JP3378076B2 - Exposure apparatus and exposure method - Google Patents

Exposure apparatus and exposure method

Info

Publication number
JP3378076B2
JP3378076B2 JP04405094A JP4405094A JP3378076B2 JP 3378076 B2 JP3378076 B2 JP 3378076B2 JP 04405094 A JP04405094 A JP 04405094A JP 4405094 A JP4405094 A JP 4405094A JP 3378076 B2 JP3378076 B2 JP 3378076B2
Authority
JP
Japan
Prior art keywords
mask
substrate
measuring means
gap
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04405094A
Other languages
Japanese (ja)
Other versions
JPH07254547A (en
Inventor
隆史 井上
寛之 長野
好道 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP04405094A priority Critical patent/JP3378076B2/en
Priority to US08/404,768 priority patent/US5573877A/en
Priority to CN95103125A priority patent/CN1120683A/en
Priority to KR1019950005288A priority patent/KR0157279B1/en
Publication of JPH07254547A publication Critical patent/JPH07254547A/en
Priority to US08/699,787 priority patent/US5737064A/en
Application granted granted Critical
Publication of JP3378076B2 publication Critical patent/JP3378076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/7035Proximity or contact printers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置や液晶表示
装置の製造において用いられる露光装置及び露光方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus and an exposure method used in the manufacture of semiconductor devices and liquid crystal display devices.

【0002】[0002]

【従来の技術】プロキシミティ露光方法(近接露光方
法)というのは、感光剤を塗布したガラス基板またはウ
エハ(以後単に基板と呼ぶ)とマスクを近接させた状態
で支持し、マスク上方より照明光を照射してマスクパタ
ーンを感光剤に転写する露光方法である。この露光方法
は投影露光方法と比べると、複雑なレンズ系や高精度な
ステージを必要としないので低コスト化しやすく、また
コンタクト露光方法と比べると、マスクと基板が直接接
触しないので感光剤の剥がれによる不良が発生しにくい
という優れた特徴を持っている。しかしプロキシミティ
露光による転写像の解像度はマスクと基板の間隔によっ
て大きく左右され、転写像の最小線幅dsは光源の波長
をλ、マスクと基板の間隔をgとするとds=√(2λ
g)で表され、例えば光源に水銀ランプを使用し、5μ
m程度の線幅を解像しようとすると、マスクと基板を約
30μmまで近接しなくてはならず、一方基板のうねり
は一般的なもので10〜20μm程度なので、マスクと
基板の間隔を非常に精密に調整しなくてはならない。従
来この方法としてマスクのパターン以外の部分の複数箇
所でマスクと基板の間隔を測定し、その測定結果で求め
られる近似平面に基板面を合わせ込む方法や露光用照明
として走査形の局所照明を用い、その照明光照射部分の
マスクと基板の間隔をレーザー反射形のギャップセンサ
ーで測定し所定の値に調整する方法などが考えられてき
た。
2. Description of the Related Art A proximity exposure method (proximity exposure method) is a method in which a glass substrate or wafer coated with a photosensitizer (hereinafter simply referred to as a substrate) and a mask are supported in close proximity to each other, and illumination light is emitted from above the mask. Is an exposure method in which the mask pattern is transferred to a photosensitive agent by irradiating with. Compared with the projection exposure method, this exposure method does not require a complicated lens system or a highly accurate stage, so it is easy to reduce the cost, and compared with the contact exposure method, since the mask and the substrate do not come into direct contact with each other, the peeling of the photosensitive agent It has the excellent feature that defects due to However, the resolution of the transferred image by the proximity exposure largely depends on the distance between the mask and the substrate, and the minimum line width ds of the transferred image is ds = √ (2λ where λ is the wavelength of the light source and g is the distance between the mask and the substrate.
g), for example, using a mercury lamp as the light source,
In order to resolve a line width of about m, the mask and the substrate must be close to each other by about 30 μm, while the waviness of the substrate is generally about 10 to 20 μm, so the distance between the mask and the substrate is extremely small. It must be adjusted precisely. Conventionally, as this method, the distance between the mask and the substrate is measured at multiple points other than the mask pattern, and the substrate surface is aligned with the approximate plane obtained from the measurement results, or scanning local illumination is used as the illumination for exposure. A method has been considered in which the gap between the mask and the substrate at the portion irradiated with the illumination light is measured by a laser reflection type gap sensor and adjusted to a predetermined value.

【0003】以下、従来のプロキシミティ露光装置につ
いて図面を参照し説明する。図4はプロキシミティ露光
装置の第1の従来例である。図4において1は架台、2
は架台1に固定されたY軸ガイド、4はY軸ガイド2に
Y方向摺動自在に取り付けられたYステージ、3はYス
テージ4に固定されたX軸ガイド、5はX軸ガイド3に
X方向摺動自在に取り付けられたXステージ、6はXス
テージ5に固定された局所照明部、8は一端を局所照明
部6に連結された光ファイバー、11は水銀ランプ、1
2は水銀ランプ11の光を集める反射鏡、7は局所照明
部6の中に固定されたレンズ、25はX軸ガイド3にX
方向摺動自在に取り付けられXステージ5と同期して移
動するセンサ用Xステージ、40はセンサ用Xステージ
25に固定された投光レーザー素子40aと受光素子4
0bとからなるギャップ計測手段、13は架台1上にX
Y平面で摺動自在に取り付けられたXYθステージ、1
5はXYθステージ13に連結されたピエゾアクチュエ
ータ、14はピエゾアクチュエータ15の上に取り付け
られるZ方向に移動するZステージ、31はピエゾアク
チュエータ15とZステージ14で構成される間隔調整
手段、26はZステージ14上に固定された石英チャッ
ク、20は石英チャック26に吸着保持された基板、1
6は一端を架台1に固定され他端をマスクチャック18
に連結されたマスク架台、21はマスクチャック18に
吸着保持されたマスク、23はマスク21上に形成され
たマスクパターン、17は一端がマスク架台16に連結
され他端がX方向摺動自在にアライメントスコープ19
に取り付けられたブラケット、37はギャップ設定器3
2とコントローラ33とピエゾドライバー34で構成さ
れ一端がギャップ計測手段40に他端がピエゾアクチュ
エータ15に電気的に接続された制御手段である。以上
のように構成された従来の露光装置について以下その動
作を説明する。
A conventional proximity exposure apparatus will be described below with reference to the drawings. FIG. 4 shows a first conventional example of a proximity exposure apparatus. In FIG. 4, 1 is a stand, 2
Is a Y-axis guide fixed to the mount 1, 4 is a Y stage slidably attached to the Y-axis guide 2 in the Y direction, 3 is an X-axis guide fixed to the Y stage 4, and 5 is an X-axis guide 3. An X stage slidably mounted in the X direction, 6 is a local illumination unit fixed to the X stage 5, 8 is an optical fiber whose one end is connected to the local illumination unit 6, 11 is a mercury lamp, 1
Reference numeral 2 is a reflecting mirror that collects light from the mercury lamp 11, 7 is a lens fixed in the local illumination unit 6, and 25 is an X-axis guide 3 on the X axis.
A sensor X stage that is slidably attached in a direction and moves in synchronization with the X stage 5, and 40 is a light projecting laser element 40a and a light receiving element 4 fixed to the sensor X stage 25.
0b and gap measuring means, 13 is X on the gantry 1.
XYθ stage mounted slidably on Y plane, 1
Reference numeral 5 is a piezo actuator connected to the XYθ stage 13, 14 is a Z stage which is mounted on the piezo actuator 15 and moves in the Z direction, 31 is a gap adjusting means composed of the piezo actuator 15 and the Z stage 14, and 26 is Z. A quartz chuck fixed on the stage 14, 20 is a substrate chucked and held by a quartz chuck 26, 1
6 is fixed to the gantry 1 at one end and the mask chuck 18 at the other end.
A mask frame connected to the mask frame, 21 a mask sucked and held by a mask chuck, 23 a mask pattern formed on the mask 21, and 17 connected to the mask frame 16 at one end and slidable in the X direction at the other end. Alignment scope 19
Is a bracket attached to, and 37 is a gap setter 3.
2, a controller 33 and a piezo driver 34, and one end is a control unit electrically connected to the gap measuring unit 40 and the other end electrically connected to the piezo actuator 15. The operation of the conventional exposure apparatus configured as described above will be described below.

【0004】本従来例の照明は、水銀ランプ11から発
した光を反射鏡12で集光し光ファイバー8の一端へ導
き他端から出射した光束を局所照明部6の中のレンズ7
で平行光線に調整して照射するものであり、局所照明部
6は基板20上に近接保持されアライメントスコープ1
9で位置合わせされたマスク21の上方をXステージ5
とYステージ4およびそれらの不図示の駆動手段により
XY面内で自在に移動できる。そしてレーザー反射形の
ギャップ計測手段40によって照明光照射部分のマスク
21と基板20の間隔を計測し、その出力信号はコント
ローラ33内でギャップ設定器32の設定値と比較され
偏差信号がピエゾドライバー34に入力される。ピエゾ
ドライバー34は偏差信号に応じてピエゾアクチュエー
タ15へ制御信号を送りZステージ14を駆動し基板2
0とマスク21を設定した所定の間隔に近接させること
ができ、局所照明部6をマスク21の全領域で走査し露
光することで露光領域全面で高解像度の転写像を得るこ
とができる。
In the illumination of the conventional example, the light emitted from the mercury lamp 11 is condensed by the reflecting mirror 12 and is guided to one end of the optical fiber 8 and the luminous flux emitted from the other end is reflected by the lens 7 in the local illumination section 6.
The local illumination unit 6 is held in close proximity to the substrate 20 and the alignment scope 1 is adjusted.
The X stage 5 is placed above the mask 21 aligned by
By the Y stage 4 and their driving means (not shown), they can be freely moved in the XY plane. Then, the gap between the mask 21 and the substrate 20 in the illumination light irradiation portion is measured by the laser reflection type gap measuring means 40, and the output signal thereof is compared with the set value of the gap setter 32 in the controller 33, and the deviation signal is detected by the piezo driver 34. Entered in. The piezo driver 34 sends a control signal to the piezo actuator 15 according to the deviation signal to drive the Z stage 14 to drive the substrate 2
It is possible to bring 0 and the mask 21 close to each other at a set predetermined distance, and by scanning and exposing the entire area of the mask 21 with the local illumination unit 6, a high-resolution transferred image can be obtained over the entire exposed area.

【0005】次に第2の従来例を図面を参照して説明す
る。図5はプロキシミティ露光装置の第2の従来例であ
る。図5において、1は架台、52は架台1に取り付け
られ水銀ランプ11と反射鏡12とフライアイレンズ5
3と集光レンズ54とを支持する照明系支持部材、13
は架台1上に摺動自在に取り付けられたXYθステー
ジ、15はXY面内で同一直線上にないように配置され
一端がXYθステージ13に取り付けられ他端がZαβ
ステージ51に取り付けられた3個のピエゾアクチュエ
ータ、51はピエゾアクチュエータ15によってZ方向
及びX軸回りの回転α方向およびY軸回りの回転β方向
に移動できるZαβステージ、58はピエゾアクチュエ
ータ15とZαβステージ51で構成される間隔調整手
段、55はZαβステージ51上に取り付けられた基板
チャック、20は基板チャック55上に吸着保持された
基板、22は基板20上に形成された不透明薄膜、16
は架台1に取り付けられたマスク架台、56はマスク架
台16にY方向摺動自在に取り付けられたセンサー支持
部、50はXY面内で同一直線上にないように配置され
センサー支持部56に取り付けられたギャップセンサ
ー、17はマスク架台16に取り付けられたブラケッ
ト、19はブラケット17にX方向摺動自在に取り付け
られたアライメントスコープ、18はマスク架台16に
取り付けられたマスクチャック、21はマスクチャック
18に吸着保持されたマスク、23はマスク21上に形
成されたマスクパターン、57はマスク21上に設けら
れたギャップ計測窓、37はギャップ設定器32とコン
トローラ33とピエゾドライバー34で構成され一端が
ギャップセンサー50に他端がピエゾアクチュエータ1
5に電気的に接続された制御手段である。
Next, a second conventional example will be described with reference to the drawings. FIG. 5 shows a second conventional example of the proximity exposure apparatus. In FIG. 5, 1 is a mount, 52 is a mount attached to the mount 1, the mercury lamp 11, the reflecting mirror 12, and the fly-eye lens 5
An illumination system support member that supports 3 and the condenser lens 54, 13
Is an XYθ stage slidably mounted on the pedestal 1, 15 is arranged so as not to be on the same straight line in the XY plane, one end is attached to the XYθ stage 13, and the other end is Zαβ
Three piezo actuators mounted on the stage 51, 51 are Zαβ stages that can be moved by the piezo actuator 15 in the rotation α direction about the Z direction and the X axis and the rotation β direction about the Y axis, and 58 is the piezo actuator 15 and the Zαβ stage. An interval adjusting means composed of 51, 55 a substrate chuck mounted on the Zαβ stage 51, 20 a substrate suction-held on the substrate chuck 55, 22 an opaque thin film formed on the substrate 20, 16
Is a mask mount attached to the mount 1, 56 is a sensor support attached to the mask mount 16 slidably in the Y direction, and 50 is attached to the sensor support 56 so as not to be on the same straight line in the XY plane. Gap sensor, 17 is a bracket mounted on the mask mount 16, 19 is an alignment scope mounted on the bracket 17 so as to be slidable in the X direction, 18 is a mask chuck mounted on the mask mount 16, and 21 is a mask chuck 18. , 23 is a mask pattern formed on the mask 21, 23 is a mask pattern formed on the mask 21, 57 is a gap measurement window provided on the mask 21, 37 is a gap setter 32, a controller 33 and a piezo driver 34 The other end of the gap sensor 50 is the piezo actuator 1
5 is a control means electrically connected.

【0006】以上のように構成された従来の露光装置に
ついて以下その動作を説明する。水銀ランプ11から発
した光線は反射鏡12でフライアイレンズ53に集光さ
れ、フライアイレンズ53で均一化された後集光レンズ
54で平行光線に調整される。一方基板チャック55で
吸着保持された基板20はギャップ計測窓57の上方に
3箇所設けられたギャップセンサー50によりマスク2
1との間隔を計測される。そしてその計測値はギャップ
設定器32の設定値とともにコントローラ33へ入力さ
れコントローラ33はこれらを演算処理して指令信号を
ピエゾドライバー34に出力し、ピエゾドライバー34
は指令信号に応じた制御信号をピエゾアクチュエータ1
5に送りZαβステージ51を駆動して基板20とマス
ク21の間隔調整を行う。その後アライメントスコープ
19とXYθステージ13を用いて基板20とマスク2
1の位置合わせを行い、アライメントスコープ19をX
方向へ退避させ、またセンサー支持部材56をY方向に
駆動してギャップセンサー50をマスク21上方から退
避させ、マスク21上方より照明光を照射して露光す
る。
The operation of the conventional exposure apparatus configured as described above will be described below. The light beam emitted from the mercury lamp 11 is condensed on the fly-eye lens 53 by the reflecting mirror 12, is uniformized by the fly-eye lens 53, and is then adjusted to a parallel light beam by the condensing lens 54. On the other hand, the substrate 20 sucked and held by the substrate chuck 55 is masked by the gap sensors 50 provided at three locations above the gap measurement window 57.
The distance from 1 is measured. Then, the measured value is input to the controller 33 together with the set value of the gap setter 32, and the controller 33 processes these and outputs a command signal to the piezo driver 34.
Is a control signal corresponding to the command signal. Piezo actuator 1
5, the Zαβ stage 51 is driven to adjust the distance between the substrate 20 and the mask 21. After that, the substrate 20 and the mask 2 are aligned using the alignment scope 19 and the XYθ stage 13.
1 and align the alignment scope 19 to X
Direction, the sensor support member 56 is driven in the Y direction to retract the gap sensor 50 from above the mask 21, and the illumination light is irradiated from above the mask 21 to perform exposure.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、第1の
従来例によると、基板20上にレーザー光線に対して不
透光性のある薄膜(ガラス基板上に金属薄膜を形成する
場合が多い。)が形成されている場合には、ギャップ計
測手段40によるマスク21と基板20との間隔の計測
が不可能になる。又ギャップ計測手段40が上方に配さ
れる場合には、マスク21上にレーザー光線に対して不
透光性のある薄膜(マスク上に金属薄膜を形成する場合
が多い。)が形成されている場合には、ギャップ計測手
段40による前記間隔の計測が不可能になる。更に基板
20及びマスク21の両者に不透光性のある薄膜が形成
されている場合には、ギャップ計測手段40をいずれの
位置に配しても前記間隔の計測が不可能になるという問
題があった。
However, according to the first conventional example, a thin film which is opaque to a laser beam (a metal thin film is often formed on a glass substrate) is formed on the substrate 20. If formed, the gap measuring means 40 cannot measure the distance between the mask 21 and the substrate 20. Further, when the gap measuring means 40 is arranged above, a thin film which is opaque to the laser beam (a metal thin film is often formed on the mask) is formed on the mask 21. Therefore, the gap measurement means 40 cannot measure the distance. Furthermore, when a non-translucent thin film is formed on both the substrate 20 and the mask 21, there is a problem in that the gap cannot be measured at any position of the gap measuring means 40. there were.

【0008】他方、第2の従来例によると、ギャップセ
ンサー50による測定点以外におけるマスク21と基板
20との間隔は不正確であり、露光領域全面で高解像度
を得るのが困難であるという問題点を有していた。
On the other hand, according to the second conventional example, the gap between the mask 21 and the substrate 20 at the points other than the measurement points by the gap sensor 50 is inaccurate, and it is difficult to obtain high resolution over the entire exposure area. Had a point.

【0009】そこで本発明は、これらの問題点を解消
し、基板上、マスク上の一方又は両者にレーザー光線等
に対して不透光性の薄膜が形成されている場合において
も露光領域全体で高解像度の露光ができる露光装置及び
露光方法を提供することを目的とするものである。
Therefore, the present invention solves these problems, and improves the entire exposure area even when a thin film opaque to a laser beam or the like is formed on one or both of the substrate and the mask. An object of the present invention is to provide an exposure apparatus and an exposure method capable of performing exposure with a resolution.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するため、基板とマスクを対向させて支持し、マスクに
照明光を照射してマスクパターンを基板上の感光層に露
光転写するプロキシミティ露光装置において、走査形の
局所照明手段と、局所照明手段と同期して走査し、局所
照明手段の照射部分におけるマスクの基準面高さを検出
するマスク側に配されたマスク面計測手段と、局所照明
手段と同期して走査し、前記照射部分における基板の基
準面高さを検出する基板側に配された基準面計測手段
と、所定箇所の計測可能位置において、前記照明部分に
おけるマスクと基板との間隔を計測するギャップ計測手
段と、マスクと基板との間隔を調整する間隔調整手段
と、マスク面計測手段によるマスク面計測値と、基板面
計測手段による基板面計測値との差を、ギャップ計測手
段によるギャップ計測値でキャリブレーションすること
により、前記マスク面計測値と前記基板面計測値に基
き、マスクと基板との間隔を間接的に求め、この間接的
に求めた値と設定値とに基いて間隔調整手段をコントロ
ールする制御手段とを、備えたことを特徴とする。
In order to achieve the above object, the present invention is a proxy for supporting a substrate and a mask in opposition to each other and irradiating the mask with illumination light to expose and transfer the mask pattern onto a photosensitive layer on the substrate. In the Miti exposure apparatus, scanning local illumination means, and mask surface measuring means arranged on the mask side for scanning in synchronization with the local illumination means and detecting the reference surface height of the mask in the irradiation portion of the local illumination means. A reference surface measuring means arranged on the substrate side for scanning in synchronization with the local illuminating means and detecting a reference surface height of the substrate in the irradiation portion; and a mask in the illuminating portion at a measurable position at a predetermined location. Gap measuring means for measuring the distance to the substrate, distance adjusting means for adjusting the distance between the mask and the substrate, mask surface measurement value by the mask surface measuring means, and substrate surface by the substrate surface measuring means The gap between the mask and the substrate is indirectly obtained based on the mask surface measurement value and the substrate surface measurement value by calibrating the difference between the measured value and the gap measurement value by the gap measuring means. And a control means for controlling the interval adjusting means based on the value obtained in step 1 and the set value.

【0011】上記露光装置において、マスク面計測手段
と基板面計測手段とが対となってギャップ計測手段を構
成していることが、構造の簡素化の観点から好ましく、
更にこれらがレーザー反射計測器で構成されていると、
測定精度を向上する観点から好ましい。
In the above exposure apparatus, it is preferable from the viewpoint of simplification of the structure that the mask surface measuring means and the substrate surface measuring means form a pair to constitute the gap measuring means.
Furthermore, if these are composed of laser reflectometers,
It is preferable from the viewpoint of improving the measurement accuracy.

【0012】又本発明は上記目的を達成するため、上記
構成の露光装置を用いて、マスクに照明光を照射してマ
スクパターンを基板上の感光層に露光転写するプロキシ
ミティ露光方法において、マスクまたは基板に透光性の
あるギャップ計測用窓を設け、このギャップ計測用窓を
利用してギャップ計測手段でマスクと基板との間隔を計
測する、ことを特徴とする。
In order to achieve the above object, the present invention provides a proximity exposure method in which the exposure apparatus having the above-mentioned configuration is used to irradiate the mask with illumination light to transfer the mask pattern onto the photosensitive layer on the substrate by exposure. Alternatively, the substrate is provided with a light-transmitting gap measuring window, and the gap measuring means is used to measure the gap between the mask and the substrate using the gap measuring window.

【0013】[0013]

【作用】本発明によれば、マスク面計測手段の計測値と
基板面計測手段の計測値をギャップ計測手段の計測値で
前もって校正しておく(キャリブレーションしておく)
ことにより、基板上およびマスク上の一方又は両方に不
透明な薄膜が形成されている場合でも、マスクと基板の
間隔をマスク面計測手段および基板面計測手段によって
間接的に測定でき、正確な間隔調整が可能となる。そし
て露光領域の各走査位置で正確な間隔調整が可能になる
ので露光領域全面で高解像度の露光ができる。
According to the present invention, the measurement value of the mask surface measuring means and the measurement value of the substrate surface measuring means are previously calibrated (calibrated) with the measurement value of the gap measuring means.
As a result, even when an opaque thin film is formed on one or both of the substrate and the mask, the distance between the mask and the substrate can be indirectly measured by the mask surface measuring means and the substrate surface measuring means, and accurate distance adjustment can be performed. Is possible. Further, since it is possible to accurately adjust the interval at each scanning position in the exposure area, it is possible to perform high resolution exposure over the entire exposure area.

【0014】[0014]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。図1は本発明による露光装置の一実
施例を示す図、図2は本実施例のキャリブレーション機
能を説明するための部分拡大図、図3は本実施例のマス
クをパターン側から見た斜視図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 is a diagram showing an embodiment of an exposure apparatus according to the present invention, FIG. 2 is a partially enlarged view for explaining the calibration function of the present embodiment, and FIG. 3 is a perspective view of a mask of the present embodiment as seen from the pattern side. It is a figure.

【0015】図1において、1は架台、2は架台1に固
定されたY軸ガイド、4はY軸ガイド2にY方向摺動自
在に取り付けられたYステージ、3はYステージ4に固
定されたX軸ガイド、5はX軸ガイド3にX方向摺動自
在に取り付けられたXステージ、6はXステージ5に固
定された局所照明部、9はXステージ5に固定された投
光レーザー素子9aと受光素子9bとからなるレーザー
反射形のマスク面計測手段、8は一端を局所照明部6に
連結された光ファイバー、11は水銀ランプ、12は水
銀ランプ11の光を集める反射鏡、7は局所照明部6の
中に固定されたレンズ、25はX軸ガイド3にX方向摺
動自在に取り付けられXステージ5と同期して移動する
センサ用Xステージ、10はセンサ用Xステージ25に
固定されたレーザー反射形の基板面計測手段で投光レー
ザー素子10aと受光素子10bとを有するものであ
り、13は架台1上にXY平面で摺動自在に取り付けら
れたXYθステージ、15はXYθステージ13に連結
された3個以上のピエゾアクチュエータ、14はピエゾ
アクチュエータ15の上に取り付けられたZ方向に移動
するZステージ、31はピエゾアクチュエータ15とZ
ステージ14で構成される間隔調整手段、26はZステ
ージ14上に固定された石英チャック、20は石英チャ
ック26に吸着保持された基板、22は基板20上に形
成されたクロム全面薄膜等の不透光性の薄膜、16は一
端を架台1に固定され他端をマスクチャック18に連結
されたマスク架台、21はマスクチャック18に吸着保
持されたマスク、23はマスク21上に形成されたマス
クパターン、24はマスクパターン23の一部に開けら
れた透光性のあるギャップ計測用窓、17は一端がマス
ク架台16に連結された他端がX方向摺動自在にアライ
メントスコープ19に取り付けられたブラケット、37
はギャップ設定器32とコントローラ33とピエゾドラ
イバー34で構成され、一端がマスク面計測手段9と基
板面計測手段10に電気的に接続され、他端がピエゾア
クチュエータ15に電気的に接続された制御手段であ
る。そして本実施例ではマスク面計測手段9と基板面計
測手段10とが対となって、マスク21と基板20との
間隔を計測するギャップ計測手段を構成している。以上
のように構成された露光装置を用いた露光方法を以下説
明する。
In FIG. 1, 1 is a mount, 2 is a Y-axis guide fixed to the mount 1, 4 is a Y stage mounted on the Y-axis guide 2 slidably in the Y direction, and 3 is fixed to the Y stage 4. X-axis guide, 5 is an X stage slidably attached to the X-axis guide 3 in the X direction, 6 is a local illumination unit fixed to the X stage 5, and 9 is a projection laser element fixed to the X stage 5. A laser reflection type mask surface measuring means composed of 9a and a light receiving element 9b, 8 an optical fiber whose one end is connected to the local illumination unit 6, 11 a mercury lamp, 12 a reflecting mirror for collecting the light of the mercury lamp 11, 7 A lens fixed in the local illumination unit 6, 25 is attached to the X-axis guide 3 slidably in the X-direction, and is an X-stage for sensor that moves in synchronization with the X-stage 5, 10 is fixed to the X-stage for sensor 25 Laser A reflection type substrate surface measuring means having a light projecting laser element 10a and a light receiving element 10b, 13 is an XYθ stage slidably mounted on the gantry 1 in the XY plane, and 15 is connected to the XYθ stage 13. 3 or more piezoelectric actuators, 14 is a Z stage which is mounted on the piezoelectric actuator 15 and moves in the Z direction, 31 is the piezoelectric actuators 15 and Z
A space adjusting means constituted by the stage 14, 26 is a quartz chuck fixed on the Z stage 14, 20 is a substrate sucked and held by the quartz chuck 26, and 22 is a non-contact film such as a chromium whole thin film formed on the substrate 20. A translucent thin film, 16 is a mask mount having one end fixed to the mount 1 and the other end connected to the mask chuck 18, 21 is a mask sucked and held by the mask chuck 18, and 23 is a mask formed on the mask 21. A pattern, 24 is a translucent gap measuring window opened in a part of the mask pattern 23, 17 is attached to the alignment scope 19 so that one end is connected to the mask mount 16 and the other end is slidable in the X direction. Bracket, 37
Is composed of a gap setter 32, a controller 33 and a piezo driver 34, one end of which is electrically connected to the mask surface measuring means 9 and the substrate surface measuring means 10 and the other end of which is electrically connected to the piezo actuator 15. It is a means. In this embodiment, the mask surface measuring means 9 and the substrate surface measuring means 10 form a pair to constitute a gap measuring means for measuring the distance between the mask 21 and the substrate 20. An exposure method using the exposure apparatus configured as above will be described below.

【0016】本実施例の照明は、水銀ランプ11から発
した光を反射鏡12で集光し光ファイバー8の一端へ導
き他端から出射した光束を局所照明部6の中のレンズ7
で平行光線に調整して照射するものであり、局所照射部
6は基板20上に近接保持されアライメントスコープ1
9で位置合わせされたマスク21の上方をXステージ5
とYステージ4およびそれらの不図示の駆動手段により
XY面内で自在に移動できる。
In the illumination of this embodiment, the light emitted from the mercury lamp 11 is condensed by the reflecting mirror 12 and is guided to one end of the optical fiber 8 and the luminous flux emitted from the other end is reflected by the lens 7 in the local illumination unit 6.
The collimated light beam is adjusted to irradiate parallel light beams, and the local irradiation unit 6 is held in close proximity to the substrate 20.
The X stage 5 is placed above the mask 21 aligned by
By the Y stage 4 and their driving means (not shown), they can be freely moved in the XY plane.

【0017】基板20とマスク21の間隔調整について
は、まず図2のようにXステージ5とYステージ4をギ
ャップ計測用窓24の上方へ移動し、マスク面計測手段
9により基板薄膜22の上面Pを計測し(計測値B)、
またレーザ反射形の基板面計測手段10により基板薄膜
22の下面Qを計測して(計測値C)、両者の差B−C
をオフセット値Fとしてコントローラ33内に記憶す
る。すなわちマスク面計測手段9と基板面計測手段10
との対からなるギャップ計測手段によって、前記オフセ
ット値Fを測定して、これをコントローラ33内に記憶
する。そして図1のようにXステージ5をキャリブレー
ション窓24以外の部分に移動してマスク面計測手段9
によりマスク21の下面Rを計測し(計測値A)、基板
面計測手段10による計測値Cとともにコントローラ3
3に入力してA−C−Fによりマスク21と基板20の
間隔を求め、この値とギャップ設定器32の設定値Dを
比較し、その偏差信号をピエゾドライバー34に送り、
ピエゾドライバー34は偏差信号に応じた制御信号をピ
エゾアクチュエータ15へ送ってZステージ14を駆動
し基板20とマスク21を設定した所定間隔に近接させ
ることができ、この状態で露光することによって高解像
度の露光ができる。このような間隔調整を各走査箇所に
おいて行ない、マスク21と基板20との間隔調整を全
面にわたって行う。
To adjust the distance between the substrate 20 and the mask 21, first, as shown in FIG. 2, the X stage 5 and the Y stage 4 are moved above the gap measuring window 24, and the mask surface measuring means 9 is used to move the upper surface of the substrate thin film 22. P is measured (measurement value B),
Further, the lower surface Q of the substrate thin film 22 is measured by the laser reflection type substrate surface measuring means 10 (measurement value C), and the difference B-C between the two is measured.
Is stored as an offset value F in the controller 33. That is, the mask surface measuring means 9 and the substrate surface measuring means 10
The offset value F is measured by the gap measuring means consisting of a pair of and and is stored in the controller 33. Then, as shown in FIG. 1, the X stage 5 is moved to a portion other than the calibration window 24 and the mask surface measuring means 9 is moved.
The lower surface R of the mask 21 is measured (measured value A) by the controller 3 together with the measured value C measured by the substrate surface measuring means 10.
3, the distance between the mask 21 and the substrate 20 is obtained by A-C-F, this value is compared with the set value D of the gap setter 32, and the deviation signal is sent to the piezo driver 34.
The piezo driver 34 can send a control signal corresponding to the deviation signal to the piezo actuator 15 to drive the Z stage 14 to bring the substrate 20 and the mask 21 close to each other at a set predetermined interval, and by exposing in this state, high resolution is achieved. Can be exposed. Such a space adjustment is performed at each scanning position, and the space between the mask 21 and the substrate 20 is adjusted over the entire surface.

【0018】なお、本実施例においてマスク21と基板
20の間隔測定はマスク21側に設けたギャップ計測用
窓24を利用して行なったが、基板20側に設けたギャ
ップ計測用窓を利用して行うことができ、更にギャップ
計測手段をマスク面計測手段9及び基板面計測手段10
とから独立して設けてもよい。
In this embodiment, the gap between the mask 21 and the substrate 20 was measured using the gap measuring window 24 provided on the mask 21 side, but the gap measuring window provided on the substrate 20 side was used. Further, the gap measuring means is the mask surface measuring means 9 and the substrate surface measuring means 10.
You may provide independently from and.

【0019】[0019]

【発明の効果】本発明によれば、基板上およびマスクの
一方または両方に不透明な薄膜が形成されている場合に
おいても、露光領域の各走査位置で正確な間隔が可能に
なるので、露光領域全面で高解像度の露光ができる。
According to the present invention, even when an opaque thin film is formed on one or both of a substrate and a mask, an accurate interval can be provided at each scanning position of the exposure region, so that the exposure region can be formed. High resolution exposure is possible on the entire surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】キャリブレーション機能を説明するための部分
拡大図。
FIG. 2 is a partially enlarged view for explaining a calibration function.

【図3】マスクの斜視図。FIG. 3 is a perspective view of a mask.

【図4】プロキシミティ露光装置の第1の従来例を示す
断面図。
FIG. 4 is a sectional view showing a first conventional example of a proximity exposure apparatus.

【図5】プロキシミティ露光装置の第2の従来例を示す
断面図。
FIG. 5 is a sectional view showing a second conventional example of the proximity exposure apparatus.

【符号の説明】[Explanation of symbols]

6 局所照明手段 9 マスク面計測手段 9、10 ギャップ計測手段 10 基板面計測手段 20 基板 21 マスク 24 ギャップ計測用窓 31 間隔調整手段 37 制御手段 6 Local illumination means 9 Mask surface measuring means 9, 10 Gap measuring means 10 Board surface measuring means 20 substrates 21 mask 24 Gap measurement window 31 Interval adjustment means 37 Control means

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−326369(JP,A) 特開 平7−201710(JP,A) 特開 平6−5486(JP,A) 特開 平5−59998(JP,A) 特開 平3−38025(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/027 G03F 7/20 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-5-326369 (JP, A) JP-A-7-201710 (JP, A) JP-A-6-5486 (JP, A) JP-A-5- 59998 (JP, A) JP-A-3-38025 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 21/027 G03F 7/20

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板とマスクを対向させて支持し、マス
クに照明光を照射してマスクパターンを基板上の感光層
に露光転写するプロキシミティ露光装置において、 走査形の局所照明手段と、 局所照明手段と同期して走査し、局所照明手段の照射部
分におけるマスクの基準面高さを検出するマスク側に配
されたマスク面計測手段と、 局所照明手段と同期して走査し、前記照射部分における
基板の基準面高さを検出する基板側に配された基準面計
測手段と、 所定箇所の計測可能位置において、前記照明部分におけ
るマスクと基板との間隔を計測するギャップ計測手段
と、 マスクと基板との間隔を調整する間隔調整手段と、 マスク面計測手段によるマスク面計測値と、基板面計測
手段による基板面計測値との差を、ギャップ計測手段に
よるギャップ計測値でキャリブレーションすることによ
り、前記マスク面計測値と前記基板面計測値に基き、マ
スクと基板との間隔を間接的に求め、この間接的に求め
た値と設定値とに基いて間隔調整手段をコントロールす
る制御手段とを、 備えたことを特徴とする露光装置。
1. A proximity exposure apparatus in which a substrate and a mask are supported in opposition to each other, and the mask is irradiated with illumination light to expose and transfer the mask pattern onto a photosensitive layer on the substrate. The mask surface measuring means arranged on the mask side for scanning in synchronization with the illuminating means and detecting the reference surface height of the mask in the illuminated portion of the local illuminating means; A reference plane measuring means arranged on the side of the substrate for detecting the reference plane height of the substrate, a gap measuring means for measuring the distance between the mask and the substrate in the illuminated portion at a predetermined measurable position, and a mask. The gap between the gap measuring means and the gap adjusting means for adjusting the distance to the substrate, the difference between the mask surface measured value by the mask surface measuring means and the substrate surface measured value by the substrate surface measuring means. By calibrating with a measurement value, based on the mask surface measurement value and the substrate surface measurement value, the distance between the mask and the substrate is indirectly obtained, based on the indirectly obtained value and the set value. An exposure apparatus comprising: a control unit that controls the interval adjustment unit.
【請求項2】 マスク面計測手段と基板面計測手段とが
対となってギャップ計測手段を構成している請求項1記
載の露光装置。
2. The exposure apparatus according to claim 1, wherein the mask surface measuring means and the substrate surface measuring means are paired to constitute a gap measuring means.
【請求項3】 マスク面計測手段及び基板面計測手段が
レーザー反射形計測器によって構成されている請求項2
記載の露光装置。
3. The mask surface measuring means and the substrate surface measuring means are constituted by a laser reflection type measuring device.
The exposure apparatus described.
【請求項4】 請求項1記載の露光装置を用いて、マス
クに照明光を照射してマスクパターンを基板上の感光層
に露光転写するプロキシミティ露光方法において、 マスクまたは基板に透光性のあるギャップ計測用窓を設
け、このギャップ計測用窓を利用してギャップ計測手段
でマスクと基板との間隔を計測する、 ことを特徴とする露光方法。
4. A proximity exposure method of irradiating a mask with illumination light to expose and transfer a mask pattern onto a photosensitive layer on a substrate using the exposure apparatus according to claim 1, wherein the mask or the substrate is transparent. An exposure method characterized in that a gap measuring window is provided, and the gap between the mask and the substrate is measured by the gap measuring means using the gap measuring window.
JP04405094A 1994-03-15 1994-03-15 Exposure apparatus and exposure method Expired - Fee Related JP3378076B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP04405094A JP3378076B2 (en) 1994-03-15 1994-03-15 Exposure apparatus and exposure method
US08/404,768 US5573877A (en) 1994-03-15 1995-03-15 Exposure method and exposure apparatus
CN95103125A CN1120683A (en) 1994-03-15 1995-03-15 Exposure method and exposure apparatus
KR1019950005288A KR0157279B1 (en) 1994-03-15 1995-03-15 Exposure apparatus for transferring a mask pattern onto a substrate
US08/699,787 US5737064A (en) 1994-03-15 1996-08-20 Exposure apparatus for transferring a mask pattern onto a substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04405094A JP3378076B2 (en) 1994-03-15 1994-03-15 Exposure apparatus and exposure method

Publications (2)

Publication Number Publication Date
JPH07254547A JPH07254547A (en) 1995-10-03
JP3378076B2 true JP3378076B2 (en) 2003-02-17

Family

ID=12680792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04405094A Expired - Fee Related JP3378076B2 (en) 1994-03-15 1994-03-15 Exposure apparatus and exposure method

Country Status (1)

Country Link
JP (1) JP3378076B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526714B2 (en) * 2009-11-10 2014-06-18 凸版印刷株式会社 Substrate exposure equipment

Also Published As

Publication number Publication date
JPH07254547A (en) 1995-10-03

Similar Documents

Publication Publication Date Title
KR0157279B1 (en) Exposure apparatus for transferring a mask pattern onto a substrate
US5306902A (en) Confocal method and apparatus for focusing in projection lithography
JP4332486B2 (en) Method and apparatus for repeatedly projecting a mask pattern onto a substrate using time-saving height measurement
TWI326015B (en) Optical position assessment apparatus and method
TW569304B (en) Focusing method, position measuring method, exposure method, device manufacturing method and exposure apparatus
JP3374467B2 (en) Projection exposure apparatus and exposure method
JP3125360B2 (en) Position detecting device and projection exposure device
JPH10242041A (en) Position detection method and apparatus, and aligner
JPH1038513A (en) Surface height measuring instrument, and exposing device using the same
JP2009147332A (en) Device for transmission image detection for use in lithographic projection apparatus and method for determining third order distortion of patterning device and/or projection system of such a lithographic apparatus
JP2009163237A (en) Lithographic method
JP3378076B2 (en) Exposure apparatus and exposure method
JP2001052986A (en) X-ray projection aligner
JPH07326567A (en) Unmagnified projection aligner
TWI251129B (en) Lithographic apparatus and integrated circuit manufacturing method
JP2004356290A (en) Aligner and method for exposure
JP2662236B2 (en) Projection exposure method and apparatus
JPH09246356A (en) Surface position setting method
JPH11233424A (en) Projection optical device, aberration measuring method, projection method, and manufacture of device
JP3282231B2 (en) Projection exposure apparatus and method
JP3295244B2 (en) Positioning device
JPS6381818A (en) Projection optical apparatus
JP2780302B2 (en) Exposure equipment
JPH09129540A (en) Orthogonality measuring method of stage system
JPH10275768A (en) Projection aligner and relative position measurement method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees