光強度分布との関係を示す説明図である。FIG. 3 is an explanatory diagram showing a relationship between a cross-sectional view of a parallel light beam obtained by the lighting device of FIG. 1 and a light intensity distribution.
【図4】従来の照明装置およびこれを用いた露光装置を
示す概略構成図である。FIG. 4 is a schematic configuration diagram showing a conventional illumination device and an exposure apparatus using the same.
A 照明装置 B 露光装置 1 照明光源 2 集光反射部材 3 光学インテグレータ 4 投影レンズ系 11 基板 11a 被露光面 11b 局所 12 マスク G ギャップ A illumination device B exposure device 1 illumination light source 2 condensing reflection member 3 optical integrator 4 projection lens system 11 substrate 11a exposed surface 11b local 12 mask G gap
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 健夫 神奈川県川崎市多摩区東三田三丁目10番1 号 松下技研株式会社内 (72)発明者 藤田 佳児 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeo Sato 3-10-10 Higashisanda, Tama-ku, Kawasaki City, Kanagawa Matsushita Giken Co., Ltd. (72) Inventor Kaji Fujita 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Denki Sangyo Co., Ltd.
Claims (7)
材と、この集光反射部材を経た光を一端から受入れて積
分し他端から出射するロッド状の光学インテグレータ
と、この光学インテグレータの出射面を被照射面に所定
の大きさで投影することにより被照射面に照明光束を照
射する投影レンズ系とを備えたことを特徴とする照明装
置。1. A light collecting and reflecting member that collects light from an illumination light source, a rod-shaped optical integrator that receives light from the light collecting and reflecting member from one end, integrates it, and emits it from the other end, and this optical integrator. And a projection lens system for irradiating the irradiation surface with an illumination light flux by projecting the exit surface of the irradiation surface onto the irradiation surface with a predetermined size.
分布の角度依存性を減少させる角度分布平滑化手段を設
けた請求項1記載の照明装置。2. The illumination device according to claim 1, further comprising an angle distribution smoothing unit that reduces the angle dependence of the intensity distribution of the light incident on the optical integrator.
つ透過面で構成した請求項2記載の照明装置。3. The illuminating device according to claim 2, wherein the angle distribution smoothing means comprises a transparent surface having irregularities on the surface.
つ反射面で構成した請求項2記載の照明装置。4. The illuminating device according to claim 2, wherein the angle distribution smoothing means comprises a reflecting surface having irregularities on the surface.
つ反射面で取り囲まれた光が通過するトンネルで構成し
た請求項4記載の照明装置。5. The illuminating device according to claim 4, wherein the angle distribution smoothing means comprises a tunnel through which light surrounded by a reflecting surface having irregularities passes.
項5記載の照明装置。6. The lighting device according to claim 5, wherein the tunnel is formed of an optical fiber.
射面である被露光面の局所をマスクを介して照明し、照
明装置側と、被露光面およびマスク側とを相対移動させ
ることにより、被露光面の所定の領域を走査して露光を
行いマスクパターンを被露光面に転写することを特徴と
する露光方法。7. The illumination device according to claim 1 illuminates a local area of an exposed surface, which is an illuminated surface, through a mask, and relatively moves the illumination device side and the exposed surface and the mask side. An exposure method comprising: scanning a predetermined area of the surface to be exposed to perform exposure to transfer a mask pattern onto the surface to be exposed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8048769A JPH08305035A (en) | 1995-03-08 | 1996-03-06 | Illumination device and exposure method using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-48865 | 1995-03-08 | ||
JP4886595 | 1995-03-08 | ||
JP8048769A JPH08305035A (en) | 1995-03-08 | 1996-03-06 | Illumination device and exposure method using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08305035A true JPH08305035A (en) | 1996-11-22 |
Family
ID=26389089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8048769A Pending JPH08305035A (en) | 1995-03-08 | 1996-03-06 | Illumination device and exposure method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08305035A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100828259B1 (en) * | 2004-03-31 | 2008-05-07 | 우시오덴키 가부시키가이샤 | Light irradiation apparatus |
WO2009094121A1 (en) * | 2008-01-25 | 2009-07-30 | Eveready Battery Company, Inc. | Lighting device having cross-fade and method thereof |
-
1996
- 1996-03-06 JP JP8048769A patent/JPH08305035A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100828259B1 (en) * | 2004-03-31 | 2008-05-07 | 우시오덴키 가부시키가이샤 | Light irradiation apparatus |
WO2009094121A1 (en) * | 2008-01-25 | 2009-07-30 | Eveready Battery Company, Inc. | Lighting device having cross-fade and method thereof |
US7888883B2 (en) | 2008-01-25 | 2011-02-15 | Eveready Battery Company, Inc. | Lighting device having cross-fade and method thereof |
US8324836B2 (en) | 2008-01-25 | 2012-12-04 | Eveready Battery Company, Inc. | Lighting device having cross-fade and method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0157279B1 (en) | Exposure apparatus for transferring a mask pattern onto a substrate | |
US5579147A (en) | Scanning light exposure apparatus | |
JP2655465B2 (en) | Reflection type homogenizer and reflection type illumination optical device | |
USRE38038E1 (en) | Exposure method and projection exposure apparatus | |
US5136413A (en) | Imaging and illumination system with aspherization and aberration correction by phase steps | |
KR101946596B1 (en) | Image-forming optical system, exposure apparatus, and device producing method | |
US20060119819A1 (en) | Projection exposure mask, projection exposure apparatus, and projection exposure method | |
JP2003506828A (en) | Electron beam column using high numerical aperture illumination of photocathode | |
JPH07135165A (en) | Scanning aligner | |
TW200305928A (en) | Exposure apparatus and method | |
KR20040081014A (en) | Lithographic apparatus and device manufacturing method | |
US5748288A (en) | Lighting assembly, exposure apparatus and exposure method employing the lighting assembly | |
TWI520173B (en) | Exposure method and apparatus, and component manufacturing method | |
JPH08305035A (en) | Illumination device and exposure method using the same | |
JP2001052986A (en) | X-ray projection aligner | |
JPH03179723A (en) | Projection aligner | |
JP2644741B2 (en) | Proximity exposure method and apparatus | |
JP3348928B2 (en) | Scanning exposure method, scanning type exposure apparatus, and exposure amount control apparatus | |
JPH11150051A (en) | Exposure method and device | |
TWI221631B (en) | Exposure method and apparatus | |
JPS6349367B2 (en) | ||
WO2019059315A1 (en) | Lighting device for exposure, exposure apparatus and exposure method | |
JP2859809B2 (en) | Exposure method and apparatus | |
JP3378076B2 (en) | Exposure apparatus and exposure method | |
JP2010118383A (en) | Illumination apparatus, exposure apparatus and device manufacturing method |