JPH08304372A - Gas chromatographic device - Google Patents

Gas chromatographic device

Info

Publication number
JPH08304372A
JPH08304372A JP7129656A JP12965695A JPH08304372A JP H08304372 A JPH08304372 A JP H08304372A JP 7129656 A JP7129656 A JP 7129656A JP 12965695 A JP12965695 A JP 12965695A JP H08304372 A JPH08304372 A JP H08304372A
Authority
JP
Japan
Prior art keywords
gas
flow rate
sample
pressure
measurement cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7129656A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tsujiide
裕之 辻出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP7129656A priority Critical patent/JPH08304372A/en
Publication of JPH08304372A publication Critical patent/JPH08304372A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/64Electrical detectors
    • G01N30/66Thermal conductivity detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE: To improve the precision of a gas chromatographic device. CONSTITUTION: A control part 14 calculates a target value of gas pressure in a contrast gas passage such that the flow rate F1 of the measuring gas introduced to a TCD is equal to the flow rate F2 of a contrast gas on the basis of the detection signal by a pressure sensor 12, and controls a flow control valve 15 so that a pressure sensor 16 has this target value. Therefore, even when the flow rate F1 increases because of the rise of gas pressure at sample injection, the detected output of the TCD 20 is not fluctuated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガスクロマトグラフ装置
に関する。
FIELD OF THE INVENTION The present invention relates to a gas chromatograph.

【0002】[0002]

【従来の技術】熱伝導度型検出器(TCD:Thermal Co
nductivity Detector)は、ガスクロマトグラフ装置の
検出器として、一般的に使用されているものの一つであ
る。図2は、このTCDの構造を示す図である。ステン
レススチール等の金属ブロック23の中に形成された2
つの測定セル21a、21bの内部には、それぞれ白金
等の金属製のフィラメント22a、22bが挿入されて
おり、このフィラメント22a、22bは外部から電流
が供給されることにより加熱されている。サンプル側測
定セル21aには、カラムを通過してきた測定ガスすな
わちキャリアガスと試料との混合ガスが導入され、一
方、リファレンス側測定セル21bには、対照ガスとし
てキャリアガスのみがリファレンス流路を通して導入さ
れる。
2. Description of the Related Art Thermal conductivity type detector (TCD: Thermal Co)
nductivity Detector) is one of the commonly used detectors for gas chromatographs. FIG. 2 is a diagram showing the structure of this TCD. 2 formed in a metal block 23 such as stainless steel
Filaments 22a and 22b made of metal such as platinum are inserted into the insides of the two measuring cells 21a and 21b, and the filaments 22a and 22b are heated by being supplied with an electric current from the outside. The measurement gas that has passed through the column, that is, a mixed gas of a carrier gas and a sample, is introduced into the sample-side measurement cell 21a, while only the carrier gas is introduced into the reference-side measurement cell 21b as a reference gas through the reference channel. To be done.

【0003】測定ガス中に試料が含まれていないときに
は、測定ガスはキャリアガスのみであるため、キャリア
ガスの熱伝導によってフィラメント22aから一定の割
合で熱が奪われる。フィラメント22aは、加熱により
供給される熱量と放散される熱量とが等しくなる温度で
平衡し、その温度に応じた電気抵抗を有する。
When the sample gas is not contained in the measurement gas, the measurement gas is only the carrier gas, so that heat is taken from the filament 22a at a constant rate due to the heat conduction of the carrier gas. The filament 22a is in equilibrium at a temperature at which the amount of heat supplied by heating and the amount of heat dissipated are equal, and has an electrical resistance corresponding to that temperature.

【0004】測定ガス中に試料の成分が含まれていると
きには、その成分に応じて測定ガスの熱伝導度が変化
し、フィラメント22aから放散される熱量が変化する
ため、フィラメント22aの温度すなわち電気抵抗が変
化する。この抵抗変化が、リファレンス側測定セル21
b内のフィラメント22bを含んで構成されるホイート
ストーンブリッジ回路にて検出され、クロマトグラムと
して記録される。
When the measurement gas contains a component of the sample, the thermal conductivity of the measurement gas changes according to the component, and the amount of heat radiated from the filament 22a changes, so that the temperature of the filament 22a, that is, the electricity. The resistance changes. This resistance change is caused by the reference side measurement cell 21.
It is detected by the Wheatstone bridge circuit including the filament 22b in b and recorded as a chromatogram.

【0005】[0005]

【発明が解決しようとする課題】上記構成のようなTC
Dを用いた従来のガスクロマトグラフ装置では、リファ
レンス側測定セル21bに導入されるキャリアガスの流
量を一定に保つように、リファレンス流路には例えば定
圧弁が設けられている。そして、定圧弁はリファレンス
側測定セル21bに導入されるキャリアガスの流量が、
サンプル側測定セル21aに導入される測定ガスの流量
と等しくなるように調節されている。
The TC having the above-mentioned structure
In the conventional gas chromatograph using D, a constant pressure valve, for example, is provided in the reference channel so as to keep the flow rate of the carrier gas introduced into the reference side measurement cell 21b constant. Then, the constant pressure valve is such that the flow rate of the carrier gas introduced into the reference side measurement cell 21b is
It is adjusted to be equal to the flow rate of the measurement gas introduced into the sample-side measurement cell 21a.

【0006】ところが、カラム入口の試料気化室内に液
体試料を注入した直後には、試料が気化して体積が急激
に膨張するため、試料気化室内のガス圧は急激に上昇す
る。これにより、カラムの出口すなわちTCDのサンプ
ル側測定セル21aの入口でのガス圧も上昇する。この
とき、サンプル側測定セル21aに流れ込む測定ガスに
は試料は含まれていないが、その流量が増加するため、
フィラメント22aの近傍では測定ガスの体積当たりの
分子数が増加し熱拡散率が変化する。この結果、気化し
た試料はカラムの中を通過中でありサンプル側測定セル
21aまでは到達していないにも拘らず、フィラメント
22aの温度が変化し、TCDの検出出力が変化する。
この変化はノイズの一種であって、クロマトグラムのベ
ースラインの変動を生じさせ、分析の精度を低下させる
ことになる。この現象は、内径の小さなキャピラリーカ
ラムを使用し、しかも試料気化室内のガスのすべて又は
殆どをカラムへ送り込む非スプリット型の装置におい
て、特に顕著であり影響が大きい。
However, immediately after the liquid sample is injected into the sample vaporizing chamber at the column inlet, the sample vaporizes and the volume expands rapidly, so that the gas pressure in the sample vaporizing chamber rises rapidly. As a result, the gas pressure at the outlet of the column, that is, the inlet of the TCD sample-side measuring cell 21a also rises. At this time, the measurement gas flowing into the sample-side measurement cell 21a does not contain the sample, but its flow rate increases,
In the vicinity of the filament 22a, the number of molecules per volume of the measurement gas increases and the thermal diffusivity changes. As a result, although the vaporized sample is passing through the column and has not reached the sample-side measuring cell 21a, the temperature of the filament 22a changes and the TCD detection output changes.
This change is a kind of noise and causes a change in the baseline of the chromatogram, which reduces the accuracy of analysis. This phenomenon is particularly remarkable and has a great influence in a non-split type apparatus that uses a capillary column having a small inner diameter and sends all or most of the gas in the sample vaporization chamber to the column.

【0007】本発明はこのような課題を解決するために
成されたものであり、その目的とするところは、試料注
入に起因するクロマトグラムのベースラインの変動を防
止することにより分析精度を向上させたガスクロマトグ
ラフ装置を提供することにある。
The present invention has been made to solve such a problem, and an object of the present invention is to improve the analytical accuracy by preventing the fluctuation of the baseline of the chromatogram due to the sample injection. To provide the gas chromatograph apparatus.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に成された本発明は、カラムから導かれる測定ガスのた
めの第1の測定セル、及び純粋な対照ガスのための第2
の測定セルの二つの測定セルから成る熱伝導度型検出器
を備えるガスクロマトグラフ装置において、 a)前記カラムの入口のガス圧を検出する第1の検出手段
と、 b)前記第2の測定セルに導入される対照ガスの流路のガ
ス圧を検出する第2の検出手段と、 c)前記流路において対照ガスの流量を調節する流量調節
手段と、 d)前記第1の検出手段による検出値に基づき、前記第1
の測定セルに導入される測定ガスの流量と前記第2の測
定セルに導入される対照ガスの流量とが等しくなるよう
な前記流路でのガス圧の目標値を算出し、前記第2の検
出手段の検出値が該目標値となるように前記流量調節手
段を制御する制御手段と、を備えることを特徴としてい
る。
The present invention, which was made to solve the above-mentioned problems, comprises a first measuring cell for measuring gas introduced from a column and a second measuring cell for pure control gas.
In a gas chromatograph equipped with a thermal conductivity type detector consisting of two measuring cells of a), a) first detecting means for detecting the gas pressure at the inlet of the column; and b) the second measuring cell. Second detecting means for detecting the gas pressure in the flow path of the reference gas introduced into the chamber, c) flow rate adjusting means for adjusting the flow rate of the reference gas in the flow path, and d) detection by the first detecting means. Based on the value, the first
The target value of the gas pressure in the flow path is calculated so that the flow rate of the measurement gas introduced into the measurement cell and the flow rate of the reference gas introduced into the second measurement cell are equalized, and the second value is calculated. Control means for controlling the flow rate adjusting means so that the detected value of the detecting means becomes the target value.

【0009】[0009]

【作用】本発明では、カラムの入口にある試料気化室内
のガス圧の変化に応じて、第2の測定セル(リファレン
ス側測定セル)に導入される対照ガスの流量を変化させ
る。すなわち、本発明における制御手段は、第1の検出
手段により検出されるガス圧に基づき、カラム及び対照
ガスの流路の流れ抵抗等を勘案して、第1の測定セル
(サンプル側測定セル)に導入される測定ガスの流量と
第2の測定セル(リファレンス側測定セル)に導入され
る対照ガスの流量とが等しくなるような対照ガスの流路
でのガス圧の目標値を算出する。そして、該流路に設け
られた流量調節手段を制御して、該流路に設けられた第
2の検出手段の検出値が算出された目標値となるように
する。
In the present invention, the flow rate of the reference gas introduced into the second measurement cell (reference-side measurement cell) is changed according to the change in the gas pressure in the sample vaporization chamber at the column inlet. That is, the control means in the present invention is based on the gas pressure detected by the first detection means, and in consideration of the flow resistance of the flow path of the column and the control gas, the first measurement cell (sample-side measurement cell). A target value of the gas pressure in the flow path of the reference gas is calculated so that the flow rate of the measurement gas introduced into the second measurement cell and the flow rate of the reference gas introduced into the second measurement cell (reference side measurement cell) become equal. Then, the flow rate adjusting means provided in the flow path is controlled so that the detection value of the second detecting means provided in the flow path becomes the calculated target value.

【0010】[0010]

【発明の効果】この結果、本発明によれば、試料注入時
にカラム入口のガス圧が急激に上昇してサンプル側測定
セル内のフィラメント近傍を通過する測定ガスの流量が
増加したときには、リファレンス側測定セル内のフィラ
メント近傍を通過する対照ガスの流量も増加されるた
め、両フィラメントから放散される熱量の変化は等しく
なり、TCDの検出出力は変化しない。従って、クロマ
トグラムのベースラインは変動せず、精度の高い分析が
行なえる。
As a result, according to the present invention, when the gas pressure at the column inlet sharply increases during sample injection and the flow rate of the measurement gas passing near the filament in the sample-side measurement cell increases, the reference side Since the flow rate of the reference gas passing near the filament in the measurement cell is also increased, the changes in the amount of heat radiated from both filaments become equal, and the TCD detection output does not change. Therefore, the baseline of the chromatogram does not change, and highly accurate analysis can be performed.

【0011】[0011]

【実施例】以下、本発明の実施例について図1を参照し
つつ説明する。
Embodiments of the present invention will be described below with reference to FIG.

【0012】試料気化室10には、キャリアガス流路を
通してHeガス等のキャリアガスが供給される。キャリ
アガス流路には流量制御弁11が設けられ、ガス流量が
制御される。またキャリアガス流路上の試料気化室10
の近傍には、圧力センサ12が設けられている。この圧
力センサ12と試料気化室10との間にはガス抵抗が殆
ど無いため、圧力センサ12によって検出されるガス圧
は、試料気化室10内部のガス圧と同一と看做せる。
A carrier gas such as He gas is supplied to the sample vaporization chamber 10 through a carrier gas passage. A flow rate control valve 11 is provided in the carrier gas flow path to control the gas flow rate. In addition, the sample vaporization chamber 10 on the carrier gas channel
A pressure sensor 12 is provided in the vicinity of. Since there is almost no gas resistance between the pressure sensor 12 and the sample vaporization chamber 10, the gas pressure detected by the pressure sensor 12 can be regarded as the same as the gas pressure inside the sample vaporization chamber 10.

【0013】試料気化室10は高温に加熱されており、
液体試料が注入されると即座に気化し、キャリアガスと
ともにカラム13へ送られる。圧力センサ12による検
出信号は制御部14へ入力されている。カラム13中を
通過した測定ガスは、TCD20のサンプル側測定セル
21aに供給され、フィラメント22aの近傍を通過し
た後に大気中に排出される。一方、TCD20のリファ
レンス側測定セル21bに供給されるガスのリファレン
ス流路には、流量制御弁15、圧力センサ16及びスロ
ットルバルブ等の抵抗17が設けられている。流量制御
弁15は、制御部14により制御される。また、TCD
20の検出出力は増幅器18で増幅された後、記録計1
9にて記録される。
The sample vaporization chamber 10 is heated to a high temperature,
When the liquid sample is injected, it immediately vaporizes and is sent to the column 13 together with the carrier gas. The detection signal from the pressure sensor 12 is input to the control unit 14. The measurement gas that has passed through the column 13 is supplied to the sample-side measurement cell 21a of the TCD 20, passed through the vicinity of the filament 22a, and then discharged into the atmosphere. On the other hand, a flow path control valve 15, a pressure sensor 16, and a resistor 17 such as a throttle valve are provided in the reference flow path of the gas supplied to the reference side measurement cell 21b of the TCD 20. The flow rate control valve 15 is controlled by the control unit 14. Also, TCD
After the detection output of 20 is amplified by the amplifier 18, the recorder 1
Recorded at 9.

【0014】上記構成において、制御部14は圧力セン
サ12の検出信号に基づき、流量制御弁15を以下のよ
うに制御する。
In the above structure, the control unit 14 controls the flow rate control valve 15 as follows based on the detection signal of the pressure sensor 12.

【0015】すなわち、キャリアガス流路の圧力センサ
12におけるガス圧をP1i、リファレンス流路の圧力セ
ンサ16におけるガス圧をP2i、TCD20のガス出口
の圧力すなわち大気圧をPoとすると、サンプル側測定
セル21a及びリファレンス側測定セル21bのガス入
口におけるガスの流量F1及びF2は次の式で表わされ
る。 F1=a1[(P1i 2−Po 2)/Po] F2=a2[(P2i 2−Po 2)/Po] ここで、a1、a2は、カラム13や抵抗17の流れ抵
抗、ガスの粘性係数、ガスの温度などに基づきそれぞれ
決まる定数である。
That is, assuming that the gas pressure in the pressure sensor 12 in the carrier gas flow path is P 1i , the gas pressure in the pressure sensor 16 in the reference flow path is P 2i , and the pressure at the gas outlet of the TCD 20, that is, the atmospheric pressure is P o , the sample The gas flow rates F 1 and F 2 at the gas inlets of the side measurement cell 21a and the reference side measurement cell 21b are expressed by the following equations. F 1 = a 1 [(P 1i 2 −P o 2 ) / P o ] F 2 = a 2 [(P 2i 2 −P o 2 ) / P o ] where a 1 and a 2 are columns 13 And the flow resistance of the resistor 17, the viscosity coefficient of the gas, the temperature of the gas, and the like.

【0016】いま、試料が試料気化室10内に注入され
ることによって、キャリアガス流路の圧力センサ12の
ガス圧がP1iからP1i+△P1iに変化したとすると、流
量F1の変化分△F1は次式となる。 △F1=a1{[(P1i+△P1i2−P1i 2]/Po} =a1[(△P1i 2+2P1i△P1i)/Po] この△F1と流量F2の変化分である△F2とを等しくす
るため、圧力センサ16にて検出されるガス圧がP2i
△P2iとなるべく流量制御弁15を制御する。すなわ
ち、既知であるP1i、△P1i及びP2iに基づき、 a1[(△P1i 2+2P1i△P1i)/Po] =a2[(△P2i 2+2P2i△P2i)/Po] を満たす△P2iを算出し、P2i+△P2iを圧力センサ1
6のガス圧の目標値とする。
[0016] Now, by the sample is injected into the sample vaporizing chamber 10, the gas pressure of the pressure sensor 12 of the carrier gas flow path is changed from P 1i to P 1i + △ P 1i, the flow rate F 1 The change ΔF 1 is given by the following equation. ΔF 1 = a 1 {[(P 1i + ΔP 1i ) 2 −P 1i 2 ] / P o } = a 1 [(ΔP 1i 2 + 2P 1i ΔP 1i ) / P o ] This ΔF 1 and The gas pressure detected by the pressure sensor 16 is P 2i + in order to equalize ΔF 2 which is the change in the flow rate F 2.
The flow control valve 15 is controlled as much as ΔP 2i . That is, based on the known P 1i , ΔP 1i and P 2i , a 1 [(ΔP 1i 2 + 2P 1i ΔP 1i ) / P o ] = a 2 [(ΔP 2i 2 + 2P 2i ΔP 2i ) / P o] satisfies the △ P 2i is calculated, the pressure sensor 1 a P 2i + △ P 2i
The target value of the gas pressure of 6 is set.

【0017】具体的には、制御部14は、圧力センサ1
2の検出値を入力することによりP2i+△P2iを導出す
る演算回路、或いは演算プログラムを有するCPUを備
えている。そして、常に、圧力センサ12の検出信号か
らリファレンス流路のガス圧の目標値を算出し、圧力セ
ンサ16の検出信号がその目標値になるように流量制御
弁15を制御する。このため、試料気化室10内部のガ
ス圧が上昇したときには、リファレンス流路からリファ
レンス側測定セル21bに導入されるキャリアガスの流
量も増加する。この結果、試料を含んだ測定ガスがサン
プル側測定セル21aに到達するまでは、2つのフィラ
メント22a、22bの温度変化すなわち電気抵抗の変
化は等しくなるため、ホイートストーンブリッジ回路の
平衡状態は保たれ、TCD検出出力は変動しない。そし
て、試料を含んだ測定ガスがサンプル側測定セル21a
に導入されたときに、その熱伝導度の変化によってフィ
ラメント21aの抵抗が変化し、試料中の成分に対応す
るTCD検出出力が得られる。
Specifically, the controller 14 controls the pressure sensor 1
And a CPU having an arithmetic circuit, or calculation program for deriving the P 2i + △ P 2i by entering the second detection value. Then, the target value of the gas pressure in the reference flow path is always calculated from the detection signal of the pressure sensor 12, and the flow control valve 15 is controlled so that the detection signal of the pressure sensor 16 becomes the target value. Therefore, when the gas pressure inside the sample vaporization chamber 10 rises, the flow rate of the carrier gas introduced from the reference flow path into the reference side measurement cell 21b also increases. As a result, until the measurement gas containing the sample reaches the measurement cell 21a on the sample side, the temperature changes of the two filaments 22a and 22b, that is, the changes in the electrical resistance become equal, so that the equilibrium state of the Wheatstone bridge circuit is maintained. The TCD detection output does not fluctuate. Then, the measurement gas containing the sample is used as the measurement cell 21a on the sample side.
When introduced into the sample, the resistance of the filament 21a changes due to the change in its thermal conductivity, and the TCD detection output corresponding to the component in the sample is obtained.

【0018】なお、上記構成において、リファレンス流
路側の抵抗17としてカラム13と同一特性のものを使
用し、温度等の条件を同一に保つようにすれば、a1
2となるため、流量の制御が容易かつ正確に行なえ
る。
In the above structure, if the resistance 17 on the reference flow path side has the same characteristics as the column 13 and the conditions such as temperature are kept the same, a 1 =
Since it is a 2 , the flow rate can be controlled easily and accurately.

【0019】また、リファレンス流路のガス圧の目標値
を算出するときに用いられる定数a1、a2は予め計算さ
れた固定値であっても良いが、より好ましくは、カラム
の温度等をモニタした結果、或いは、使用するキャリア
ガスの種類等に関する外部からの指定等に対応し修正さ
れた値が用いられる。
Further, the constants a 1 and a 2 used when calculating the target value of the gas pressure in the reference flow path may be fixed values calculated in advance, but more preferably, the temperature of the column or the like is used. As a result of monitoring, or a value corrected corresponding to designation from the outside regarding the type of carrier gas to be used and the like is used.

【0020】更に、上記実施例は非スプリット型のクロ
マトグラフ装置について説明したが、試料気化室からキ
ャリアガスの一部を排出するようなスプリット型ガスク
ロマトグラフ装置においても、本発明の構成を用いるこ
とにより分析精度の一層の向上が期待できる。
Further, although the above-mentioned embodiment has explained the non-split type chromatograph apparatus, the constitution of the present invention can be applied to a split type gas chromatograph apparatus in which a part of the carrier gas is discharged from the sample vaporizing chamber. Therefore, further improvement in analysis accuracy can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例であるガスクロマトグラフ装
置の構成図。
FIG. 1 is a configuration diagram of a gas chromatograph device that is an embodiment of the present invention.

【図2】 ガスクロマトグラフ装置の熱伝導度型検出器
の構造を示す図。
FIG. 2 is a diagram showing a structure of a thermal conductivity type detector of a gas chromatograph device.

【符号の説明】[Explanation of symbols]

10…試料気化室 12…圧力センサ(第1の検出手段) 13…カラム 14…制御部(制御手段) 15…流量制御部(流量調節手段) 16…圧力センサ(第2の検出手段) 20…TCD(熱伝導度型検出器) 21a…サンプル側測定セル(第1の測定セル) 21b…リファレンス側測定セル(第2の測定セル) DESCRIPTION OF SYMBOLS 10 ... Sample vaporization chamber 12 ... Pressure sensor (1st detection means) 13 ... Column 14 ... Control part (control means) 15 ... Flow rate control part (flow rate adjustment means) 16 ... Pressure sensor (2nd detection means) 20 ... TCD (Thermal conductivity type detector) 21a ... Sample-side measurement cell (first measurement cell) 21b ... Reference-side measurement cell (second measurement cell)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 カラムから導かれる測定ガスのための第
1の測定セル、及び純粋な対照ガスのための第2の測定
セルの二つの測定セルから成る熱伝導度型検出器を備え
るガスクロマトグラフ装置において、 a)前記カラムの入口のガス圧を検出する第1の検出手段
と、 b)前記第2の測定セルに導入される対照ガスの流路のガ
ス圧を検出する第2の検出手段と、 c)前記流路において対照ガスの流量を調節する流量調節
手段と、 d)前記第1の検出手段による検出値に基づき、前記第1
の測定セルに導入される測定ガスの流量と前記第2の測
定セルに導入される対照ガスの流量とが等しくなるよう
な前記流路でのガス圧の目標値を算出し、前記第2の検
出手段の検出値が該目標値となるように前記流量調節手
段を制御する制御手段と、を備えることを特徴とするガ
スクロマトグラフ装置。
1. A gas chromatograph with a thermal conductivity detector consisting of two measuring cells, a first measuring cell for a measuring gas led from a column and a second measuring cell for a pure control gas. In the apparatus, a) first detecting means for detecting the gas pressure at the inlet of the column, and b) second detecting means for detecting the gas pressure in the flow path of the reference gas introduced into the second measuring cell. And c) a flow rate adjusting means for adjusting the flow rate of the reference gas in the flow path, and d) the first detecting means based on the detected value by the first detecting means.
The target value of the gas pressure in the flow path is calculated so that the flow rate of the measurement gas introduced into the measurement cell and the flow rate of the reference gas introduced into the second measurement cell are equalized, and the second value is calculated. A gas chromatograph device comprising: a control unit that controls the flow rate adjusting unit so that the detection value of the detection unit becomes the target value.
JP7129656A 1995-04-27 1995-04-27 Gas chromatographic device Pending JPH08304372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7129656A JPH08304372A (en) 1995-04-27 1995-04-27 Gas chromatographic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7129656A JPH08304372A (en) 1995-04-27 1995-04-27 Gas chromatographic device

Publications (1)

Publication Number Publication Date
JPH08304372A true JPH08304372A (en) 1996-11-22

Family

ID=15014909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7129656A Pending JPH08304372A (en) 1995-04-27 1995-04-27 Gas chromatographic device

Country Status (1)

Country Link
JP (1) JPH08304372A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654742B1 (en) 1999-02-12 2003-11-25 International Business Machines Corporation Method and system for document collection final search result by arithmetical operations between search results sorted by multiple ranking metrics
JP2014108395A (en) * 2012-12-03 2014-06-12 Air Liquide Japan Ltd Vaporization amount monitoring system for solid material and monitoring method
CN105510493A (en) * 2014-10-10 2016-04-20 株式会社岛津制作所 Thermal conductivity detector and gas chromatograph
JP2016142688A (en) * 2015-02-04 2016-08-08 株式会社島津製作所 Gas chromatograph

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654742B1 (en) 1999-02-12 2003-11-25 International Business Machines Corporation Method and system for document collection final search result by arithmetical operations between search results sorted by multiple ranking metrics
JP2014108395A (en) * 2012-12-03 2014-06-12 Air Liquide Japan Ltd Vaporization amount monitoring system for solid material and monitoring method
CN105510493A (en) * 2014-10-10 2016-04-20 株式会社岛津制作所 Thermal conductivity detector and gas chromatograph
JP2016142688A (en) * 2015-02-04 2016-08-08 株式会社島津製作所 Gas chromatograph

Similar Documents

Publication Publication Date Title
EP0730151B1 (en) Flow regulation in gas chromatograph
EP0484645B1 (en) Methods and systems for fluid identification and flow rate determination
US5542286A (en) Method and apparatus for correcting flow and pressure sensor drift in a gas chromatograph
JP3526102B2 (en) Chromatographic analysis of fluids
US7691181B2 (en) System for controlling flow into chromatographic column using transfer line impedance
EP0891543B1 (en) Transportable ion mobility spectrometer with recirculating filtration system
JPH08233792A (en) Method and equimpment for measurement and control of flow rate and pressure
US20080291966A1 (en) Thermal conductivity detector (TCD) having compensated constant temperature element
US4741198A (en) Thermal conductivity detector assembly
EP0840116B1 (en) Calibration method for a chromatography column
IL169179A (en) Device for automated coupling between a micro-chromatograph and a mass spectrometer comprising temperature adjustment
JPWO2020080404A1 (en) An online analysis system including a temperature control analyzer and the temperature control analyzer.
JPH08304372A (en) Gas chromatographic device
JPH1019866A (en) Gas chormatograph
JP3912202B2 (en) Gas chromatograph analysis system
JPH0743648Y2 (en) Gas chromatograph
JP3371628B2 (en) Gas chromatograph
AU729790B2 (en) Flow regulation in gas chromatograph
JP3632718B2 (en) Gas chromatograph analyzer
JP2023536141A (en) Method and system for gas chromatography carrier gas identification
JPH01219557A (en) Chromatography/mass spectrometer
Baer et al. Chromatographic test facility. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration
JPH0669840U (en) Gas chromatograph
JPH10221291A (en) Thermal conductivity sensor
JPH04301555A (en) Heat conductivity detector for gas chromatograph